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Alzheimer’s disease (AD) is the kind of dementia that affects the most people around

the world. Therefore, an early identification supporting effective treatments is required to

increase the life quality of a wide number of patients. Recently, computer-aided diagnosis

tools for dementia using Magnetic Resonance Imaging scans have been successfully

proposed to discriminate between patients with AD, mild cognitive impairment, and

healthy controls. Most of the attention has been given to the clinical data, provided

by initiatives as the ADNI, supporting reliable researches on intervention, prevention,

and treatments of AD. Therefore, there is a need for improving the performance of

classification machines. In this paper, we propose a kernel framework for learning metrics

that enhances conventional machines and supports the diagnosis of dementia. Our

framework aims at building discriminative spaces through the maximization of center

kernel alignment function, aiming at improving the discrimination of the three considered

neurological classes. The proposed metric learning performance is evaluated on the

widely-known ADNI database using three supervised classification machines (k-nn,

SVM and NNs) for multi-class and bi-class scenarios from structural MRIs. Specifically,

from ADNI collection 286 AD patients, 379 MCI patients and 231 healthy controls

are used for development and validation of our proposed metric learning framework.

For the experimental validation, we split the data into two subsets: 30% of subjects

used like a blindfolded assessment and 70% employed for parameter tuning. Then,

in the preprocessing stage, each structural MRI scan a total of 310 morphological

measurements are automatically extracted from by FreeSurfer software package and

concatenated to build an input feature matrix. Obtained test performance results, show

that including a supervised metric learning improves the compared baseline classifiers in

both scenarios. In the multi-class scenario, we achieve the best performance (accuracy

60.1%) for pretrained 1-layered NN, and we obtain measures over 90% in the average

for HC vs. AD task. From the machine learning point of view, our proposal enhances

the classifier performance by building spaces with a better class separability. From the

clinical application, our enhancement results in a more balanced performance in each

class than the compared approaches from the CADDementia challenge by increasing

the sensitivity of pathological groups and the specificity of healthy controls.

Keywords: metric learning, computer-aided diagnosis, centered kernel alignment, ADNI, magnetic resonance

imaging
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1. INTRODUCTION

Alzheimer’s Disease (AD) corresponds to a progressive cognitive
impairment and loss of memory functions, becoming the kind
of dementia with the largest prevalence in elderly subjects with
nearly 44 million patients worldwide. Besides, Mild Cognitive
Impairment (MCI), a previous stage of AD, affects 10–20% of
people aged 65 or older (Alzheimer’s Association, 2016). Hence,
dementia diagnosis and treatment demand reliable biomarkers
providing an objective and early characterization of the different
AD stages (Shi et al., 2015). Among these biomarkers, structural
magnetic resonance imaging (MRI) data became frequently used
to develop computer-aided diagnosis (CAD) tools due to its wide
availability and non-invasiveness (Jack et al., 2013). CAD tools
learn to discriminate dementia through MRI features, benefiting
from large amounts of neuroimaging data.

Particularly, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) focuses its researches on discriminating pathologies
with a variety of classification tools from neuroimaging data,
genetic information, and other biomarkes. However, insufficient
attention has been given to build appropriate metrics from the
training data that could maximize the performance of several
classifiers (Shi et al., 2015).

In this regard, learning distance metrics tuned for
classification tasks from given prior information, known as
Metric Learning (ML), implicitly transforms input features
into discriminative ones. As an example, linear dimensionality
reduction changes the metric in the original space to maximize
an objective function (Fukumizu et al., 2004). Therefore,
introducing a metric learning stage into the discrimination
process can significantly improve the performance of distance-
based machines as k-nn, k-means, and even SVMs (Xu et al.,
2012). Depending on the transformation to be sought, ML can
be divided into linear and nonlinear models.

Linear models aim at estimating an optimal affine
transformation for the input space, with straightforward
interpretation, optimization simplicity, and reduced
overfitting (Bellet et al., 2013). Among these models, principal
component analysis (PCA) finds the subspace best preserving
the variance of the data. Wachinger et al. (2016) stacks PCA
matrices and logistic regressors in a multi-layer architecture.
However, the generative properties of the resulting machine
highlight over the discriminative ones. In the same way, Khedher
et al. (2015) proposes a dimension reduction approach based
on performing an independent component analysis (ICA) over
high-dimensional voxel-wise features. Despite improving the
accuracy of an SVM classifier, the maximization of statistical
independencence of ICA may eliminate relationships between
the dependent features that hold discriminative information,
and restricts the resulting dimension to the number of involved
classes. In addition, when handling data distributions with
nonlinear structures, linear models show inherently limited
performance and class separation capability (Shi et al., 2015).

On the other hand, the most popular nonlinear models
are built through kernel-based methods, that embed input
features into higher dimensional spaces with an increased
linear separability. For instance, Awate et al. (2017) develop

a kernel-based framework for building cortex descriptors that
detect population differences and regress clinical variables.
Specifically for AD diagnosis, Zhang et al. (2011) combines three
different biomarkers using a simple-while-effective multiple-
kernel learning for improving the SVM-based classification of
AD and MCI. However, optimization of kernel weighting is
carried out by a grid search, which is very time consuming
when the number of features and samples gets large (Liu et al.,
2014). Another approach uses multiple-kernels, each of them
representing anatomically meaningful brain regions, to improve
AD discrimination (Young et al., 2015). The kernel combination
weights, that are computed via Gaussian Process framework,
can be clinically read. Despite enhancing the performance of
linear methods for many highly nonlinear problems, these
kind of kernel-based solutions are prone to over-fitting (Bellet
et al., 2013), and their utilization is inherently limited by the
sizes of the kernel matrices (He et al., 2013). Another kind
of non-linear models combine multiple local metrics to learn
a feature transformation based on either local neighborhoods
or class memberships (Wang et al., 2012). Although these
multi-metric strategies are usually more powerful in modeling
nonlinear structures, generalizing these methods to train robust
classifiers is not trivial. In addition, the estimation of high-level
complexity distances on suchmetric manifolds also yields to high
computational cost (Shi et al., 2015).

In this paper, we introduce a kernel-based metric learning
framework for supporting the dementia diagnosis task.
The proposed approach searches for projections into more
discriminative spaces so that the resulting data distribution
resembles as much as possible the label distribution. Hence,
we incorporate kernel theory for assessing the affinity between
projected data and available labels through the Center Kernel
Alignment (CKA) criterion. Maximization of CKA produces
discriminative features aimed at improving the discrimination
neurological classes. Furthermore, the proposed metric learning
is introduced into three commonly used supervised classification
machines, namely, k-nearest neighbors (k-nn), support vector
machines (SVM) and neural networks (NN). For the latter,
we generalize the supervised linear projection as a multilayer
architecture. Our approach is evaluated on two scenarios of
dementia diagnosis from structural MRIs (multi-class and
bi-class). To this end, we use morphological measurements
(volume, area, and thickness) computed by the widely used
FreeSurfer suite (Tustison et al., 2014). Attained test
classification results of several performance measures show
that introducing a supervised metric learning improves other
the baseline classifiers in both considered scenarios. Therefore,
the proposal builds spaces with a better class separability that
increases both the sensitivity and specificity, with the additional
benefit of a more balanced the performance for each class.

The agenda of this paper is organized as follows: Firstly,
we describe the mathematical framework and our proposed
approach in Section 2. Then, Section 3 illustrates the carried out
evaluations on the well-know ADNI collection for tuning the
parameters of the CKA and classifiers. Lastly, we describe all
obtained results and discuss concluding remarks in Sections 4
and 5, respectively.
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2. MATERIALS AND METHODS

2.1. Centered Kernel Alignment
Kernel functions are bivariate measures of similarity, which
are based on the inner product between samples embedded
in a Hilbert space. For an input feature space X, a kernel
κX :X×X→R

+ is a positive-definite function that defines an
implicit mapping ϕX:X→HX , aiming to embed a data point
x∈X into the element ϕX(x)∈HX of some Reproducing Kernel
Hilbert Space (RKHS) (noted as HX). Within a supervised
learning framework, a kernel κL:L×L→R

+ is also introduced
that acts over the target space L to account for the attribute
labeling information so that κL defines the implicit mapping
ϕL(l):L→HL. Due to each function (κX and κL) reflects a
different notion of similarity extracted from a distinct sample set,
the concept of alignment between mappings can be introduced
to measure the degree of agreement between the input and
target kernels. To unify both tasks into a coherent optimization
problem, we employ the Centered Kernel Alignment (CKA) that
assesses the kernel affinity through the expected value of their
normalized inner product over all data points as follows:

ρ (κX , κL) =
Exx′ll′

{
κ̄X

(
x, x′

)
κ̄L

(
l, l′

)}
√
Exx′

{
κ̄2
X (x, x′)

}
Ell′

{
κ̄2
L

(
l, l′

)} , (1)

where notation Ez {·} stands for the expected value of the
random variable z, κ̄Z

(
z, z′

)
is the centered version of the kernel

function κZ
(
z, z′

)
=

(
ϕZ(z)− ϕ̄Z

)⊤ (
ϕZ(z′)− ϕ̄Z

)
, being ϕ̄Z∈HZ

the expected value of the data distribution on HZ .
In practice, the characterizing kernel matrices, KX ∈R

N×N

and KL ∈R
N×N , are extracted from a provided input dataset

X ∈R
N×P, holding samples xn ∈R

P, along with its corresponding
target vector l={ln⊂Z : n∈[1,N]} ∈Z

N . Hence, the empirical
estimate for the CKA value can be computed as follows:

ρ̂
(
K̄X , K̄L

)
=

〈K̄X , K̄L〉F√
〈K̄X , K̄X〉F〈K̄L, K̄L〉F

, (2)

where notation 〈·, ·〉F stands for the matrix-based Frobenius
product, and K̄ =(ϕZ − ϕ̄Z)⊤(ϕZ − ϕ̄Z) is the centered
kernel matrix (associated with κ̄Z(, )) computed as K̄ = ĪKĪ,
being 1∈RN×1 the all-ones vector, I the identity matrix, and
Ī=

[
I− 11⊤/N

]
.

The inner product of both kernel functions in Equation
(2) estimates the agreement between the data jointly sampled
from the spaces X and L through their statistical dependence
ρ ∈[0, 1]. Therefore, the larger the value of the CKA, the more
similar the distributions of the input and target data. As a
result, using ρ as the cost function to maximize the dependence
between the characterizing kernels of the input data and the
class label promotes the class discrimination from the given input
samples (Gretton et al., 2005).

2.2. Supervised Metric Learning for
Classification
The CKA dependence using the Mahalanobis metric learning is
developed for three commonly used approaches to supervised

classification: k-nn and SVM that are fed into a Gaussian kernel
optimization, and NN that are optimized by a backpropagation
strategy with cross-entropy as the cost function.

2.2.1. Gaussian Kernel Optimization for Classification
In general, the Gaussian kernel is preferred in pattern
classification applications since it aims at finding an RKHS with
universal approximating ability, not to mention its mathematical
tractability. Nonetheless, to account for the variance of each
space when measuring the pairwise distance between samples xn
and xn′ , the Gaussian kernel relies on the generalized Euclidean
metric that is parameterized by a linear projection matrix W in
the form:

κX (W, σ) = exp
(
− (xn − xn′)WW⊤ (xn − xn′)

⊤/2σ 2
)

(3)

where σ ∈R
+ is the kernel bandwidth that rules the observation

window within the similarity distance is assessed.
In terms of the projectionmatrix, the formulation of the CKA-

based optimizing function in Equation (2) can be integrated into
the following kernel-based learning problem:

Ŵ = argmin
W

{
− log

(
ρ̂

(
K̄X(W), K̄L

))}
, (4a)

= argmin
W

{
log

(
tr

(
KX(W)ĪKLĪ

))

− 1
2 log

(
tr

(
KX(W)ĪKX(W)Ī

))}
, (4b)

where the logarithm function is used for mathematical
convenience. Therefore, the first term in Equation (4b) assesses
the similarity between input and target kernels while the second
one works as a regularization term minimizing the norm of the
input kernel.

2.2.2. Network Pretraining for NN Classification
From Equation (3), it holds that the projection matrix defines
a new space linearly dependent on the input features, that is,
y= xW. Consequently, the generalized Euclidean metric also
defines in the new space the following kernel function:

κY (y, y
′) = κX(xW, x′W) (5)

The above metric learning can be read as a particular case
of a multi-layer architecture, having a single layer and a
linear transfer function. This type of architectures sequentially
unravels input data through the stacked linear/non-linear
mappings aiming to estimate the output data. Therefore,
an M-layered Artificial Neural Network (ANN) can be
employed to predict the label of an input sample through a
battery of feed-forward deterministic transformations, which
are implemented by the hidden layers hm, mapping the
input sample x to the network output hM as below (Bengio,
2009):

{
hm = ϑ(bm + hm−1Wm), ∀m = 1, . . . ,M − 1

h0 = x
(6)

where bm ∈R
Qm+1 is the m-th offset vector, Wm ∈R

Qm+1×Qm

is the m-th linear projection, Qm ∈Z
+ is the size of the
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FIGURE 1 | Schematic training pipeline: Input MRI is automatically segmented and a set of features are further extracted. CKA learns a metric or pre-trains network

weigths. Tuned classifiers (k-nn, SVM, and ANN) are used for computer-aided diagnosis task.

m-th layer, and ϑ(·)∈R is the transfer function that non-
linearly maps, saturating each scalar input element. Besides,
the first and last layers of the network are always fixed to
the input and output dimensions of the learning task, that
is, h0 ∈R

P and hM ∈L⊂{0, 1}C with C mutually exclusive
classes.

It is worth noting that the architectures in Equation (6)
attempt to encode into each hidden space themost discriminative
attributes of the available dataset, managing the layers. In this
line of analysis, we propose a pre-training procedure to provide
a suitable initial set of projections {Wm}. To this end, the matrix
Hm ∈R

N×Qm is defined to hold everym-th non-linear projection
of the provided input data X, assuming H0=X. As a result, all
pairwise similarities between samples, atm-th layer, are gathered
into the kernel matrix Km ∈R

N×N with elements computed as
κm

(
d

(
hmn , h

m
n′

))
, being d :RQm×R

Qm→R
+ a distance operator

defined as follows:

d
(
hmn′ , h

m
n′

)
=

(
hmn − hmn′

) (
hmn − hmn′

)
⊤ (7)

where every hmn ∈R
Qm holds each linear projection that we

choose of a saturated class, that is, hmn =ϑ(hm−1
n Wm).

With the aim of making our proposal suitable for supervised
learning tasks, we introduce the pre-training of Wm at each
layer along with the provided prior knowledge into the CKA
optimization framework of Equation (4b). Hence, each matrix
Wm is learned by maximizing the similarity between Km and
KL through the real-valued function that evaluates the alignment
between both kernels in Equation (2). Thus, the pre-trained set
{Ŵm} that initializes the network layers provides an assembly
of discriminative linear projections, matching the most the
distribution of the projected dataHm and target information l.

For both the metric learning and network pre-training, the
parameters of the kernel-based learning problem defined in this
section are optimized in order solve the problem in Equation
(4b). Since, the kernel-based objective is a nonlinear function of
the parameters, we use the iterative stochastic gradient method
for optimization (Brockmeier et al., 2014). In particular, the
CKA optimization procedure is initialized from the principal
component mapping of the data, which meets orthogonality
conditions. Nonetheless, the span of the resulting projected space
is not necessarily orthogonal since there are no restrictions on
optimization. Resulting from the optimization, the proposed
transformation applies any linear mapping of the data so that the

classes are easier to identify. In the case of the metric learning,
the projection matrix can be seen as an affine transformation
where classes are spatially separated but the nonlinear properties
are held. In the case of the pre-training, a nonlinear mapping
unravels the data distribution to better classify the samples.

3. EXPERIMENTAL SET-UP

This work introduces a metric learning framework, based
on kernel alignment, to support classification tasks of
computer-aided diagnosis of dementia. Specifically, validation
is accomplished by grouping structural Magnetic Resonance
Images (MRI) into one of the following three neurological
classes:Normal Control (NC),Mild Cognitive Impairment (MCI),
and Alzheimer’s Disease (AD). Figure 1 outlines the training
pipeline, where the highlighted box contains the proposed data
representation stage based on CKA that can be introduced into
three considered classification machines.

3.1. MRI Database and Preprocessing
The proposed metric learning is evaluated on a set holding
3,304 MRIs obtained from 896 adult patients selected from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
This data collection aims at measuring the progression of
dementia from serial MRIs, positron emission tomography, other
biosignals, and neuropsychological assessments. Table 1 briefly
describes the demographic information of the tested cohort of
ADNI MRIs, which is split into two subsets. The first one holds
30% of the subjects and is devoted to a blindfolded assessment
of the performance framework. The remaining 70% of subjects is
employed for framework parameter tuning, which is carried by a
5-fold cross-validation scheme to guarantee that all images of the
same subject are assigned to a single group of data analysis (i.e., a
validation fold or the test subset).

The tested set of structural MRIs if automatically pre-
processed via the widely used FreeSurfer software package2

that computes the needed morphological measurements with
suitable test-retest reliability across scanner manufacturers and
field strengths. Firstly, the bias field of the structural images
is corrected as well as its intensity is normalized. Further,
the gray and white matter are segmented, and the brain

1www.adni-info.org
2freesurfer.nmr.mgh.harvard.edu
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TABLE 1 | Demographic details of the selected ADNI dataset cohort, distributed

over the three classes.

HC MCI AD

Patients 231 379 286

N 1,048 1,433 823

Age 77.1± 5.2 75.9± 7.1 76.2± 7.2

Male 53.4% 65.2% 54.7%

TABLE 2 | Morphological features extracted by FreeSurfer.

Type PF Units

Cortical volumes (CV) 69 mm3

Subortical volumes (SV) 37 mm3

Surface area (SA) 68 mm2

Thickness average (TA) 68 mm

Thickness std. (TS) 68 mm

Total feature set 310

PF , Number of features.

cortex is parcellated. The shapes of resulting structures are
further tessellated. Then, structure-wise thickness, area, and
volume measurements are computed. The volume features are
normalized to the Total Intracranial Volume (Buckner et al.,
2004). As a result, an input feature matrix X with size N= 3304
and P= 310 is built using the features from each MRI as
summarized in Table 2.

3.2. Parameter Setting and Network
Topology
As regards the CKA implementation, the kernel function is
computed as below:

κ̄Z
(
z, z′

)
= κZ

(
z, z′

)
− Ez′

{
κZ

(
z, z′

)}
− Ez

{
κZ

(
z, z′

)}

+ Ezz′
{
κZ

(
z, z′

)}
, ∀z, z′⊂Z (8)

Therefore, provided a finite sample {(xn, ln):n∈N}, elements
k̄nn′ = κ̄Z (zn, zn′) in Equation (8) are estimated by the following
centered kernel function:

k̄nn′ = knn′ − En

{
knn′

}
− En′

{
knn′

}
+ En,n′

{
knn′

}
. (9)

In the validation stage, we consider two scenarios of diagnosis,
namely, multi-class task (i.e., MCI, HC, and AD) and three bi-
class tasks: HC vs. MCI, HC vs. AD, and MCI vs. AD. In all cases,
each compared classifier is adjusted to the following parameter
setting:

– k Nearest Neighbors (k-nn): The number of neighbors is
tuned by heuristic searches according to the best performance
reached within the specific range [1, 3, 5, 7, 9], resulting in
k={7, 9} as the optimal parameter for the baseline and metric
learning approaches, respectively.

– Support Vector Machine (SVM): The regularization
parameter of the soft margin is searched within the range

C∈[0.1, 1, 10, 100, 1000]. The SVM-based classifier is trained
by the sequential minimal optimization solver for a Gaussian
kernel with bandwidth tuned following the algorithm
proposed by Álvarez-Meza et al. (2014) that achieves the
highest accuracy at C= 10 for the baseline and C=0.1 for the
metric learning approach.

– Neural Networks (NN): Architectures with one and two
hidden layers (M={1, 2}) with m1=m2=m are considered
for all experiments. Activation functions of the hidden states
are the standard sigmoid, ϑ(z)=(tanh(z) + 1)/2, while at the
output layer the following function is selected:

hMc = exp(bmc + wM
c hM−1)/

∑
j
{exp(bmj + wM

j hM−1)}

where bMc is the c-th element of bM , wM
c the c-th row of WM ,

and
∑

c h
M
c = 1. Also, we tune the hidden layer size using the

exhaustive search strategy for the highest reached accuracy.
To this end, the NN classifier is iteratively trained through a
range of log-spaced layer sizes bounded by m∈[C, P−1]. The
exhaustive search for the layer size attainedm1= 11 for 1-layered
network, either randomly initialized or with supervised pre-
training. The 2-layered architecture obtains the highest accuracy
atm1=m2=11 when randomly initialized andm1=m2=5 when
pre-trained.

The diagnosis performance is assessed by the classification
accuracy a and true positive fraction for the corresponding class
(τc), defined as follows:

a = Ec

{
t
p
c + tnc

}
(10a)

τc = tc/Nc, c = {MCI,HC,AD} (10b)

being t
p
c , tnc , and Nc the number of true positives, true negatives,

and total samples for c-th class, respectively. Note that the true
positive fractions provide information about the sensitivity and
the specificity. Thus, for the multi-class case, τAD and τMCI can
be interpreted as the two-class sensitivity, while τNC agrees with
the two-class specificity (Bron et al., 2015).

4. RESULTS AND DISCUSSION

For enhancing the computer-aided diagnosis of dementia, we
explore ametric learning framework based on the centered kernel
alignment function, aiming to estimate more discriminative
spaces. Evaluation prove the benefits of the proposed CKA-
based meatric learning framework to a certain degree. From the
obtained experimental results the following considerations are to
be taken into account:

The use of a kernel learning method, termed Centered Kernel
Alignment, allows quantifying the similarity between the input
sample space and corresponding class label set. However, the
core problem of implementing CKA is the way of choosing
an appropriate kernel and setting its parameters, tending to
guarantee good generalization performance of the learning
machine. Besides its generalization ability, the Gaussian kernel is
employed due to the possibility to incorporate a more generalized
Euclidean metric that accounts for the variance of the feature
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and label spaces through a projection matrix. Therefore, the
applied supervised metric learning projects the feature set so
that the CKA value becomes maximal. However, the alignment
optimization procedure is strongly dependent on the metric
model. That is, simple linear mappings are easier to tune but
cannot encode higher order relations. On the other hand, multi-
layer architectures can discover data non-linearities, but are more
expensive to tune.

The CKA dependence using the Mahalanobis metric learning
is developed for three commonly used approaches to supervised
classification: k-nn and SVM that are fed into a gradient-
based optimization, and NN that are optimized using a
backpropagation strategy with cross-entropy as the cost function.
For the NN classifier, we generalize the supervised linear
projection as a multilayer neural network, having one layer
provided with a linear transfer function. Thus, a supervised CKA-
based network pre-training is developed by applying the CKA
procedure sequentially from the input to the output layer.

A bootstrapping procedure on the test set with 1,000
resamples estimates the average and the 95% confidence interval
(CI) of each performance measure, as suggested by Bron et al.
(2015). Besides, a two-sample t-test assesses the significative
difference between a classifier and its CKA-enhanced version at
a significance level of (1%). From the obtained results, it follows
that the either case of the CKA metric learning gives rise to the
classification performance for the multi-class scenario. Table 3
displays the validation performance of the multi-class scenario
presented by each classifier. Due to the assumed influence of
the topology, we also consider two versions of NN: 1-layered
and 2-layered. In the first case of classification (top four rows),
when feeding just the input feature set, the 2-layered NN
classifier produces the best performance (average 57.4%), while
the baseline k-NN certainly yields the worst results (45.5%).
The bottom four rows hold the results of using the suggested
learned metric, showing that the performance improves for most
of classifiers. The last column computes the standard deviation

of the true-positive rates (stdτ ) a bias measure. As seen, the SVM
is the most balanced classifier and benefits from the CKA by
decreasing its standard deviation (stdτ = 4.2%). The gray-shaded
cells denote the best performance of each classifier accuracy for
all cases, noting that the pre-trained 1-layered NN is the best
configuration. Another aspect to remark is that the CKA-based
metric learning improves every one of the performance measures
regardless of the used classifier as shown in the row Performance
after CKA.

Likewise, the use of CKA also enhances the classification of
each considered bi-class task as shown in Table 4. The distinction
between HC and AD classes presents the highest values of
performance (above 92% in average), meaning that this task is
likely to have the easiest discriminating representation. However,
the more challenging the bi-class task, the lower the increasing of
classification performance.

A detailed analysis of each performance measure shows that
the developed metric increases the accuracy obtained by all
classification machines for each bi-class task. Also, the proposed
metric increases the percentage of true positive fractions achieved
by most of classifiers for each neurological class, improving the
sensitivity of pathological groups and the specificity of healthy
controls, especially for the HC vs. AD and HC vs. MCI task.
Specifically, for the HC vs. MCI bi-class task, the proposed
metric learning enhances significantly the performance balance
of the k-nn and SVM classifier (2.3 and 8.3%, respectively)
in comparison with their performance without ML (10.5 and
30.3%, respectively). Therefore, CKA forces each hidden space
to increase the class separability by sequentially increasing the
match between input and target data distributions. Nonetheless,
most of the classifiers underperform for the MCI class due to
its heterogeneous distribution. This situation arises because MCI
is an intermediate disease between HC and AD, so that some
patients may eventually convert to any of the other two classes.

For the sake of comparison, the proposed methodology
of training is contrasted against the classification results for

TABLE 3 | Testing performance of the metric learning for the multi-class task.

a (CI) τHC (CI) τMCI (CI) τAD(CI) stdτ (%)

k-nn 45.5 (42.2–48.4) 51.9 (46.6–57.3) 45.5 (40.9–50.6) 37.3 (31.1–43.5) 7.3

SVM 53.5 (50.4–56.4) 56.2 (50.8–61.8) 48.2 (43.4–52.8) 59.5 (53.1–65.4) 5.8

1-layer NN 57.0 (53.6–59.7) 58.3 (52.6–63.6) 61.3 (56.4–65.8) 47.6 (41.4–53.7) 7.2

2-layer NN 57.4 (54.6–60.4) 69.8 (64.5–74.6) 42.6 (38.1–47.1) 67.5 (61.3–73.1) 15.1

Perf. before CKA 53.4 59.1 49.4 53.0

ML + k-nn 53.8 (50.7–56.7)* 63.9 (58.2–69.3)* 50.9 (46.2–55.3)* 46.0 (40.3–52.2)* 9.3

ML + SVM 57.7 (54.4–60.7)* 62.7 (57.5–67.8)* 54.7 (50.2–59.6)* 56.7 (50.6–62.4) 4.2

Pretrained 1-layer NN 60.1 (56.9–62.7)* 66.0 (60.2–70.9)* 59.2 (54.7–64.0) 54.0 (48.1-59.8)* 6.0

Pretrained 2-layer NN 58.5 (55.4–61.5)* 72.2 (69.1–76.9)* 44.1 (39.4–48.6)* 66.3 (60.6-71.9) 14.8

Perf. after CKA 57.5 66.2 52.2 55.8

Average and confidence interval (CI) for 1,000 resamples bootstrapping are reported. *Indicates whether the performance after CKA is larger than before CKA for each classifier at a

significance level of 1%.

The gray shade denotes the best result for each performance measure.
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CADDementia challenge of AD diagnosis in Bron et al. (2015).
To this end, the accuracy, true-positive rate, and area under the
ROC (Receiver operating curve) are recomputed following the
same evaluation scheme above described. Tables 4, 5 report the
obtained results of CKA-enhanced SVM and NNmachines along
with the best performing approach in the challenge for each
measure. It is worth noting that we can contrast results because
class distributions and data acquisition protocols are similar for
both works. However, we make clear that the comparison is given

only in terms of the average and confidence intervals since the
hypothesis test can not be performed.

Results in Table 5 show that no approach achieves the best
performance in all measures. In the case of the accuracy,
Soerensen-equal outperforms with a= 63.0%, followed by the
CKA-enhanced SVM and NN machines. Regarding the true-
positive rates, Soerensen-equal achieves the highest τNC = 96.9
at the cost of decreasing τMCI and τAD (e.g., τAD= 61.2).
Similarly, Abdulkadir and Routier-train algorithms bias toward

TABLE 4 | Testing performance of the metric learning for the bi-class task.

a (CI) τHC (CI) τMCI (CI) τAD (CI) stdτ (%)

HC vs. AD

k-nn 80.7 (77.5–83.7) 94.8 (91.7–96.6) NA 61.8 (55.5–67.5) 23.3

SVM 90.6 (88.0–92.7) 88.9 (84.8–92.0) NA 92.9 (88.6–95.5) 2.8

1-layer NN 91.2 (88.3–93.1) 95.7 (93.3–97.6) NA 85.1 (79.7–89.0) 7.5

2-layer NN 91.9 (89.2–93.6) 94.4 (91.6–96.5) NA 88.4 (83.9–92.1) 4.2

Perf. before CKA 88.6 93.5 NA 82.1

ML + k-nn 90.4 (87.4–92.6)* 96.9 (94.6–98.4)* NA 81.7 (75.8–86.3)* 10.7

ML + SVM 91.5 (88.7–93.5) 93.2 (90.1–95.6)* NA 89.2 (84.0–92.7)* 2.8

Pretrained 1-layer NN 92.0 (89.4–93.8) 95.1 (92.4–97.2) NA 88.0 (83.0–91.6)* 5.0

Pretrained 2-layer NN 92.6 (89.7–94.2) 95.7 (92.9–97.5) NA 88.4 (83.5–91.8) 5.2

Perf. after CKA 91.6 95.2 NA 86.8

HC vs. MCI

k-nn 59.5 (55.7–62.7) 51.1 (45.8–56.3) 65.9 (61.2–70.0) NA 10.5

SVM 64.9 (61.3–68.3) 40.6 (35.0–45.9) 83.5 (79.6–86.8) NA 30.3

1-layer NN 70.4 (67.3–73.3) 59.7 (54.1–64.9) 78.6 (74.3–81.9)* NA 13.4

2-layer NN 71.9 (68.5–74.8) 59.1 (53.6–64.0) 81.6 (77.6–84.7) NA 15.9

Perf. before CKA 66.7 52.6 77.4 NA

ML + k-nn 64.7 (60.8–67.9)* 66.5 (61.0–71.4)* 63.3 (58.4–67.8)* NA 2.3

ML + SVM 66.0 (62.3–69.1) 59.4 (53.7–64.7)* 71.1 (66.3–75.1)* NA 8.3

Pretrained 1-layer NN 72.5 (69.1–75.6)* 61.2 (56.1–66.5) 81.2 (77.3–89.8)* NA 14.1

Pretrained 2-layer NN 71.2 (68.0–74.0) 57.2 (51.5–62.0) 86.9 (78.1–85.3) NA 21.0

Perf. after CKA 68.6 61.1 74.4 NA

MCI vs. AD

k-nn 67.0 (63.3–70.8) NA 84.4 (80.6–87.5) 39.5 (33.7–46.2) 31.7

SVM 68.5 (64.7–72.0) NA 76.0 (71.8–80.3) 56.6 (50.8–63.0) 13.7

1-layer NN 67.9 (63.8–71.1) NA 74.3 (70.0–78.4) 57.8 (51.6–63.6) 11.7

2-layer NN 71.1 (67.3–74.1) NA 79.0 (75.2–82.8) 58.6 (52.0–64.7) 14.4

Perf. before CKA 68.6 NA 78.4 53.1

ML + k-nn 68.5 (65.0–71.8)* NA 78.7 (74.4–82.5)* 52.3 (46.8–58.8)* 18.7

ML + SVM 69.4 (65.3–72.6) NA 78.2 (74.1–82.2) 55.5 (49.5–61.3) 16.1

Pretrained 1-layer NN 69.2 (65.5–72.6) NA 78.7 (74.7–82.4)* 54.3 (48.5–60.3)* 17.3

Pretrained 2-layer NN 72.4 (69.1–75.8) NA 85.4 (81.6–88.5)* 52.0 (46.5–58.8)* 23.6

Perf. after CKA 69.9 NA 80.3 53.5

Average and confidence interval (CI) for 1,000 resamples bootstrapping are reported. *Indicates whether the performance after CKA is larger than before CKA for each classifier at a

significance level of 1%.

The gray shade denotes the best result for each performance measure.
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TABLE 5 | Accuracy performance measures for the multi-class scenario following the validation scheme in Bron et al. (2015).

a (CI) τHC (CI) τMCI (CI) τAD (CI) stdτ (%)

ML + SVM 57.7 (54.4–60.7) 62.7 (57.5–67.8) 54.7 (50.2–59.6) 56.7 (50.6–62.4) 4.2

Pretrained 1-layer NN 60.1 (56.9–62.7) 66.0 (60.2–70.9) 59.2 (54.7–64.0) 54.0 (48.1–59.8) 6.0

Pretrained 2-layer NN 58.5 (55.4–61.5) 72.2 (69.1–76.9) 44.1 (39.4–48.6) 66.3 (60.6–71.9) 14.8

Soerensen-equal 63.0 (57.9–67.5) 96.9 (92.9–99.2) 28.7 (21.3–37.4) 61.2 (51.6-69.8) 34.11

Abdulkadir 53.7 (48.3–58.2) 45.7 (37.0–53.6) 65.6 (56.1–73.0) 49.5 (39.4–58.8) 10.6

Routier-train 48.3 (42.9–53.4) 48.1 (39.8–56.9) 21.3 (14.8–29.0) 80.6 (72.2–87.3) 29.7

Ledig-ALL 57.9 (52.5–62.7) 89.1 (83.7–93.8) 41.0 (32.4–49.6) 38.8 (30.7–50.0) 28.4

Wachinger-step1 54.0 (48.9–59.0) 68.2 (60.2–75.4) 41.0 (31.9–50.9) 51.5 (42.2–61.1) 13.7

The gray shade denotes the best result for each performance measure.

TABLE 6 | Area under the ROC performance measures for the multi-class scenario following the validation scheme in Bron et al. (2015).

AUC (CI) AUCHC (CI) AUCMCI (CI) AUCAD (CI) stdAUC (%)

ML + SVM 74.7 (72.1–77.0) 77.6 (74.2–80.7) 61.3 (57.6–64.9) 82.3 (78.7–84.9) 11.0

Pretrained 1-layer NN 78.5 (76.3–80.3) 82.4 (79.8–84.9) 64.5 (61.0–67.7) 85.2 (82.5–87.5) 11.2

Pretrained 2-layer NN 77.9 (75.8–79.8) 81.5 (78.5–83.9) 62.7 (59.1–65.9) 85.5 (82.9–87.9) 12.2

Soerensen-equal 78.8 (75.6–82.0) 86.3 (81.8–89.3) 63.1 (56.6–68.3) 87.5 (83.4–91.1) 13.8

Abdulkadir 77.7 (74.2–81.0) 85.6 (81.4–89.0) 59.9 (54.1–66.4) 86.7 (82.3–90.3) 15.2

Ledig-ALL 76.7 (73.6–79.8) 86.6 (82.7–89.8) 59.7 (53.3–65.1) 84.9 (79.7–88.7) 15.1

Wachinger-step1 74.6 (70.8–78.1) 79.1 (73.5–83.1) 55.0 (48.5–61.4) 89.2 (85.3–92.3) 17.6

The gray shade denotes the best result for each performance measure.

AD (τAD= 80.6) andMCI (τMCI = 65.6), so that they perform the
worst in MCI (τMCI = 21.3) and HC (τHC = 45.7), respectively.
Therefore, the within approach true-positive rates, that vary
largely, prove that some algorithms incline toward one class but
reducing the discrimination of the other classes. In contrast, the
proposed CKA enhancement provides more similar τ and amore
balanced performance. Such a fact is proved by the standard
deviation of the true-positives (stdτ ), where the enhanced SVM
and pre-trained 1-layered NN vary the least in comparison with
results reported in the CADDementia challenge.

From Table 6 it follows that the per-class AUCs also depends
on the selected approach. For example, Ledig-All andWachinger-
step1 algorithms provide the best AUC for HC and AD class,
respectively. However, the former achieves 59.7% for MCI and
the latter becomes the worst-performing. On the contrary, the
proposed approach, particularly the pre-trained NN, achieve
the best AUC for the MCI with no compromise of the other
two classes. These results prove that the CKA criterion aims
at discriminating all classes simultaneously obtaining balanced
results and avoiding class biasing.

5. CONCLUSION

This work introduces a supervised metric learning to support
MRI classification. The proposed learning decodes discriminant
information based on the maximization of the similarity between
the input distribution and the corresponding target (diagnosis
classes), aiming at enhancing the class separability. Thus, the

conventional centered kernel alignment (CKA) is introduced
as the cost function to infer the metric paramters that feed
two classifiers (k-nn and SVM) and initialize the training of
an NN. Evaluation of the proposed metric learning framework
is carried out on the well-known ADNI dataset, where several
morphological measurements are extracted using FreeSurfer
to represent each MRI scan. In order to avoid over-fitting
and prevent a biased classification performance, we split the
dataset into two groups: A training subset for parameter tuning,
and a test subset for performance assessment. Experiments are
conducted according two diagnosis scenarios. For the multi-
class one, our proposed CKA improves the performance for all
classifiers in terms of the classification accuracy and the true
positive fraction of each neurological class. In particular, the
1-layered NN classifier achieves the best performance (average
57.3%), and k-nn reaches competitive results (46.4%). In the bi-
class scenario, CKA also enhances the classification, attaining
measures over 90% in average for HC vs. AD task. Therefore,
introducing CKA in the supervised metric learning determines
spaces with a better class separability that increases both the
sensitivity and specificity. As an additional benefit, the proposal
better balances the performance in each class.

Attained results in the work yield the following research
directions: Since the span of the resulting space is not guaranteed
to be orthogonal, CKA criterion may produce redundant
information. Then we propose to further introduce orthogonality
constraints between the bases to solve this issue. Also, because
the considered input feature set corresponds to a standard
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biomarker extraction, it is interesting to analyze other kinds of
image representation strategies aiming at finding their relevance
for class discrimination assessed by the CKA criterion. Besides,
we devise two improvements of the sequential pre-training,
namely, an NN training using CKA as the cost function and the
evaluation of othermulti-layermachines as Generative Stochastic
Networks. Finally, we note that the class-wise performance can
be parameterized by the introduced kernel function in the target
space, so that a larger similarity of a particular class should
increase its true positive rate.
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