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Background: Web cameras are increasingly part of the standard hardware of most

smart devices. Eye movements can often provide a noninvasive “window on the brain,”

and the recording of eye movements using web cameras is a burgeoning area of

research.

Objective: This study investigated a novel methodology for administering a visual paired

comparison (VPC) decisional task using a web camera.To further assess this method, we

examined the correlation between a standard eye-tracking camera automated scoring

procedure [obtaining images at 60 frames per second (FPS)] and a manually scored

procedure using a built-in laptop web camera (obtaining images at 3 FPS).

Methods: This was an observational study of 54 clinically normal older adults.Subjects

completed three in-clinic visits with simultaneous recording of eye movements on a VPC

decision task by a standard eye tracker camera and a built-in laptop-based web camera.

Inter-rater reliability was analyzed using Siegel and Castellan’s kappa formula. Pearson

correlations were used to investigate the correlation between VPC performance using a

standard eye tracker camera and a built-in web camera.

Results: Strong associations were observed on VPC mean novelty preference score

between the 60 FPS eye tracker and 3 FPS built-in web camera at each of the three visits

(r = 0.88–0.92). Inter-rater agreement of web camera scoring at each time point was high

(κ = 0.81–0.88). There were strong relationships on VPC mean novelty preference score

between 10, 5, and 3 FPS training sets (r = 0.88–0.94). Significantly fewer data quality

issues were encountered using the built-in web camera.

Conclusions: Human scoring of a VPC decisional task using a built-in laptop web

camera correlated strongly with automated scoring of the same task using a standard

high frame rate eye tracker camera.While this method is not suitable for eye tracking

paradigms requiring the collection and analysis of fine-grained metrics, such as fixation

points, built-in web cameras are a standard feature of most smart devices (e.g., laptops,

tablets, smart phones) and can be effectively employed to track eye movements on

decisional tasks with high accuracy and minimal cost.
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INTRODUCTION

Web cameras are increasingly part of the standard hardware
of most smart devices. The quality and cost of these devices
has allowed for their increased use worldwide and are now
a standard feature on most smart devices, including desktop
and laptop computers, tablets, and smart phones. Because eye
movements can often provide a noninvasive “window on the
brain,” the recording of eye movements using web cameras is a
burgeoning area of research including both online and offline
system development (Wang and Sung, 2001; Hansen and Pece,
2005; Vivero et al., 2010; Anderson et al., 2011; Lin et al., 2013;
Petridis et al., 2013).

Visual paired comparison (VPC) task paradigms assess
recognition memory through comparison of the proportion of
time an individual spends viewing a new picture compared to
a picture they have previously seen, i.e., a novelty preference
(Fantz, 1964; Fagan, 1970). A novelty preference, or more time
spent looking at the new picture, is expected in individuals with
normal memory function. By contrast, individuals with memory
difficulties are characterized by more equally distributed viewing
times between the novel and familiar pictures. The lack of novelty
preference suggests impaired declarative memory for what has
already been viewed. VPC tasks have been shown to reliably
detect memory dysfunction in both primates and humans—both
infant and adult (Gunderson and Sackett, 1984; Gunderson and
Swartz, 1985; Bachevalier et al., 1993; Pascalis et al., 1998; Manns
et al., 2000; Zola et al., 2000, 2013; Crutcher et al., 2009).

Traditionally, VPC task data is captured using a commercial
grade eye tracker, employing a high frame rate camera capable of
capturing a number of visual features. These data are analyzed
using software provided by the manufacturer or are inspected
manually by researchers with expertise in the evaluation of
eye tracking metrics (e.g., gaze fixation, saccades, blinks, etc.)
The cost and complexities involved with commercial grade
eye tracking devices have prevented eye tracking from being
incorporated into routine clinical assessment; instead, they have
remained largely a feature of clinical research. Advances in
hardware and software have made web camera eye tracking
more affordable and accessible. In addition to the vastly lower
price compared to research eye-tracking cameras, which can cost
more than $50,000, built-in web cameras do not require the
same amount of setup and maintenance, which are necessary for
satisfactory data collection from research eye tracking cameras.
Furthermore, the accuracy and integrity of data acquired through
research eye tracking cameras varies widely (17). Perhaps the
most significant advantage of built-in web cameras is the lack
of geographical restriction to collect eye feature data on large
samples sizes. For example, open source eye tracking software,
such as WebGazer.js [https://webgazer.cs.brown.edu/] can be
deployed across most major web browsers. At the same time,
validation of specific web camera based eye tracking paradigms
for assessment of specific cognitive functions remains lacking.

The purpose of this study was to compare the accuracy of
human-coded gaze positions on a VPC task in healthy older
adults using a laptop-based web camera to a commercially
available high-frame-rate eye-tracking camera. By using a built-in

web camera it is possible to extend the accessibility of specific eye
tracking tasks to anyone with such a device. Similarly, the use
of a web camera increases the convenience of data acquisition.
In this study we report this method’s utility for tracking human
eye movements on a VPC decisional task and demonstrate the
equivalence of accuracy between this method and that of a
commercial high frame rate eye-tracking camera.

MATERIALS AND METHODS

After detailing the system components for both the standard eye
tracking camera system and the web-camera, we will detail the
test construction of the VPC task, including the visual calibration,
data acquisition, and scoring methods associated with each eye
tracking system. Descriptions of the subject sample, procedures
and data analysis will conclude this section.

System Components
Subject’s eye movements were recorded using a Tobii X2-60 eye
tracker camera system (Tobii AB, Stockholm) and using a built-
in web camera on a 13-inch Apple Macbook Air laptop (Apple,
Cupertino, CA).

Eye Tracker Camera
The system sampled at 60Hz and the gaze angle was determined
by the relative positions of corneal and pupil centers. Participants
were seated ∼ 27 inches from a 19-inch flat panel monitor that
displayed the stimuli. Eye data were recorded using the Tobii
SDK and API.

Web Camera
The laptop processor was a 1.4GHz Intel Core i5 with 4GB
1,600MHz DDR3 memory and a 1,536MB Intel HD Graphics
5,000 Graphics card. Video resolution of the laptop during test
recording was 640× 480.

Test Construction
Visual paired-comparison tasks make use of familiar and novel
visual stimuli. A typical VPC procedure involves a familiarization
phase and a test phase. During the initial familiarization phase,
subjects were presented with pairs of identical visual stimuli for
a fixed period of time. During the test phase, which follows a
delay of either fixed or variable periods of time, subjects were
presented with additional pairs of visual stimuli, which includes
one stimulus from the familiarization phase (familiar stimulus)
and a new, or novel, stimulus. The ratio of time subjects spend
looking at the novel stimulus relative to total viewing time during
the test produced a novelty preference score.

The construction of the VPC task used in this study was
a 5-min adapted version of a 30-min VPC task developed by
Zola et al. (2013). The test was made up of 20 trials, each trial
containing a familiarization phase and a test phase. Similar to the
Zola and colleagues task paradigm, the familiarization and test
phases were not consecutive (see Figure 1).

During the familiarization phase, the participant was shown
a sequence of pairs of identical images. Later on in the test,
the test phase occurs, where the participant was shown another
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FIGURE 1 | Schematic of familiarization and testing phase stimuli presentation (top) and VPC decisional task familiarization phase (p) and testing phase (t) trial order.

sequence of pairs of images, each pair consisting of an image
from the familiarization phase, and a novel image. The test
phases were shown after all familiarization phases, and in reverse
order. Stimuli consisted of black and white, high contrast images
measuring 4.4 inches wide by 6.5 inches high. Unique images
were used for each trial (Figure 2).

Calibration Validation
Before the start of the exam subjects were instructed to watch
a blue dot move around the screen. With the computer screen
interpreted as a coordinate system, where the top left of the screen
is (0, 0) and the bottom right of the screen is (1, 1), the movement
of the ball for calibration was:

(0.5, 0.5)-> (0.1, 0.1)-> (0.1, 0.9)-> (0.9, 0.9)-> (0.5, 0.5)->
(0.9, 0.1)-> (0.5, 0.1)-> (0.1, 0.5)-> (0.5, 0.9),

At each of the above points the ball paused and pulsed for∼2 s.

Eye Tracking Camera
At the conclusion of the calibration phase, two values were
computed to use as accuracy measures. They were:

1. Root-mean-square error (RMSE), where the error for each
gaze point is computed as Euclidean distance between the
point and the position of the calibration ball.

2. Quality, a value computed from the validity codes given by the
Tobii X2-60 SDK/API.

If either value was below a certain threshold (0.10 for the first
calibration and 0.15 for the second calibration for RMSE and
0.8 for the first calibration and 0.7 for the second calibration
for quality), the calibration was repeated up to two additional
times in order to ensure accurate evaluation of gaze position.
Calibration data were not incorporated into the experimental
procedure.

Web Camera
Three human coders manually evaluated the individual frames
of the calibration-phase video. All calibration frames (30/s)
were evaluated. Validation of the individual calibration frames

FIGURE 2 | Example VPC stimuli (A) nameable, (B) unnamable.

was accomplished by counting and comparing the frequency of
frames coded as the same side as the corresponding position of
the calibration dot. Only “left” or “right” were compared to when
the ball was either left or right. If individual accuracy of correctly
coded calibration frames did not reach 90% or greater, the coding
of the calibration-phase video was repeated. Frames when the ball
was pulsing in the center (vertically top, middle, and bottom) of
the screen were excluded (Figure 3). Calibration data were not
incorporated into the experimental procedure.

Data Acquisition
Eye Tracking Camera
Subjects were recorded during the calibration and test phase
with a Tobii X2-60 eye tracking device which recorded eye
gaze data at 60Hz (60/s). We programmatically accessed the
raw Tobii data using the Tobii Pro Analytics SDK. Each data
point recorded by the Tobii contained eye gaze data in two
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FIGURE 3 | Calibration phase stimuli and location (A) top center, (B) moving

to middle left.

separate “coordinate systems,” the Active Display Coordinate
System (ADCS) and the User Coordinate System (UCS). The
ADCS is a 2D coordinate system that was configured so that it is
aligned with the laptop screen. The top-left corner of the screen
is the ADCS coordinate (0, 0); the bottom-right corner is (1,
1). The UCS is a 3D coordinate system that provided additional
data on the real-world position of the participant’s eyes, allowing
us to, for example, accurately estimate the distance from the
eye to the screen and thus the degree of visual angle (DVA)
for each participant. Each data point consisted of an estimated
gaze point for both the left and right eye. For each such datum,
we took the midpoint of the two gaze points as the definitive
gaze estimate. This was also the default setting in Tobii Pro
Studio.

In addition to coordinate data, each Tobii data point
contained a “validity code,” which was used to estimate
“how certain the eye tracker is that the data given for an
eye really originates from that eye.” The code can range
from 0 (eye definitely found) to 4 (eye not found). If
both eyes were given a validity code of 4, the data point
was thrown out. Test trials were automatically excluded if
more than 4 s of data was excluded due to poor validity
codes.

Fixation filter.
We developed a fixation filter in order to process the raw
Tobii data. This filter replicated the cluster-based algorithm used

by Zola et al. (2013). The original algorithm consisted of the
following two phases:

1. Find a sequence of points of a minimum duration 100 ms such
that the standard deviation in both the horizontal and vertical
directions is at most 0.5 ∗ 1 DVA. This is the start of a fixation.

2. Continue adding consecutive points to this fixation cluster
until 3 such points are at least 1 DVA away from the initial
fixation in either the horizontal or vertical direction.

Implementation and processing of the raw gaze data from the
Zola study reproduced the same fixation/saccade categorization
that was computed and used previously. In phase 2, a fixation
ended after 3 points were distant from the fixation in an attempt
to filter out the noise in the gaze data by ignoring anomalies.
For example, if a single gaze point was estimated incorrectly such
that it was significantly distant from its neighboring gaze points
it would not necessarily end the fixation.

The Zola study used an Applied Science Laboratories eye
tracker that recorded gaze data at 120 Hz (120/s). As the Tobii
X2-60 records at half this rate, it was necessary to adjust the
constants used in the initial algorithm. We experimented with a
number of different constants, and examined the individual scan
paths of the calibration and tests to determine which remained
accurate. The final algorithm consisted of the following rules:

1. Start of fixation: Find a sequence with a minimum of 4 points
(∼66ms duration) such that the standard deviation in both
the horizontal and vertical directions is at most 1 DVA.

2. End of fixation: Continue adding consecutive points to this
fixation cluster until 3 such points are at least 1 DVA away
from the initial fixation.

The default setting for the minimum fixation duration in the
Tobii I-VT Fixation Filter is 60ms, which was equivalent to
the algorithm we developed (∼66ms). Three researchers with
expertise in eye tracking behavior and the Tobii X2-60 eye tracker
system independently inspected all test trials to ensure the quality
of test data. Test trials flagged for aberrant gaze paths (e.g., gaze
clustering, erratic saccades, etc.) were discussed corporately and
a consensus decision was made to retain or discard the trial in
question. If 10 or more trials were discarded, data for that subject
was left out of analyses.

Web Camera
Subjects were recorded during the calibration and test via the
laptop webcam. We used a high definition Flash video recorder
(HDFVR) for the subject-side recording, and the resulting Flash
video (FLV) video was streamed to our own Wowza Amazon
Web Services (AWS) instance. During both calibration and
testing, metadata was injected into the FLV video to ensure
correspondence between frames of the video and events of the
test. In addition, individual trial data was stored in a secure
database. Examples of metadata include the times when the
calibration ball moves from one coordinate to the next, and when
images of the exam are shown and hidden.

Scoring
The primary performance metric for VPC tasks is novelty
preference, which in the present study was the percentage of time
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the participant spends looking at the novel image compared with
the familiar image. Thus, the novelty preference score for each
test trial was calculated as (Time viewing novel image)/(Total
time viewing either image) The final novelty preference score of
a full test was the mean novelty preference score of all 20 trials.

Eye Tracking Camera
For each trial, we established a rectangular area-of-interest
perimeter around each of the paired images. This rectangle was
of fixed size, and slightly larger than the image it encompasses
in order to allow for some error in the gaze data. The novelty
preference of each trial was computed as:

(Time fixated on novel image)/(Total time fixated on either
image),

Time spent viewing images was calculated based upon the
total gaze fixation time recorded by the Tobii X2-60 software.

Web Camera Human-Coded Scoring
Recorded web camera data was separated into individual frames.
The frames were sorted and categorized by test trial using the
injected metadata of the FLV file during video acquisition. Web
camera data was analyzed using three different frame rates: 10
frames per second (FPS), 5 FPS, and 3 FPS. Processed data was
then evaluated on a frame by frame basis by 3 independent
human coders to determine if the subject was looking to the left
or right side of the screen, or in neither direction. Coding of the
“neither” option was intended for frames when the participant
was blinking, or the image was of poor enough quality that the
iris was indistinguishable from the rest of the eye (Figure 4).

In other words, the human coders were instructed to pick left
or right even when it appeared as though the participant was
looking more toward the center of the screen (because they were
likely not actually looking at the center).

For each image, the majority decision was taken by the
individual ratings. For example, if one coder rated the image as
“left” while the other two rated the image as “right,” the final
rating would be “right.” Then, for each trial, the merged “left”
and “right” ratings were translated to “novel” and “familiar”
ratings based on which image of the pair is novel. The novelty
preference score for each trial was the percentage of frames that
the participant was rated as looking at the novel side.

Novelty Preference= (# of “novel” frames)/(total # of “novel”
frames+ # of “familiar” frames).

Subjects
Fifty-four clinically normal, community-dwelling, older adults
were recruited from volunteers interested in research studies at
the Center for Alzheimer Research and Treatment at Brigham
and Women’s Hospital and at the Massachusetts Alzheimer
Disease Research Center at Massachusetts General Hospital.
The study was approved by the Partners Human Research
Committee, the Institutional Review Board (IRB) for Brigham
and Women’s Hospital and Massachusetts General Hospital.
Subjects underwent informed consent procedures approved by
the IRB and all subjects provided written and informed consent
for participation in the study. Exclusion criteria included a
history of alcoholism, drug abuse, head trauma or current
serious medical or psychiatric illnesses. All subjects met inclusion
criteria of age (above 50 years old), and cognitive status via
score within age-specified norms on the Telephone Interview
of Cognitive Status (TICS) (Knopman et al., 2010). No prior
computer knowledge was required.

Subject Characteristics
Subjects were all cognitively normal community-dwelling
individuals. Mean age was 68.7 ± 7.6 (range: 54–97). The
sample was 58.5% female (31 subjects). Mean years of education

FIGURE 4 | Scoring interface with 2 examples of subject right eye gaze (left calibration points 1 and 2 from the scorer’s perspective), 2 examples of subject left eye

gaze (right calibration points 1 and 2 from the scorer’s perspective), example of subject looking at screen center (top center), and individual subject trial image to be

scored (bottom center).
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completed were 15.6± 2.8 (range: 12–20). The sample was 57.4%
European-American (31 subjects) and 42.6% African-American
(23 subjects). See Table 1. Due to subject attrition and technical
issues, data from 44 subjects was available at time point 1, data
from 36 subjects was available at time point 2, and data from 38
subjects was available at time point 3.

Procedures
Subjects were asked to take part in three in-clinic visits as part of
a larger research protocol investigating longitudinal performance
on paper-pencil and digitally based cognitive tests. The second
visit occurred 1 week after the first visit, and the third visit
occurred 6 weeks after the first visit. At the first visit, subjects
were administered the original 30-min VPC task using the
standard eye tracking camera and the adapted 5-min version
with simultaneous capture using both the standard eye tracking
camera and the built-in web camera. At subsequent visits, only
the 5-min version was administered. At the start of each VPC task
administration the subjects were told that images would appear
on the screen and that they should look at the images “as if
watching television.”

Data Analysis
Analyses were conducted using IBM SPSS version 21.0. Inter-
rater agreement of web camera scoring at each time point was
assessed using Siegel and Castellan’s kappa calculation (Hallgren,
2012). Reliability within the web camera was assessed using
Pearson’s product-moment correlations. Training sets using 10,
5, and 3 FPS data were analyzed using a sub sample of the
participants (n = 25). Reliability between the Tobii X2-60 eye
tracking camera and the web camera using 3 FPS was assessed
using Pearson’s product-moment correlations. Cohen’s standard
was used to determine the strength of these relationships with
correlation coefficients of around 0.10 as small, 0.30 as medium,
and 0.50 and above as large (Cohen, 1992). Chi-square analyses
assessed the frequency of data quality issues present across each
of the three time points, and the frequency of data quality issues
associated with the eye tracker camera and the built-in web
camera.

RESULTS

Human Coder Scoring Agreement of Web
Camera Data
Analysis of inter-rater agreement of web camera scoring at each
time point using Siegel and Castellan’s kappa formula revealed

TABLE 1 | Subject characteristics.

% M (SD)

DEMOGRAPHICS

Sex (% Female) 58.5

Age (years) 68.7 (7.6)

Education (years) 15.6 (2.8)

Race (% Black) 54.7

very good mean agreement across each of the three human raters
for each of the 20 test trials at time points 1–3 (κ =0.85, 0.88,
0.81, respectively).

Relationships between Web Camera FPS
Training Sets
Analysis of relationship between the 10, 5, and 3 FPS training sets
revealed robust, positive associations between each FPS training
set. Pearson’s product-moment correlation between 5 and 10 FPS
training sets was 0.91 (n = 25; p < 0.001). Pearson’s product-
moment correlation between 3 and 10 FPS training sets was
0.94 (n = 25; p < 0.001). Pearson’s product-moment correlation
between 3 and 5 FPS training sets was 0.88 (n= 25; p < 0.001).

Relationships between Eye Tracker
Camera and Web Camera
Given the strength of the correlation between the 3 FPS web
camera training set and both the 5 and 10 FPS training sets, the
3 FPS data was used to investigate the relationship between the
eye-tracker and web camera data. Analysis of the relationship
between the eye-tracker and built-in web camera data revealed
robust positive associations between each camera type at each
time point. Pearson’s product-moment correlation at time point
1 was 0.92 (n = 44; p < 0.001). Pearson’s product-moment
correlation at time point 2 was 0.91 (n= 36; p< 0.001). Pearson’s
product-moment correlation at time point 3 was 0.88 (n = 38;
p < 0.001; Figure 5).

Trial Level Relationships between Eye Tracker

Camera and Web Camera
To further investigate the relationship between the eye tracker
camera and the web camera each of the 20 test trials for each
time point were compared. Analyses revealed good associations
between each camera type at each time point. Pearson’s product-
moment correlation at time point 1 was 0.76 (n= 841; p< 0.001).
Pearson’s product-moment correlation at time point 2 was 0.79
(n = 700; p < 0.001). Pearson’s product-moment correlation at
time point 3 was 0.74 (n = 709; p < 0.001). The strength of the
relationship remained when data was collapsed across each of the
time points (r = 0.76; n= 2247; p < 0.001).

Frequency of Data Quality Issues
Technical Issues by Time Point
Frequency of technical issues (e.g., disconnection of streaming
connection while video was being streamed, or Tobii not being
recognized by the laptop) present at consecutive time points
irrespective of camera type were 2.9, 5.5, and 3.9%, respectively.
No significant differences in the frequency of technical issues
were observed across the three time points (p > 0.1).

Technical Issues by Camera Type
Analysis of technical issues associated with each camera type
across the three time points revealed that of the 154 web camera-
based task administrations, 7 (2.3%) had technical issues that
excluded them from analysis. In contrast, 31 of the 156 eye-
tracker-based task administrations (10%) had technical issues
that excluded them from analysis. Chi-square analysis of the
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FIGURE 5 | Scatterplots of the relationships between (A) Mean novelty

preference of 60 FPS eye tracker camera and mean novelty preference of 3

(Continued)

FIGURE 5 | Continued

FPS built-in web camera at time 1, (B) Mean novelty preference of 60 FPS eye

tracker camera and mean novelty preference of 3 FPS built-in web camera at

time 2, and (C) Mean novelty preference of 60 FPS eye tracker camera and

mean novelty preference of 3 FPS built-in web camera at time point 3.

frequency of technical issues was significant (χ2 = 16.93;
p < 0.001) with greater frequency of technical issues using the
commercial eye tracker-based task administration.

DISCUSSION

This is the first study to our knowledge that has simultaneously
recorded human eye movements using both a high frame rate eye
tracker camera and a built-in web camera to evaluate the accuracy
of the latter on a VPC decisional task in clinically normal older
adults. We found that mean novelty preference scores calculated
using human coding of 3 FPS data from the built-in web camera
could substitute for eye movement data captured at 60 FPS using
a standard eye tracker camera. The accuracy of mean novelty
preference scores produced by the web camera was achieved as
a result of strong inter-rater agreement of subject data at the trial
level. In a subset of 25 subjects we found equivalence of mean
novelty preference scores using human coding of 10 FPS data,
5 FPS, and 3 FPS data. Finally, in analysis of data quality issues
associated with each camera, the built-in web camera proved
more reliable across each of the three test points.

The advantages associated with the use of a built-in web
camera include the ubiquity of such technology, the low cost
to acquire and incorporate web cameras into task designs, and
the relative ease associated with their operation and maintenance
(Anderson et al., 2011). Regarding the latter, current high frame
rate eye tracking cameras require extensive setup and calibration
for optimal data quality, and these procedures require training
and consistent implementation (Niehorster et al., 2017). Results
from this study support these considerations observing higher
frequency of data quality issues associated with the commercial
high frame rate eye tracking camera than the built-in web camera.
The technical abilities of individuals using commercial grade eye
trackers also likely play a role in the frequency of technical issues.
While built-in web cameras are more efficient and economical, it
is important to point out that training individuals to manually
score data from the web camera also has associated costs,
including training time. One advantage afforded by the use of a
web camera is the possibility of unobtrusive data capture of eye
movements. Petridis and colleagues demonstrated a method for
online acquisition of pupil size using a web camera (Petridis et al.,
2013). While such applications of eye tracking may afford greater
ecological validity, the clinical value of established eye tracking
constructs evaluating aspects of cognition within a formal testing
environment remains high.

One of the difficulties web camera eye tracking faces is the
lack of clarity regarding its utility across differing task designs.
Many research eye tracking task designs include measurement
of numerous eye tracking features, such as gaze location,
gaze fixations and re-fixations, vertical, and horizontal saccadic
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movements, as well as pupil measurement (e.g., diameter,
dilation). The minimum frame rate required for accurate data
analysis and scoring is likely quite variable and dependent upon
the specific task paradigm and the specific eye tracking features
of interest. While current research has demonstrated the ability
to reliably capture specific features, such as gaze location and
pupil diameter (Anderson et al., 2011; Petridis et al., 2013), the
number of features is limited and simultaneous collection of
multiple features remains a distinct advantage of commercial
grade research eye trackers. In principle, the same algorithms
used by research eye tracker software can be applied to extract
quantitative visual feature data from web cameras. For example,
identification of the pixel gradient between aspects of the eye
(e.g., pupil, iris, sclera), allows for the estimation and extraction
of the pupil and pupil centroid as specific shape-based features.
Application of such algorithms could increase the number of
features that could be simultaneously collected by a web camera.

This study provides evidence for the equivalence of scoring
accuracy on a VPC decisional paradigm ranging from 3 to 60
FPS and across human and automated scoring systems. Similar
studies investigating scoring equivalence across task paradigms is
critical for the establishment of thresholds that can be employed
when incorporating web cameras on tasks historicallymaking use
of commercial eye tracking cameras. In addition, performance
metrics on eye tracking tasks can include a composite score
of multiple features. For example, Lagun et al. (2011) used a
combination of novelty preference, gaze fixations, saccades, and
re-fixations to increase the sensitivity and specificity of a VPC
task in identifying older adults with mild cognitive impairment
(Cohen, 1992). The minimum frame rate required for accurate
data analysis and scoring of multiple visual features is also likely
dependent on the specific features of interest.

The ability to collect VPC task data remotely presents unique
advantages for the assessment of memory functioning. Most
measures of declarative memory require substantial instruction
before administration can begin. Furthermore, verbal-based
declarative memory tasks (e.g., list learning tasks) require
language comprehension and non-verbal based declarative
memory tasks (e.g., design learning tasks) require substantial
motor output. By contrast, VPC tasks require little to no
instruction, and can be provided on the screen before
testing begins. VPC tasks also require minimal language
comprehension or production, and minimal motor output.
These factors contribute to the scalability of VPC tasks
for efficient evaluation of memory function in older adults.
Laske and colleagues have proposed the inclusion of eye-
based screening measures within the primary care setting
for earlier detection of Alzheimer’s disease, and the use of
a web camera could facilitate the assessment of various eye
features (e.g., pupil diameter, pupil response) as well as eye-
based memory function using a VPC task (Laske et al.,
2015).

LIMITATIONS AND FUTURE DIRECTIONS

This pilot study included a small sample of clinically normal older
adults. Although the sample incorporated a broad range of older

ages and was ethnically diverse, the cohort was predominantly
well-educated. The major limitation associated with the current
method assessed is the offline nature of the system. This
human-based scoring method does not allow for online
tracking of eye movements, which can be incorporated into
tasks through gaze-contingent designs, or immediate trial level
feedback.

Additionally, the current study evaluated a VPC decisional
task requiring human scorers to decide between three gaze
locations (left, right, or neither). The same degree of accuracy
may not be achievable on task designs that require finer
discrimination of eye movements. On the other hand, Anderson
and colleagues found that offline human scorers can detect
and discriminate eye movements of 3◦ with >90% accuracy
(Anderson et al., 2011). Generally speaking, the value of human
scoring of web camera eye tracking data will decrease as the
requirements of complexity and subtlety of eye movements
increases. One important limitation of the current VPC
decisional task is that it precludes analysis of more fine-grained
eye tracking metrics, such as gaze fixation points, and the current
method is not suitable for eye tracking paradigms requiring
the collection and analysis of such metrics. As such it is
important to underscore that we are not suggesting that human
scoring of web camera eye tracking data can or should replace
commercially available high frame rate eye trackers; instead, the
results from this study suggest that specific offline gaze duration
eye tracking paradigms may be more reliably and cost-effectively
addressed using the approach we have detailed. Importantly,
while this study examined a specific gaze duration paradigm
for the evaluation of declarative memory, the same underlying
paradigm has been employed across a number of developmental
and neuropsychiatric conditions, including ADHD, depression,
and PTSD (Armstrong et al., 2013; Isaac et al., 2014; Türkan
et al., 2016). Another—somewhat obvious—limitation of this
method is the requirement of human scorers to code subject
eye movements. Automation of eye tracking using web camera
data is a growing area of research, and open source programs
exist for the automation of online, real-time eye tracking (Wang
and Sung, 2001; Hansen and Pece, 2005; Li and Parkhurst,
2006; Pedersen and Spivey, 2006; Vivero et al., 2010; Krafka
et al., 2016). However, the accuracy of current automated
systems is below those of standard high frame rate eye tracking
cameras.

This study lays the groundwork for further development in
the automation of analysis and scoring of web camera-based
eye tracking. We have provided evidence that for specific task
designs, human scored web camera data at 3 FPS is as accurate
as data obtained by a 60 FPS commercial eye tracker. The value
of automated scoring of web camera data is thus dependent upon
the specific task in question. In the future, we plan to compare
the accuracy of an automated scoring method using web camera
eye tracking data to human scored data.
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