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Converging evidence suggests that human cognition and behavior emerge

from functional brain networks interacting on local and global scales. We

investigated two information-theoretic measures of functional brain segregation

and integration—interaction complexity CI(X), and integration I(X)—as applied to

electroencephalographic (EEG) signals and how these measures are affected by choice

of EEG reference. CI(X) is a statistical measure of the system entropy accounted for

by interactions among its elements, whereas I(X) indexes the overall deviation from

statistical independence of the individual elements of a system. We recorded 72

channels of scalp EEG from human participants who sat in a wakeful resting state

(interleaved counterbalanced eyes-open and eyes-closed blocks). CI(X) and I(X) of the

EEG signals were computed using four different EEG references: linked-mastoids (LM)

reference, average (AVG) reference, a Laplacian (LAP) “reference-free” transformation,

and an infinity (INF) reference estimated via the Reference Electrode Standardization

Technique (REST). Fourier-based power spectral density (PSD), a standard measure of

resting state activity, was computed for comparison and as a check of data integrity

and quality. We also performed dipole source modeling in order to assess the accuracy

of neural source CI(X) and I(X) estimates obtained from scalp-level EEG signals.

CI(X) was largest for the LAP transformation, smallest for the LM reference, and at

intermediate values for the AVG and INF references. I(X) was smallest for the LAP

transformation, largest for the LM reference, and at intermediate values for the AVG and

INF references. Furthermore, across all references, CI(X) and I(X) reliably distinguished

between resting-state conditions (larger values for eyes-open vs. eyes-closed). These

findings occurred in the context of the overall expected pattern of resting state PSD.

Dipole modeling showed that simulated scalp EEG-level CI(X) and I(X) reflected changes

in underlying neural source dependencies, but only for higher levels of integration and

with highest accuracy for the LAP transformation. Our observations suggest that the

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
https://doi.org/10.3389/fnins.2017.00425
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00425&domain=pdf&date_stamp=2017-07-25
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:logant@txstate.edu
https://doi.org/10.3389/fnins.2017.00425
http://journal.frontiersin.org/article/10.3389/fnins.2017.00425/abstract
http://loop.frontiersin.org/people/45272/overview
http://loop.frontiersin.org/people/460396/overview


Trujillo et al. EEG Reference, Complexity, and Integration

Laplacian-transformation should be preferred for the computation of scalp-level CI(X)

and I(X) due to its positive impact on EEG signal quality and statistics, reduction of

volume-conduction, and the higher accuracy this provides when estimating scalp-level

EEG complexity and integration.

Keywords: electroencephalography, EEG complexity, EEG integration, EEG spectral power density, EEG reference,

resting state EEG

INTRODUCTION

Converging evidence suggests that human cognition and
behavior emerge from brain networks interacting on local and
global scales. These different scales of neural activity reflect
the functional segregation (specialized information processing
within regional groups of brain regions) and integration (the
combination of that specialized information across distributed
brain regions) of the brain networks (Tononi et al., 1994,
1996, 1998a,b; Bullmore and Sporns, 2009; Fair et al., 2009;
Rubinov and Sporns, 2010). Moreover, the organization of
these brain networks is highly complex due to the dynamic
interplay of segregation and integration. This neural complexity
reflects a large number of coordinated interactions among brain
elements engaged in various levels of subordination that are
neither fully regular nor random (Tononi et al., 1998a). One
approach to quantifying segregation, integration, and complexity
in the brain utilizes information theory to characterize neural
activity in terms of “deviations from statistical independence
among components of a neural system” (Tononi et al., 1994, p.
5033). In this paper, we consider two such information-theoretic
measures as applied to the analysis of electroencephalographic
(EEG) data. The first measure, called integration I(X), is a
multivariate index of the overall deviation from statistical
independence of the individual elements in a system. The second
measure, called interaction complexity CI(X), is a statistical
measure of a system’s information content that results from
the interactions among the system’s elements. The relationship
between complexity and integration follows an “inverted-U”
non-monotonic function (Tononi et al., 1994; see Figure 1).
Complexity is low at low integration values when system
components are fully statistically independent; complexity is high
at intermediate integration values when there is heterogenous
statistical dependence among system components (i.e., when a
system is highly integrated and specialized; Tononi et al., 1998a),
and complexity is low at high integration values when system
components are fully statistically dependent. These measures
are, in part, the precursors to the segregation and integration
measures used in the current integrated information theory of
consciousness and brain function (Tononi, 2004; Tononi and
Koch, 2016).

In order for CI(X) and I(X) to provide useful insight

into the brain networks underlying cognition and behavior, it
is important to understand how they are influenced by the

various parameters of EEG measurements. This allows one
to assess the reliability and validity of CI(X) and I(X) under
different measurement scenarios. One crucial EEG measurement
parameter is the reference scheme or montage. The EEG signal

represents a difference between two voltages, one located at
an electrode site of interest and another at a location that is
as electrically neutral as possible with respect to the signal
of interest. The choice of EEG reference is well-known to
affect signal quality (Gencer et al., 1996), as different reference
choices may or may not be electrically neutral depending on
location, participant behavior, and the neurocognitive process
under investigation (Wolpaw and Wood, 1982; Desmedt et al.,
1990; Dien, 1998; Yao, 2001; Trujillo et al., 2005). The impact of
EEG reference on signal quality should also affect the reliability
of the signal statistics from which these CI(X) and I(X) measures
are derived. Furthermore, CI(X) and I(X) index the interaction
between different brain signal elements, interdependencies that
can be artificially-inflated at the level of the scalp due to the effects
of volume conduction of cortical EEG source signals throughout
the head (Nunez et al., 1997, 1999; Nunez and Srinivasan,
2006). Scalp EEG measurements made with respect to different
reference schemes may be affected by volume conduction to
different degrees, and this in turn should affect the degree
to which these complexity measures reflect true or artifactual
complexity and integration.

Thus, if such complexity and integration measures are
to be useful when applied to scalp-recorded EEG data, it
is first necessary to ascertain the reliability and stability
of these measures with respect to different EEG references.
Unfortunately, such studies are lacking in the current literature.
To our knowledge, only one previous study (van Putten and
Stam, 2001) has compared the effect of EEG reference on
information-theoretic measures of integration and complexity.
Van Putten and Stam applied I(X) and another EEG complexity
measure called neural complexity CN(X) (which is related, but
not identical, to interaction complexity) to the analysis of scalp-
recorded EEG signals collected during a resting state task (eyes-
closed and eyes-open condition). In this study, the EEG data
were referenced to an average reference and a source reference
(computed as the voltage difference between the recording site
and the mean voltage of 3–4 neighboring recording sites) that
served to reduce idiosyncratic reference effects and effects of
volume conduction. The magnitude of I(X) and CN(X) were
lower for the source reference compared to the average reference,
although the overall between-condition pattern was the same for
both references (greater I(X) and CI(X) for eyes closed than eyes
open).

The goal of the present study was to perform a more
comprehensive investigation into the effect of EEG reference
on the quantification of EEG integration and complexity. We
recorded 72 channels of scalp EEG from human participants
who sat in a wakeful resting state (interleaved counterbalanced
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eyes-open and eyes-closed blocks). We then computed CI(X)
and I(X) of the EEG signals, as well as a conventional EEG
measure of resting state activity—Fourier-based power spectral
density (PSD)—for comparison and as a check of data integrity
and quality.We computed the information-theoretic and spectral
power measures using four different EEG reference schemes. The
first was the linked-mastoids (LM) reference, which consists of
the mathematical average of the signals from electrodes located
at the mastoid bones of each ear. The second scheme was the
average (AVG) reference (Bertrand et al., 1985), computed by
averaging the signals from all electrodes and then subtracting
the averaged signal from each electrode individually. The third
scheme was a Laplacian (LAP) “reference-free” transformation
of the raw EEG potentials into a measure of the radial current
density at the scalp (Law et al., 1993; Yao, 2002). Finally, the
fourth reference scheme was an infinity (INF) reference, which
uses the Reference Electrode Standardization Technique (REST;
Yao, 2001) to approximately transform a scalp point reference
(or the average reference) to a reference point at infinity. REST
achieves this by computing the actual or equivalent neural
sources for a set of EEG signals and then implementing a
forward computation of the obtained sources to a point at
infinity.

In order to assist interpretation of the observed EEG
complexity and integration, we simulated oscillatory resting
state EEG data at the scalp via a concentric 4-shell spherical
head forward volume-conduction model (Cuffin and Cohen,
1979; Mosher et al., 1993; Tenke and Kayser, 2015). These
simulations were based on oscillating, fixed-location intracranial
dipole sources with pre-determined complexity and integration.
This allowed us to investigate how accurately EEG source
complexity and integration patterns could be estimated
at the scalp, given the known mixing effects of volume
conduction (Nunez and Srinivasan, 2006). We addressed
four specific questions in this study: (1) what, if any,
difference does choice of EEG reference make for empirical
assessments of CI(X) and I(X); (2) how accurately does scalp
EEG recordings reflect the complexity and integration of
underlying sources; (3) can these measures reliably distinguish
between neurocognitive conditions in which, in theory,
complexity and integration should be different; and (4) does this
between-condition sensitivity vary according to EEG reference
scheme?

MATERIALS AND METHODS

Participants
Twenty two Texas State University undergraduates (11 female,
11 male, mean age = 21.1 ± 0.52 years, age range =

18—26) participated in this study for course credit or monetary
payment. This study was carried out in accordance with the
recommendations of the Human Subjects Institutional Review
Board (IRB) at Texas State University with written informed
consent from all participants. All participants gave written
informed consent in accordance with the Declaration of Helsinki.
The protocol was approved by the Texas State University IRB.

FIGURE 1 | The functional relationship between interaction complexity CI(X)

and integration I(X). In this example, interaction complexity CI(X) and

integration I(X) were computed from constant mean Gaussian Toeplitz

covariance matrices (n = 72) with increasing σ and 10% uncorrelated

Gaussian noise added to the matrix diagonal (following Tononi et al., 1994). For

low values of I(X) (case a), CI(X) is also low and all system components are fully

statistically independent. For intermediate values of I(X) (case b), CI(X) is high;

some system components are statistically dependent, others are not. For high

values of I(X) (case c), CI(X) is low; the system components are fully dependent.

Stimuli and Procedure
After consent, participants underwent setup for EEG recording.
During the setup, participants completed several questionnaires
indexing demographic and health information, sleep quality
and quantity, emotion and mood states, and current attentional
states. However, the results of these questionnaires are not
relevant to the topic of this paper and are not reported here.

Resting State EEG
After completion of the EEG setup, participants underwent 8
min of resting state EEG recording while sitting quietly in a
comfortable padded chair in a darkened room (4 min eyes
open and 4 min eyes closed interleaved in 1-min intervals; eyes
open/closed order was balanced across participants). (Due to a
technical recording error, one participant only received 4 min of
recording time.) Subjects were instructed to remain relaxed, yet
alert and awake at all times during recording. After completion
of the resting state EEG recording, participants then performed a
visual categorization task, the results of which are not relevant to
the topic of this paper and thus are not reported here.

EEG Recording and Pre-processing
We recorded 72 channels of continuous EEG signals using
active Ag/AgCl electrodes either mounted in a BioSemi electrode
cap or via freestanding electrodes. Recording sites included
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international 10/5 system locations (Jurcak et al., 2007) and
the inferior orbits of the eyes (Figure 2). All channels were
amplified by a BioSemi Active II amplifier system in 24-bit
DC mode at an initial sampling rate of 2,048 Hz (400-Hz
bandwidth) downsampled online to 256Hz, with EEG signals
recorded with respect to a common mode sense (CMS) electrode
located between sites PO3 and POZ. Half-cell potentials of
the electrode/gel/skin interface were kept between ± 40 mV,
following standard recommendations for the Active II system.
EEG data were imported offline into the MATLAB computing
software environment (TheMathWorks, Inc., Natick, MA, USA)
using the EEGLAB toolbox (Delorme and Makeig, 2004) for
MATLAB, where all subsequent analysis was performed via in-
house scripts that utilized EEGLAB functions.

Resting EEG baseline data were divided into 1 s (256 sample)
epochs with 50% overlap, initially producing 480 epochs for
each of the two resting task conditions. Next, we created a copy
of the resting EEG trials that were transformed to an average
reference for the purpose of identifying bad channels and muscle
and signal artifacts from the EEG record by visual inspection.
Once identified, we then removed artifact-contaminated trials
from, and replaced bad channels in, the original non-average-
referenced EEG trials. Bad EEG channels were replaced using an
EEGLAB-based spherical spline interpolation algorithm (Perrin
et al., 1987; m = 50, 50 term expansion). No more than 3.5% of
channels on average were interpolated for any given subject.

Blink and saccade-related electroocular (EOG) artifacts were
removed by first computing two EOG channels: one formed

FIGURE 2 | Extended 10–20 scalp locations of EEG recording electrodes.

Note that sites outside the radius of the head represent locations that are

below the equatorial plane (FPZ-T7-T8-OZ plane) of the (assumed spherical)

head model. Sites LVEOG and HEOG were located below the eyes

approximately at the same longitude as sites M1 and M2.

from the bipolar montage of site NZ and the average of the
two electrodes located at the inferior orbits of the eyes (sensitive
to blinks and vertical saccades) and a second formed from
the bipolar montage of AF9 and AF10 (sensitive to horizontal
saccades). Next, EEG trials containing EOG amplitudes higher
than 50 µV or lower than−50 µV (after removal of the constant
direct current offset from the EOG signals) were rejected from
the analysis inMATLAB via automatic algorithm. These rejection
criteria were applied over the full epoch interval for resting
EEG data. Then, a second round of manual artifact scoring
was performed because the ocular artifact rejection algorithm
occasionally failed to identify trials with ocular artifacts. The
derived horizontal and vertical EOG channels were removed
from the data after elimination of the EOG artifact-contaminated
trials.

On average 314± 16 and 299± 20 trials remained for the eyes
closed and open resting state conditions after artifact rejection.
However, in order to avoid any potential between-condition
differences in information bias (Pola et al., 2003; Misra et al.,
2005; Magri et al., 2009; Ince et al., 2017) that might arise during
the computation of the complexity and integration measures
(see Computation of EEG Complexity and Integration section,
below), the number of EEG trials were matched between resting
state conditions. For each participant, we randomly sampled
trials (without replacement) from the condition with the larger
number of trials to match the smaller number of trials for the
other condition. Thus, the final number of trials entering into
each resting state condition was 270± 18 on average. Trials were
also matched in this manner for computation of EEG spectral
power for a cleaner comparison with the EEG complexity and
integration analyses.

EEG trials were then converted into four reference montages
examined in this study: linked-mastoids (LM) reference,
average (AVG) reference, Laplacian (LAP) “reference free”
transformation, and an infinity (INF) reference estimated via
the Reference Electrode Standardization Technique (REST).
LM and AVG references were created via standard derivations
(Yao et al., 2007). The LAP transformation (µV/m2 units;
unit sphere; 50 iterations; m = 4; λ = 10−5) was achieved
using a spherical spline algorithm (Perrin et al., 1989, 1990)
implemented in the CSD Toolbox for MATLAB (Kayser and
Tenke, 2006a,b; Kayser, 2009; http://psychophysiology.cpmc.
columbia.edu/Software/CSDtoolbox). The INF was estimated
using the REST software for MATLAB (Tian and Yao, 2013;
www.neuro.uestc.edu.cn/rest). All 72 electrodes were entered
into the computation of the LAP transformation and the average-
and infinite-references.

Computation of Resting EEG Power
Spectral Density
Resting EEG power spectral density (PSD; µV2/Hz) was
computed on unfiltered data via Fast Fourier Transformation
(FFT) tapered by a 1 s Hamming window (Kornguth et al.,
2013; Witkowski et al., 2015). For each subject and resting
state condition, mean PSD was computed and then converted
into decibels (dB). The latter conversion allowed for direct
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comparison between the PSD computed for the LAP-
transformed data (in units of µV2/m4/Hz), and the PSD
computed for the data referenced to the other EEG references (in
units of µV2/Hz). Additionally, the logarithmic transformation
of the data during the process of conversion to dB units served
to transform the PSD values toward a Gaussian statistical
distribution, thus allowing application of parametric statistical
tests (see Statistical Analysis of EEG Measures, below). For each
participant and condition, mean PSD values were computed
over two EEG frequency bands: theta/alpha (4–13 Hz) and beta
(14–25 Hz). Mean PSD was computed over bilateral posterior
scalp sites (PO7, PO8) demonstrating maximal PSD responses
in each frequency band. These specific scalp sites and frequency
bands were chosen based on the observed ranges of prominent
differences in PSD of the resting EEG data (see Results, below).

Computation of EEG Complexity and
Integration
The complexity and integration measures utilized here are
based in information theory, which views information as an
ordered sequence of symbols. The information in a signal is then
quantified in terms of its entropy H:

H =

N
∑

i= 1

pi log2 pi

where pi is the probability of occurrence of the ith possible value
of a symbol. H indexes the uncertainty of a symbol sequence
and thus how informative the sequence is. The integration I(X)
and interaction complexity CI(X) of a set of signals X are then
computed as Tononi et al. (1998a):

I(X) =

N
∑

i= 1

H(Xi)−H(X)

CI(X) = H(X)−

N
∑

i= 1

H(Xi|X − Xi)

Here, Xi is the state of an individual EEG channel, H(Xi) is
the entropy of the channel, H(X) is the joint entropy of the
coincident patterns X of binary states across all N EEG channels,
and H(Xi|X–Xi) is the conditional entropy of a single EEG
channel Xi, given the state of the remaining multi-channels
X–Xi. If all EEG channels are statistically independent, then
I(X) = 0, otherwise it is maximal when EEG activity is fully
dependent across channels. In contrast, CI(X) is minimal for
fully independent or dependent channels and is maximal when
the channels are neither completely independent nor completely
dependent; see Figure 1.

We computed the single-channel, joint, and conditional
entropies of the EEG signals via explicit analytic expressions
for the entropies based on the assumption that the EEG
amplitudes realize continuous univariate and multivariate
Gaussian processes with variances σ

2
ii and covariance matrix K

(Norwich, 1993; Tononi et al., 1994; van Putten and Stam, 2001;
Ince et al., 2017):

H(Xi) =
1

2 ln(2)
· ln(2πeσ 2

ii )

H(X) =
1

2 ln(2)
· ln

{

(2πe)N |K|
}

H(Xi|X − Xi) = H(X)−H(X − Xi)

Continuous Gaussian univariate and multivariate entropies are
differential entropies that are not independent of data units or
scale; however, entropy differences—such as those that define
CI(X), I(X), and H(Xi| X–Xi)—are data unit-/scale-independent
(Norwich, 1993). All entropy functions were computed using
the Information Breakdown Toolbox for MATLAB (Magri et al.,
2009) with a correction for any information bias that may arise
due to the estimation of the covariance matrices from limited
data (Pola et al., 2003; Misra et al., 2005; Magri et al., 2009; Ince
et al., 2017). The two mastoid sites could not be included in the
entropy computations for the linked-mastoids reference due to
the fact that, in this case, their linear dependence rendered the
covariance matrix determinant |K| to be zero (Lay, 2005); hence,
mastoid sites were also not included in the entropy calculations
for the other EEG references in order to facilitate between-
reference comparisons. All entropies were computed in terms of
binary units (bits) of information.

Before computing the entropy functions, we first bandpass-
filtered the resting EEG into two separate frequency ranges,
the theta/alpha range (4–13 Hz) and the beta range (14–30
Hz), using a 424 point zero-phase shift FIR filter with 2 Hz
transition bands. These specific frequency bands were chosen
based on the observed ranges and scalp patterns of prominent
differences in the spectral power of the resting EEG data
(see Results, below). We performed this filtering step based
on evidence that information-theoretic computations are more
accurate when performed on data with a narrower frequency
range (van Cappellen van Walsum et al., 2003).

Moreover, we took steps to ensure the filtered EEG signal
distributions were approximately Gaussian, as assumed by the
analytic expressions for H(Xi), H(X), and H(Xi|X–Xi) above (see
Discussion section for further elaboration of this requirement).
First, we assessed the univariate and multivariate normality
of the channels via Jarque-Bera tests (Jarque and Bera, 1987)
and Royston’s Test of Multivariate Normality (Royston, 1983),
respectively, for each trial, condition, reference scheme, and
participant. (Note that Royston’s Test was computed via a
publically available MATLAB script; Trujillo-Ortiz et al., 2007.)
These tests indicated that, for the theta/alpha-range filtered data,
the statistical distributions of approximately 49% of electrodes on
average (collapsed across conditions and EEG reference schemes)
violated the univariate normality assumption on any given trial,
whereas the multivariate normality assumption was violated on
100% of trials on average. In the beta-range filtered data, the
statistical distribution of 1% of electrodes on average (collapsed
across conditions and EEG reference schemes) violated the
univariate normality assumption on any given trial, whereas the
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multivariate normality assumption was violated on 99% of trials
on average.

It is possible that our use of short (1 s), low sample number
(256 samples) trials may have contributed, in part, to the rejection
of the Gaussian-hypothesis for these trials. However, as will
be argued in the Discussion section, we believe the pattern of
results we observed in our data rule this out as a main origin of
this rejection. In addition, the shorter EEG epochs utilized here
better meet the assumptions of statistical stationarity, which is an
important factor in the accurate assessment of the distribution
of a time series data segment and EEG complexity (Branston
et al., 2005); data epochs longer than 2 s yield poor assessments of
goodness-of-fit (Elul, 1969). Use of short EEG trials also reduced
the possibility that violations of stationarity across long data
samples may distort complexity and integration calculations.
(We note that we used 1-s trial lengths in order to minimize
the number of trials that needed to be rejected due to muscle,
signal, and ocular artifacts in the EEG. The latter were especially
problematic, and we did not apply an ocular correction algorithm
in order to avoid the possible effects of that algorithm on
measurement of EEG complexity and integration.)

Hence, prior to calculation of CI(X) and I(X), we applied a
method to transform non-normal distributions to Gaussian that
have been successfully used before with EEG data (van Albada
and Robinson, 2007). We transformed EEG data in this manner
on a trial-by-trial basis for each separate frequency band, EEG
reference, condition, and participant. After this transformation,
we statistically assessed the univariate andmultivariate normality
of the channels again for each trial, condition, reference scheme,
and participant. All tests were non-significant (p > 0.05,
non-corrected) indicating that this Gaussian transformation
process was successful. Inspection of the EEG waveforms and
data histograms both before and after transformation showed
that the transformation merely reduced the spread of outliers
while simultaneously distributing the data more symmetrically
around the mean. Importantly, we statistically-checked that
this procedure did not did not distort the distributions of key
EEG features of the eyes open and closed resting states (see
Supplementary Material).

Statistical Analysis of EEG Measures
We performed two kinds of statistical analysis of the EEG data, a
parametric approach that assessed potential differences between
EEG reference and resting state conditions and a non-parametric
surrogate data testing approach that assessed the degree to which
EEG complexity and integration may arise from random or
spurious coincident activity among the EEG signals.

Parametric Statistical Approach
All parametric statistical analyses reported in this paper were
performed using the SPSS software package (IBM Corporation,
Armonk, NY, USA). Resting state EEG PSD, complexity, and
integration were analyzed via repeated-measures ANOVA with
within-participants factors of EEG Reference (LMR, AVG, INF,
LAP) and Resting State Condition (Eyes Closed, Eyes Open).
These analyses were performed separately for each frequency
band. Given that the EEG Reference factor involved more than

two levels, the p-values of all omnibus tests involving this
factor were adjusted using the Greenhouse–Geisser correction
for nonsphericity (Geisser and Greenhouse, 1958). For ease of
interpretation, reports of all significant behavior F tests subject
to Greenhouse-Geisser correction include uncorrected degrees of
freedom, corrected p-values, and the Greenhouse-Geisser epsilon
value ε. All post-hoc comparisons were corrected according to
the Holm-Bonferroni procedure (Holm, 1979) and all corrected
p-values are indicated as such in the text.

We also conducted regression analyses relating PSD to CI(X)
and I(X) in order to quantify the relationship between these EEG
metrics across individual participants. These regressions were
conducted via generalized estimating equations (GEEs; Gardiner
et al., 2009; Ma et al., 2012). GEEs are a generalized regression
procedure that can account for the correlation structure across
repeated measure levels while robustly estimating unbiased
parameter standard errors. In the present study, the GEE
analysis assumed a normal distribution with identity link, a
robust covariance estimate, a maximum likelihood-estimate
scale parameter, and an exchangeable correlation matrix. We
conducted two regressions for each frequency band. The first
regression was performed after collapsing across resting state
conditions in order to assess the relationship between PSD and
CI(X) and I(X) across EEG references. The second regression was
performed after collapsing across EEG reference conditions in
order to assess the relationship between the EEG metrics across
resting state condition (eyes open, eyes closed). The reports
of GEE analyses in this paper include standardized regression
coefficients and tests of model effects (Wald χ2 statistic values,
associated degrees of freedom, p-values).

Surrogate Data Testing
It is well-known that random or spuriously-coincident EEG
activity may produce apparent statistical dependencies among
otherwise independent EEG sources, with this effect exacerbated
by volume conduction (Nunez et al., 1997; Lachaux et al., 1999,
2000). In order to estimate the level of spurious complexity
and integration in our EEG data that may arise from volume
conduction, we created surrogate EEG data with similar
statistical characteristics and spectral power distributions as the
observed data, but that arise from a superposition of statistically
independent sources with randomly-shifted EEG signal phases.
This was achieved using amodification of themethod of Shahbazi
et al. (2010). In this method, each observed data set is first
decomposed via Independent Components Analysis (ICA; Lee
et al., 1999) to create signals that are independent as possible (ICA
creates decompositions of nearly, but not perfectly, independent
signals). In a second step, any remaining statistical dependencies
are destroyed by randomly shifting the nth ICA component
activation time course by a time (n–1)∗ T, where T is larger
than any autocorrelation time (practically, T must be a least
one trial length). In a third step, the shifted ICA activations
are then transformed back into EEG sensor space via the ICA
inverse mixing matrix. In the present study, we implemented
the second step for each surrogate trial by randomly sampling
from the remaining trials for each ICA activation time course.
This sampling was performed without replacement to ensure that
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none of the ICA activation signals came from the same trial;
this yielded effective values for T ranging from one to several
hundred trial lengths, depending on the number of trials for a
given data set.

We computed distributions of complexity and integration
values from 100 surrogate data sets created for each subject,
condition, and EEG frequency band. We then computed the
mean and two-tailed 95% confidence intervals (CIs) of these
distributions. Observed mean complexity or integration values
that were found to lie outside of these confidence intervals
were interpreted as being significantly different from any
complexity/integration that may arise purely from random or
spuriously coincident volume-conducted EEG activity. Surrogate
data testing was performed via in-house MATLAB scripts. ICA
decompositions were implemented using the extended infomax
runica algorithm (with data whitening and default stopping
weight change = 1e-07) implemented within the EEGLAB
toolbox for MATLAB (Delorme and Makeig, 2004).

Dipole Modeling
In order to assist interpretation of the observed EEG complexity
and integration, we simulated oscillatory EEG data at the scalp
from oscillating, fixed-location intracranial dipole sources with
pre-determined complexity and integration. The dipole sources
were positioned within a concentric 4-shell spherical head
forward volume-conduction model (Cuffin and Cohen, 1979;
Mosher et al., 1993; Tenke and Kayser, 2015) implemented via
in-house MATLAB scripts. The model’s outer shell had an 85
mm radius, with a scalp thickness = 3mm (σscalp = 0.33 U/m),
bone thickness = 4 mm (σbone = 0.0042 U/m), CSF layer = 2
mm (σCSF = 1 U/m), and a brain surface at a 76 mm radius
(σbrain = 0.33 U/m); shell thickness and conductivity values
were taken from Cuffin and Cohen (1979) and Mosher et al.
(1993). Simulated scalp electrode locations were the same as
for the EEG recordings (see Figure 2). We created two clusters
of 20 radially-oriented dipole generators (40 dipoles total) at
posterior, roughly extrastriate cortical locations (Figure 3), one
cluster in each hemisphere with the anterior-posterior location of
both clusters centered on the equatorial (FPZ-T7-T8-OZ) plane.
These extrastriate dipoles were used to simulate posterior cortical
processes known to be active during EEG resting tasks (Feige
et al., 2005). The remainder of the spherical surface was filled
with 148 equally spaced dipoles to simulate background cortical
processes (termed here background dipoles). All dipoles were
placed at superficial cortical locations (2 mm subdural, following
Tenke and Kayser, 2015).

The magnitude of each dipole source moment varied
sinusoidally over time characterized by an amplitude, frequency,
and phase chosen according to a particular simulated resting
state EEG condition (see below). We set the frequency ranges
of these oscillations to be those analyzed for the empirical data
(theta-alpha range: 4–13 Hz; beta range: 14–30 Hz); phases were
uniformly distributed from 0 to 2π. The frequency and phase of
each sinusoid waveform were randomly drawn with replacement
(1 Hz frequency resolution) from these ranges for each simulated
trial, subject to specific interdipole dependency relationships (see

FIGURE 3 | Extrastriate dipole sources (black arrows) positioned within a

4-shell spherical head forward volume-conduction model (only the outer shell

surface is represented in the figure). The remainder of the spherical surface

was filled with 148 equally-spaced background activity dipoles (not shown). All

dipoles were placed at a superficial (2mm subdural) cortical locations. (A) Top

head view. (B) Rear head view. (C) Side head view.

below). Background dipoles had a dipole sourcemoment of 1µA-
cm for the theta-alpha range simulations and 0.50 µA-cm for the
beta range simulations. For the extrastriate dipoles, we simulated
potential amplitude differences between eyes closed and open
resting state conditions by performing one set of simulations
where the maximum magnitude of each dipole source moment
was high (theta-alpha range: 1.25 µA-cm; beta-range: 0.625
µA-cm) and a second set of simulations where the maximum
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magnitude of each source was low (theta-alpha range: 1.00 µA-
cm; beta-range: 0.50 µA-cm). Moreover, fluctuations in ongoing
EEG amplitudes were modeled by multiplying simulated dipole
moment time courses by a Gaussian window (σt = 250ms) whose
temporal center randomly varied along the time dimension of
each epoch. The Gaussian window multiplication reproduced
amplitude modulations in the observed data. Window locations
were different on each trial, and were different for independent
sources, but the same for dependent sources (see interdipole
dependencies, below). Window locations and spread were the
same for all interdipole dependency and dipole amplitude
conditions. These amplitude modulations introduced an extra
degree of randomness into the simulations that affected the
overall magnitude of complexity and integration, but did not
affect the general pattern of results observed here. One hundred
trials were created in each simulation; each trial was 1 s long.

Scalp potential topographies and time courses were simulated
for each dipole generator separately. In order to assess the

complexity and integration of the dipole moment time series,
the dipole moment waveforms underwent the same Gaussian
transformation procedure as the empirical EEG data; the
transformed dipole moments were also used to create the forward
volume-conductions to the scalp. The linearity of volume
conduction allowed the final simulated EEG scalp record to be
constructed from the sum of the individual dipole topographies
at each time point (Tenke and Kayser, 2015). We then re-
referenced the simulated scalp EEG signals according to the four
EEG references investigated in this study. The scalp level time
series for each reference also underwent Gaussian transformation
before computation of EEG complexity, integration, and spectral
power.

We created several different models that differed in terms
of the temporal dependencies—and thus the complexity and
integration—among the extrastriate dipole moment waveforms.
These models were created by manipulating the shared
frequencies and phases of each dipole waveform on any given trial

FIGURE 4 | Resting EEG spectral power density (PSD, in decibels) for eyes closed (red line) and eyes open (black line) conditions for (A) LM, (B) AVG, (C) INF, and (D)

LAP reference schemes. Power spectra are collapsed across a priori electrodes of interest indicated by black/white circles on the head maps (see Methods). Head

maps display power difference topographies averaged over the stated frequency intervals; light/dark colors indicate ± values.
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as follows: (1) all dipoles shared the same frequency, phase, and
amplitude fluctuation patterns on any given trial (full dependency
model); (2) shared frequency/phase/amplitude fluctuations for
75% of the dipoles, independent frequencies/phases/amplitude
fluctuations for the remaining dipoles (interdependent model—
level 1); (3) shared frequency/phase/amplitude fluctuations for
50% of the dipoles, independent frequencies/phases/amplitude
fluctuations for the remaining dipoles (interdependent model—
level 2); (4) shared frequency/phase/amplitude fluctuations for
25% of the dipoles, independent frequencies/phases/amplitude
fluctuations for the remaining dipoles (interdependent model—
level 3); (5) all dipole waveforms independent in frequency/phase
and amplitude fluctuations, but with the same phase for each
time point (independent model—level 1); (6) all dipole waveforms
initially created with independent frequencies/phases/amplitude
fluctuations, but then phases randomized further via a FFT-based
procedure (Theiler et al., 1992) that reduces the autocorrelation
of a signal (independent model—level 2); and (7) dipole
waveforms composed of multivariate Gaussian noise with an
identity covariance matrix (full independency model). Although
the additional phase randomization step used for the level-
2 independent model may seem redundant, we found that
it further increased the independence of the dipole moment
waveforms (see Results, below), most likely due to a reduction
of signal autocorrelation. In contrast to the extrastriate dipoles,
all background dipole waveforms were given level-2 independent
model temporal dependencies in order to simulate random
background noise within a frequency range of interest.

RESULTS

All empirical data and MATLAB data analysis and dipole
simulation scripts are available online at the Texas
State University Data Repository (Trujillo et al., 2017;
https://dataverse.tdl.org/dataverse/rsed2017).

Power Spectral Density (PSD)
Plots of non-Gaussian-transformed resting state EEG PSD are
shown in Figure 4; mean power values are listed inTable 1 (mean
PSD values for Gaussian-transformed data are listed in Table
S1). Preliminary analysis (not shown) indicated that the posterior
topographical distributions of resting-state theta- and alpha-PSD
differences were nearly identical, thus justifying the collapse
across these two frequency bands for statistical analysis and data
presentation. In contrast, beta-range PSD had a slightly more
anterior topographical distribution relative to the theta-alpha
range.

For both frequency ranges, EEG PSD was largest for the
LAP transformation, followed by the LM reference, AVG
reference, and INF reference [Theta/Alpha: F(3, 63) = 7,046.32,
p_GG−corrected < 0.001, ε = 0.57, η

2
P = 0.99; Beta: F(3, 63) =

4,551.63, p_GG−corrected < 0.001, ε= 0.63, η2
P = 0.99; all post-hoc

ps_HB−corrected < 0.048]. Furthermore, EEG PSD was larger for
the eyes closed vs. eyes open resting state condition across both
frequency ranges [Theta/Alpha: F(1, 21) = 204.18, p_GG−corrected

<0.001, η
2
P = 0.91; Beta: F(1, 21) = 85.29, p_GG−corrected <

0.001, η
2
P = 0.80]. However, EEG Reference × Resting State

TABLE 1 | Mean EEG power spectral density by EEG frequency band, resting

state condition, and EEG reference.

EEG band EEG reference Eyes closed Eyes open

Theta/Alpha LM 24.95

(0.60)

20.50

(0.53)

AVG 24.35

(0.63)

19.55

(0.54)

INF 24.16

(0.64)

19.34

(0.55)

LAP 40.91

(0.68)

35.74

(0.62)

Beta LM 16.95

(0.53)

14.57

(0.44)

AVG 16.00

(0.55)

13.26

(0.42)

INF 15.91

(0.54)

13.13

(0.41)

LAP 32.95

(0.61)

30.03

(0.50)

All values are in dB; SE in parentheses.

Condition interactions were significant for both frequency bands
[Theta/Alpha: F(3, 63) = 28.77, p_GG−corrected <0.001, ε = 0.68,
η
2
P = 0.58; Beta: F(3, 63) = 12.51, p_GG−corrected <0.001, ε= 0.70,

η
2
P = 0.37; all post-hoc ps_HB−corrected < 0.004]. Decomposition

of the interaction for the theta/alpha frequency band indicated
that the resting state eyes closed vs. eyes open PSD differences
were largest for the LM reference (4.45 ± 0.30 dB), followed by
the LAP transformation (5.17± 0.38 dB), and then the AVG (4.80
± 0.33 dB) and INF (4.82 ± 0.35 dB) references, ps_corrected <

0.006, although the resting state condition PSD relative to the
AVG and INF references did not significantly differ from each
other in this frequency band, p_corrected > 0.525. Decomposition
of the interaction for the beta frequency band indicated that the
resting state eyes closed vs. eyes open PSD difference was larger
for the LM reference (2.38 ± 0.27 dB) vs. the other reference
schemes (LAP: 2.92± 0.33 dB; AVG: 2.74± 0.30 dB; INF: 2.78±
0.29 dB), ps_corrected < 0.006, whereas beta-range PSD differences
were not significantly different among the LAP, AVG, and INF
schemes, ps_corrected > 0.215; see Table 1.

EEG Complexity and Integration
Mean observed resting EEG interaction complexity CI(X) and
integration I(X) values are given in the left columns of Tables 2,
3; ANOVA results are given in Table 4.

In the theta/alpha frequency range, CI(X) was significantly
largest for the LAP transformation (79.68 ± 0.32 bits), smallest
for the LM reference (69.03 ± 0.45 bits), with the AVG reference
(72.06 ± 0.59 bits) and INF reference (71.86 ± 0.57 bits) taking
intermediate values (see Figure 3A); all between-reference CI(X)
differences were significant, post-hoc ps_corrected < 0.006. A main
effect of resting state condition indicated that CI(X) was larger
for eyes open (75.01 ± 0.46 bits) than the eyes closed condition
(71.30 ± 0.53 bits) collapsed across EEG references in this
frequency range (Table 2 and Figure 3A). Decomposition of the
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TABLE 2 | Mean resting EEG complexity by EEG frequency band, resting state

condition, and EEG reference.

EEG

band

EEG

reference

Observed data Surrogate data

Eyes

closed

Eyes

open

Eyes

closed

Eyes

open

Theta/

Alpha

LM 67.15

(0.52)

70.90

(0.43)

69.23

(67.41,71.05)

72.33

(70.61,74.05)

AVG 69.84

(0.65)

74.19

(0.59)

73.38

(71.18,75.58)

77.88

(75.64,80.12)

INF 69.62

(0.63)

74.10

(0.58)

73.34

(71.14,75.54)

77.53

(75.38,79.68)

LAP 78.60

(0.37)

80.76

(0.31)

100.58

(99.53,101.63)

103.17

(102.28,104.06)

Beta LM 78.12

(0.78)

81.59

(0.69)

77.64

(75.32,79.95)

80.04

(77.49,82.59)

AVG 84.77

(0.94)

89.30

(0.92)

85.68

(83.05,88.30)

89.57

(86.97,92.17)

INF 84.27

(0.89)

88.71

(0.84)

84.85

(82.39,87.31)

88.21

(85.87,90.54)

LAP 92.57

(0.47)

93.29

(0.57)

109.56

(108.36,110.75)

109.82

(108.25,111.40)

All values are in bits; SE in parentheses for observed data, 95% CIs in parentheses for

surrogate data.

significant EEG Reference × Resting State Condition interaction
(Table 2) indicated that the theta/alpha-range eyes open vs.
eyes closed CI(X) differences were larger for the INF (4.48 ±

0.38 bits) and AVG (4.45 ± 0.37 bits) references vs. the LAP
transformation (2.16 ± 0.24 bits) and LM reference (3.75 ± 0.33
bits), ps_corrected < 0.006. Eyes closed vs. eyes open complexity
was also significantly different between the LAP transformation
and LM reference, p_corrected <0.006, but not between the INF
and AVG references, p_corrected = 0.432; see Table 2.

Theta/alpha range I(X) followed an opposite pattern
than complexity, being significantly smallest for the LAP
transformation (154.61 ± 0.57 bits), largest for the LM reference
(191.26 ± 1.66 bits), with the INF reference (174.95 ± 1.47 bits)
and AVG reference (173.43 ± 1.52 bits) taking intermediate
values (see Figure 3A); all between-reference CI(X) differences
were significant, post-hoc ps_corrected < 0.006. A main effect
of resting state condition indicated that I(X) was larger for
eyes closed (178.60 ± 1.52 bits) than the eyes open (168.53 ±

1.11 bits) condition across EEG references in this frequency
range (Table 2 and Figure 3A). However, decomposition of the
significant EEG Reference x Resting State Condition interaction
(Table 2) indicated that the magnitude of the resting state eyes
closed vs. eyes open integration differences were smallest for the
LAP transformation (3.83 ± 0.4 bits) vs. the other references
(LM: 12.98± 1.50 bits; AVG: 11.46± 1.07 bits; INF: 12.01± 1.12
bits), ps_corrected <0.006, whereas these integration differences
were not significantly different among the LM, AVG, and INF
references, ps_corrected > 0.09; see Table 3.

In the beta frequency range, CI(X) was significantly largest
for the LAP transformation (92.93 ± 0.50 bits), followed by

TABLE 3 | Mean resting EEG integration by EEG frequency band, resting state

condition, and EEG reference.

EEG

band

EEG

reference

Observed data Surrogate data

Eyes

closed

Eyes

open

Eyes

closed

Eyes

open

Theta/

Alpha

LM 197.75

(2.15)

184.77

(1.42)

189.37

(183.24,195.51)

175.51

(171.04,179.99)

AVG 179.16

(1.79)

167.71

(1.41)

169.84

(164.48,175.19)

157.95

(153.02,162.88)

INF 180.95

(1.75)

168.94

(1.38)

171.77

(166.57,176.97)

159.18

(154.40,163.95)

LAP 156.53

(0.66)

152.70

(0.55)

138.33

(135.61,141.04)

133.33

(130.66,136.01)

Beta LM 173.50

(2.01)

165.66

(1.84)

167.32

(162.28,172.36)

158.58

(153.90,163.26)

AVG 152.84

(1.57)

145.10

(1.40)

146.08

(141.47,150.68)

137.57

(133.51,141.64)

INF 154.31

(1.52)

146.23

(1.30)

147.17

(142.78,151.55)

138.17

(134.52,141.82)

LAP 142.27

(0.74)

141.39

(1.08)

129.85

(127.35,132.34)

128.60

(125.24,131.96)

All values are in bits; SE in parentheses for observed data, 95% CIs in parentheses for

surrogate data.

TABLE 4 | Analysis of variance (ANOVA) results for EEG complexity and

integration for each frequency band (see Material and Methods—Computation of

EEG Complexity and Integration).

EEG band EEG measure Effect F p ε η
2
P

Theta/Alpha CI (X) REF 662.80 †0.001 0.55 0.97

RS 133.19 0.001 – 0.86

REF × RS 96.12 †0.001 0.53 0.82

I(X) REF 468.32 †0.001 0.65 0.96

RS 100.86 0.001 – 0.83

REF × RS 64.25 †0.001 0.51 0.75

Beta CI (X) REF 39.59 †0.001 0.68 0.87

RS 96.85 0.105 – 0.82

REF × RS 92.64 †0.041 0.63 0.82

I(X) REF 114.96 †0.001 0.52 0.85

RS 67.18 0.001 – 0.76

REF × RS 91.01 †0.001 0.58 0.81

ANOVA factor labels: REF, EEG Reference; RS, EEG Resting State. REF factor effects

dfs = 3, 63; RS main effect df = 1, 21. The
†
symbol indicates p-values subject

to Greenhouse-Geisser correction (see Materials and Methods—Statistical Analysis of

EEG/ERP Measures section).

the AVG reference (87.03 ± 0.91 bits), INF reference (86.49
± 0.84 bits), and LM reference (79.85 ± 0.72 bits), post-
hoc ps_corrected <0.006; see Figure 3B. Additionally, CI(X) was
larger in the eyes open (88.22 ± 0.63 bits) vs. eyes closed
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(84.93 ± 0.71 bits) resting state conditions for CI(X) collapsed
across EEG references (see Table 2). Decomposition of the
significant EEG Reference x Resting State Condition interaction
(Table 2) indicated that the beta resting state eyes open vs.
eyes closed CI(X) differences were larger for the INF (4.44
± 0.40 bits) and AVG (4.53 ± 0.42 bits) references vs. the
LAP transformation (3.48 ± 0.35 bits) and LM reference (0.72
± 0.30 bits), ps_corrected <0.006. Eyes closed vs. eyes open
complexity was also significantly different between the LAP
transformation and LM reference, p_corrected < 0.006, but not
between the INF and AVG references, p_corrected = 0.203; see
Table 2.

Beta-range I(X) followed an opposite across-reference pattern
than complexity, being significantly smallest for the LAP
transformation (141.83 ± 0.87 bits), largest for the LM reference
(169.58 ± 1.87 bits), with the INF reference (150.26 ± 1.34
bits) and AVG reference (148.97± 1.43 bits) taking intermediate
values (see Figure 3B); all between-reference CI(X) differences
were significant, post-hoc ps_corrected < 0.006. A main effect
of resting state condition indicated that I(X) was larger for
eyes closed (155.73 ± 1.22 bits) than the eyes open (149.59
± 1.01 bits) condition across EEG references in this frequency
range (Table 2 and Figure 3B). However, decomposition of the
significant EEG Reference x Resting State Condition interaction
(Table 2) indicated that the magnitude of the resting state eyes
closed vs. eyes open integration differences were smaller for the
LAP transformation (0.88 ± 0.61 bits) vs. the other references
(LM: 7.84 ± 0.92 bits; AVG: 7.73 ± 0.83 bits; INF: 8.08 ±

0.86 bits), ps_corrected < 0.006, and smaller for the AVG vs. INF
reference, p_corrected < 0.006. The integration differences between
the LM and AVG/INF references were not significant different,
ps_corrected > 0.589; see Table 3.

Finally, the GEE-based regression analysis examining the
relationship between PSD and CI(X) and I(X) across EEG
references (collapsed across resting state condition) showed that
theta-alpha PSD was positively associated with CI(X), β = 0.94
± 0.02, Wald χ2

(1, 22) = 1,481.87, p < 0.001, but negatively
associated with I(X), β = −0.72 ± 0.03, Wald χ2

(1, 22) = 579.93,

p < 0.001. Similarly, beta PSD was positively associated with
CI(X), β = 0.55 ± 0.07, Wald χ2

(1, 22) = 64.03, p < 0.001,

but negatively associated with I(X), β = −0.31 ± 0.07, Wald
χ2

(1, 22) = 19.32, p < 0.001. Thus, the increase in EEG power
across EEG reference schemes corresponded to an increase in
EEG complexity and decrease in EEG integration. The regression
analysis examining the relationship between PSD and CI(X)
and I(X) across resting state conditions (collapsed across EEG
reference) showed that theta-alpha PSDwas negatively associated
with CI(X), β = −0.95 ± 0.04, Wald χ2

(1, 22) = 477.46, p <

0.001, but positively associated with I(X), β = 0.96 ± 0.05,
Wald χ2

(1, 22) = 390.93, p < 0.001. Similarly, beta PSD was

negatively associated with CI(X), β = −0.86 ± 0.05, Wald
χ2
(1, 22) = 346.63, p < 0.001, but positively associated with

I(X), β = 0.94 ± 0.04, Wald χ2
(1, 22) = 516.04, p < 0.001.

Thus, the increase in EEG power across resting state conditions
corresponded to a decrease in EEG complexity and an increase in
EEG integration.

Surrogate Data Tests
Mean surrogate resting EEG interaction complexity CI(X) and
integration I(X) values are given in the right columns of Tables 2,
3. It is clear from the tables that, in the theta-alpha frequency
range, all observed mean complexity values lay outside the
surrogate 95% two-tailed confidence intervals for all four EEG
references in the eyes closed condition, and for the AVG, INF,
and LAP references in the eyes open condition. In the beta range,
only the LAP reference yielded complexity values outside the
surrogate confidence intervals for either resting state condition.
All EEG references yielded mean integration values outside the
surrogate confidence intervals for both resting state conditions
and frequency ranges. It is unlikely that the observed complexity
and integration values outside the surrogate confidence intervals
are attributable to spurious interactions.

The observed mean integration values tended to be larger
than the surrogate values, whereas the observedmean complexity
values tended to be lower than the surrogate values. This
pattern in integration and complexity is consistent with the
theoretical prediction (Tononi et al., 1994; see Figure 1) that as
system elements in the high integration regime become more
independent (in this case, artificially via the surrogate data
creation procedure), CI(X) should increase and I(X) should
decrease. Indeed, this predicted relationship becomes apparent
when the eyes closed and eyes open observed and surrogate EEG
data are ordered in terms of monotonically increasing integration
values (Figure 5).

Dipole Modeling
In order tomatch the number of participants in the observed data
and to ensure that our modeling results did not depend on one
specific set of randomly determined parameters, we created 22
separate simulations for each specific model and then averaged
across each set of simulations and trials within a simulation
for a given model. Figure 6 displays mean simulated resting
state EEG PSD differences between the high vs. low amplitude
simulations for the theta-alpha and beta frequency ranges. The
qualitative features of the simulated topography differences are in
good agreement with the difference topographies of the observed
data, although this agreement is reduced somewhat for the
full interdipole dependency simulations. Figure 7 shows mean
CI(X) as a function of mean I(X) for simulated extrastriate
dipole moment sources only (not including the background
sources). The simulated relationship between complexity and
integration is in agreement with theoretical predictions (e.g.,
Figure 1). CI(X) and I(X) are low for the full independency
model when the extrastriate dipoles are statistically independent.
CI(X) and I(X) increase for level-2 independence, with CI(X)
achieving amaximum for level-1 independence of the extrastriate
dipoles at intermediate values of I(X). As integration continues
to increase, CI(X) decreases through the three increasing levels
of interdependency among the extrastriate dipoles, reaching a
local minimum for the fully dependent extrastriate dipoles. In
addition, Figure 7 also shows that CI(X) and I(X) tended to
be greater for the high amplitude dipole moments vs. the low
amplitude moments at higher levels of statistical dependence
among the extrastriate dipoles.
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FIGURE 5 | Empirical interaction complexity CI(X) as a function of integration I(X) for observed and surrogate scalp EEG. Data points are ordered in increasing

dependency from left to right (eyes open surrogate, eyes closed surrogate, eyes open observed, eyes closed observed). Red lines, beta-range data; black lines,

theta-alpha-range data. Data points reflect averages across 22 participants; standard errors of data points (not shown) are given in Tables 2, 3.

Figures 8, 9 display mean CI(X) as a function of mean
I(X) for the theta-alpha-range and beta-range simulated scalp
EEG resulting from volume-conduction of all simulated dipole
source activity (extrastriate and background dipoles). The figures
show results for the simulated data reference with respect to
all four EEG references. In the high integration range where
theoretically CI(X) is a monotonically decreasing function of I(X)
(see Figure 1), all four EEG references were able to correctly
reproduce the gradient of the complexity-integration relationship
among the visual dipole moments. However, in the low
integration range, where theoretically CI(X) is a monotonically
increasing function of I(X), the functional CI(X) vs. I(X) pattern
is distorted from that seen for the dipole moment sources for all
four EEG references. Although the same basic inverted-U pattern
is present at the scalp level, CI(X) reaches a maximum for the
level-2 independent model, rather than the level-1 independent
model in the low integration range. This distortion was also
present when the background sources were removed from the
simulation and scalp level signals were generated from the
extrastriate sources only (see Figures S1, S2). In addition, scalp-
level CI(X) was smaller for the high amplitude vs. the low

amplitude extrastriate dipole moments in the context of the
background noise sources1. This CI(X) pattern is similar to that
seen for the observed eyes closed vs. open EEG resting states,
but opposite that seen for CI(X) computed from the simulated
dipole sources directly. However, this distortion was absent when
the background sources were removed from the simulations
(Figures S1, S2); then CI(X) was larger for high vs. low amplitude
simulations, in agreement with the CI(X) pattern computed
from the dipole source moments directly. Possible reasons for
these differences between the full dipole model (extrastriate +

1We also performed simulations with a 400% amplitude difference in order

to investigate the effects of amplitude on EEG complexity and integration

(although such an amplitude difference is unlikely to be biologically typical of

the two resting state conditions). This increased scalp-level integration in the

full dependency condition by about 35–40 bits depending on EEG reference,

with the other dependency conditions unaffected. We believe this pattern obtains

because complexity and integration are differential entropies (i.e., they involve the

subtraction of two entropy terms; see Methods, Computation of EEG Complexity

and Integration section) that are independent of scale (except for signal dispersion

effects due to volume conduction, which are likely greatest in the full dependency

condition).
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FIGURE 6 | Simulated resting state EEG. Scalp topographies show high amplitude—low amplitude PSD differences over the theta-alpha frequency range (top) and

beta frequency range (bottom). PSD topographies are generated from seven different interdipole dependency models (in increasing dependency from left to right): (a)

full independency model, (b) independent model—level 2, (c) independent model—level 1, (d) interdependent model—level 3, (e) interdependent model—level 2, (f)

interdependent model—level 1, and (g) full dependency model. Head maps display PSD topographies averaged over the stated frequency ranges; light/dark colors

indicate ± values. Scalp maps reflect averages across 22 separate simulations.

background dipoles) and the extrastriate dipole only models are
taken up in the Discussion section, below.

Finally, Figures 8, 9 show that scalp-level complexity was
largest, and scalp-level integration was smallest, for the simulated
LAP-referenced data. This is the same pattern observed for
the LAP-referenced empirical data. In addition, comparison of
Figures 8, 9 with Figure 7 indicate that the absolute complexity
and integration values at the scalp are much higher than those
observed for the dipole sources, an inflation most likely due to
volume conduction (see also Tables S3, S4).

DISCUSSION

The present study investigated the effect of four EEG reference
schemes on the quantification of EEG complexity CI(X) and

integration I(X) during a resting state task. In the context of
a simple measurement of resting state EEG, we found that
EEG reference influenced both the magnitude and sensitivity
to volume-conduction artifacts of scalp EEG CI(X) and/or
I(X) collapsed across eyes open and eyes closed resting state
conditions, as well as the magnitude of scalp EEG CI(X)
and I(X) differences between resting state conditions. For all
EEG references, these effects were observed in the context of
theta/alpha-range and beta-range PSD differences previously
reported for resting state EEG recordings (i.e., greater PSD
for eyes closed vs. eyes open resting states; Kornguth et al.,
2013; Witkowski et al., 2015). However, consistent with previous
reports (e.g., Yao et al., 2005), the magnitude of these spectral
power differences also varied according to EEG reference. In
addition, we performed dipole source modeling in order to
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assess the accuracy of scalp-level estimates of complexity and
integration of neural sources and how these estimates are affected
by EEG reference choice. The dipole source modeling showed
that simulated scalp EEG-level CI(X) and I(X) accurately reflect
changes in underlying neural source dependencies when using all
four EEG references, but only in the high integration range.

Effects of EEG Reference on Scalp EEG
Complexity
Our first main finding was that scalp EEG interaction complexity
CI(X) was largest for the LAP transformation, smallest for the LM
reference, and at intermediate values for INF and AVG references
for both theta-alpha and beta frequency ranges. However, the
surrogate data analysis indicated a differential across-reference
pattern of non-random or non-spuriously coincident complexity
arising due to volume conduction. In the theta-alpha frequency
range, the CI(X) values of both resting states lay outside the
surrogate confidence intervals for the LAP, INF, and AVG
EEG references, whereas LM-referenced data were outside the
surrogate confidence intervals only for the eyes closed data.
In the beta frequency range, only the CI(X) values of both
resting states for the LAP reference lay outside the surrogate
confidence intervals. Thus, of all the EEG references, the LAP
reference was the most “robust” in the sense that it returned
large-magnitude CI(X) values that were less sensitive to volume-
conduction artifacts across both EEG frequency ranges and
resting state conditions. We suggest that this pattern reflects
two characteristics of an EEG reference: (1) its impact on
neuroelectric signal quality and statistics, and (2) the accuracy
with which neuroelectric signals measured with respect to a
particular reference can represent the activity of the cortical
sources underlying EEG topographies. LAP-transformed EEG
signals possess higher levels of both characteristics relative to
the other reference schemes. First, these signals are “reference
free” estimates of radial (transcranial) current flow entering and
leaving the scalp, and thus are not prone to across-electrode
contamination of activity from a single physical scalp location,
such as a monopolar recording reference site. Second, the
LAP-transformed signals provide an enhanced representation of
superficial EEG current generators that are (mostly) radially-
oriented, at the expense of less sensitivity to deep sources
and/or spatially-broad activities arising from distributed sources
(Pernier et al., 1988; Law et al., 1993; Dien, 1998; Kayser and
Tenke, 2006a,b). However, we argue that the last characteristic
may actually be beneficial for the assessment of EEG complexity
because some information about those distributed sources is
likely lost in the constructive summation of their activity that
produces the spatially-broad EEG response across the scalp.
Instead, the LAP transformation distinguishes the local activity
of those distributed sources from each other in a manner that
is highly informative. Evidence that the LAP data provided
a more robust measurement of EEG source activity than the
other references is given by the present observation that LAP-
transformed signals had the highest PSD values of the four
different EEG reference schemes. This finding was not due to
the fact that the LAP-transformed PSD values are measured in

FIGURE 7 | Interaction complexity CI(X) as a function of integration I(X) for

simulated (A) theta-alpha range and (B) beta-range visual dipole moment

sources (excluding background sources). Data points are generated from the

seven different interdipole dependency models and are ordered from left to

right in terms of increasing dependency/integration (full independency model,

independent model—level 2, independent model—level 1, interdependent

model—level 3, interdependent model—level 2, interdependent model—level

1, full dependency model). Red lines, high amplitude simulations; black lines,

low amplitude simulations. Data points reflect averages across 22 separate

simulations; standard errors of simulated CI(X) and I(X) are too small to be

displayed but range from 0.01 to 0.21 bits.

different units (µV2/m4/Hz) than the other references (µV2/Hz),
because all PSD values were converted to decibel units before
statistical comparison (see Computation of Resting EEG Power
Spectral Density section, above). Moreover, the GEE-based
regression analysis indicated that CI(X) level was positively
associated with PSD magnitude across EEG references schemes,
again suggesting that the EEG reference scheme that provides a
more accurate assessment of EEG source activity also provides a
robust estimate of EEG complexity.

Taken together, the above findings support the conclusion
that the LAP-transformed EEG data provides the most robust
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FIGURE 8 | Interaction complexity CI(X) as a function of integration I(X) for theta-alpha-range simulated scalp EEG resulting from all dipole source activity (visual and

background dipoles). Data points are generated from the seven different interdipole dependency models and are ordered form left to right in terms of increasing

dependency/integration (full independency model, independent model—level 2, independent model—level 1, interdependent model—level 3, interdependent

model—level 2, interdependent model—level 1, full dependency model). Red lines, high amplitude simulations; black lines, low amplitude simulations. Data points

reflect averages across 22 separate simulations; standard errors of simulated CI(X) and I(X) are too small to be displayed but range from 0.04 to 0.15 bits.

estimates of EEG complexity relative to the other EEG reference
schemes. In contrast to the LAP transformation, the LM
reference, being close to the jaw and neck, is fairly noisy and
highly sensitive to subtle head/neck movements and muscle
activity. Moreover, LM-referenced EEG signals express changes
in transverse scalp electric potential rather than radial current,
and thus provide a spatially-limited representation of the
underlying cortical sources. Hence, as we observed, the LM
reference should provide the least robust estimate of EEG
complexity. The AVG and INF references also provide spatially-
limited representations of cortical EEG sources. However, given
that these references approximate a noiseless zero potential with
sufficient spread and density of electrode coverage across the
scalp (Bertrand et al., 1985; Yao, 2001), they should produce
more informative, and thus complex, EEG signals than the LM
reference, again as we observed.

We note that the present observation of larger complexity for
the LAP transformation is in apparent contrast to the observation
of van Putten and Stam (2001), who found the magnitude of a

relatedmeasure of EEG complexity [neural complexity CN(X)] to
be larger for an average reference vs. a source reference consisting
of the voltage difference between a given recording site and the
mean voltage of 3–4 neighboring recording sites. As described,
this source reference appears to be a multi-channel version of
a bipolar montage with the EEG signals still expressed in terms
of transverse scalp electric potentials rather than radial scalp
current flow. Thus, it is unclear to what degree this reference can
spatially represent cortical EEG sources, how susceptible it is to
local noise, and the effects this would have on the computation of
EEG complexity relative to the LAP-transformation. This should
be a subject of further research.

Effects of EEG Reference on Scalp EEG
Integration
The second main finding of the present study is that EEG
integration I(X) was smallest for the LAP transformation, largest
for the LM reference, and at intermediate values for the INF
and AVG references for both theta-alpha and beta frequency
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FIGURE 9 | Interaction complexity CI(X) as a function of integration I(X) for beta-range simulated scalp EEG resulting from all dipole source activity (visual and

background dipoles). Data points are generated from the seven different interdipole dependency models and are ordered from left to right in terms of increasing

dependency/integration (full independency model, independent model—level 2, independent model—level 1, interdependent model—level 3, interdependent

model—level 2, interdependent model—level 1, full dependency model). Red lines, high amplitude simulations; black lines, low amplitude simulations. Data points

reflect averages across 22 separate simulations; standard errors of simulated CI(X) and I(X) are too small to be displayed but range from 0.04 to 0.40 bits.

ranges. Surrogate data analysis showed that computed I(X) values
were unlikely to be due to random or spuriously coincident
volume-conducted EEG activity for any of the EEG references.
The GEE-based regression analyses indicated that this change in
I(X) was accompanied by an opposing change in PSD across EEG
reference schemes, with larger EEG integration values associated
with lower EEG power and vice versa. Integration is a measure
of the overall deviation from statistical independence of the
individual elements of a multivariate system. Thus, I(X) should
be affected by factors that influence the measured independence
of a set of signals. Volume conduction is one such factor because
volume-conducted signals may be detected at neighboring scalp
channels and thus can introduce a non-physiological source
of correlation between their measured signals. Given that the
LAP transformation reduces the effects of volume conduction
and is reference free (Law et al., 1993; Kayser and Tenke,
2006a,b; Nunez and Srinivasan, 2006), integration should be
smallest for this reference, as we observed. This observation

is consistent with the report of van Putten and Stam (2001)
of a lower overall level of integration for the source reference
vs. the average reference. On the other hand, derivation of
the EEG signals relative to LM, AVG, and INF references
should have no effect on volume conduction. Moreover, these
monopolar references may cause activity at reference sites to
be shared across the other EEG channels and thus introduce
a form of artifactual correlation between them. These effects
should be greatest for the LM reference given its proximity
to the neck, jaw, and lower head muscles. The AVG and INF
references are less prone to the correlating effects of common
reference activity because most of the idiosyncratic activity of
individual EEG channels is averaged out in the construction of
the AVG reference (unless a large number of channels show high-
amplitude, synchronous activity), whereas the INF reference
estimates a neutral (noiseless) reference at infinity. Hence,
though all four EEG references will express true and artifactual
integration among EEG signals, the LM reference should produce
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larger integration values than the AVG and INF references, which
in turn should be larger than the LAP transformation, as we
observed.

The Interaction of EEG Statistics and EEG
Reference on EEG Complexity and
Integration
Although the present EEG integration findings are consistent
with previous reports (van Putten and Stam, 2001; van Cappellen
van Walsum et al., 2003; Rapp et al., 2005), we note that
the direction of between-resting state condition differences in
complexity is not. These previous studies found a reduction in
complexity during the eyes open vs. eyes closed resting state
conditions (van Putten and Stam, 2001; van Cappellen van
Walsum et al., 2003; Rapp et al., 2005), in contrast to the present
observations for CI(X). What might account for this discrepancy
between past studies and ours? van Putten and Stam (2001)
suggested their observations may be due to use of a low-spatial
resolution scalp montage (21 channels) and that the mixture of
different signal frequencies in the electroencephalogram decrease
interelectrode correlations in wideband data even though the
electrodes are mostly synchronized within a single frequency
range. We bandpass-filtered our data in narrow ranges and used
a high-density scalp montage (72 channels) to rule out these
concerns. However, other studies have observed the same resting
state condition differences as van Putten and Stam (2001) in
filtered data with a high-density MEG montage (van Cappellen
van Walsum et al., 2003).

Instead, we suggest this discrepancy between our study and
previous reports may arise from the fact that the analytic
expressions for the complexity and integration measures utilized
in all of these studies assume the EEG signals to be approximately
Gaussian distributed (Norwich, 1993; Tononi et al., 1994;
van Putten and Stam, 2001; Ince et al., 2017). It is well
known that this assumption is often partially or completely
violated for physiological signals (Dumermuth, 1968; Elul, 1969;
Dumermuth et al., 1972; Pollock et al., 1990). In the present
study, our EEG data exhibited a substantial deviation from
normality (see Methods—Computation of EEG Complexity and
Integration section). Thus, we applied a method to transform
non-normal distributions to Gaussian that has been successfully
used before with EEG data (van Albada and Robinson, 2007).
We then verified that the transformed data met univariate
and multivariate Gaussian assumptions before computing CI(X)
and I(X) (see Methods—Computation of EEG Complexity and
Integration section). Additionally, we carefully verified that
the Gaussian transformation did not distort key resting state
EEG features (see Supplementary Materials). However, to our
knowledge, the previous studies observing greater complexity
for eyes closed than eyes open resting state conditions assumed
a Gaussian distribution for their data, but did not report any
assessment of how well this assumption fit their data sets. Hence,
if the physiological data of these previous studies either partially
or completely failed to meet Gaussian statistical assumptions,
then this might explain the discrepancy between past studies and
ours regarding resting state complexity differences. It is entirely

possible that the character of EEG or MEG statistics departs from
normality to a greater degree or lesser degree in one resting state
condition relative to the other, which would produce inaccurate
estimations of CI(X) and I(X).

To test this hypothesis, we computed CI(X) and I(X) on
the original non-Gaussian-transformed data (see Supplementary
Material) and found resting state CI(X) to be greater for the
eyes closed than eyes open resting state condition, which was
the pattern reported by previous reports (van Putten and Stam,
2001; van Cappellen van Walsum et al., 2003; Rapp et al., 2005).
The overall resting state integration pattern was unchanged by
the Gaussian transformation, however, and was also consistent
with previous results. Importantly, these earlier studies used
several seconds’ worth of data to compute CI(X) and I(X),
whereas here we used 1-s (256-sample) trials (seeMethods—EEG
Recording and Pre-Processing). The similarity between previous
observations and the present non-Gaussian-transformed results
rule out the possibility that our use of short trials may have biased
the statistical distribution of the data toward non-normality,
or were otherwise too short to provide a correct estimate of
the statistical properties of the data, in a manner that affected
the computation of EEG complexity. Moreover, our statistical
testing indicated that, at the very least, the Gaussian-transformed
data better met the required statistical assumptions of the
entropy formulas then the non-transformed data (see Methods—
Computation of EEG Complexity and Integration).

Hence, we conclude that the computation of CI(X) via the
analytical expressions used in the present and past studies is
highly dependent on the degree to which the data meet the
Gaussian statistical assumptions. One should always employ a
verification and/or correction procedure such as the one we
utilized in this study. Alternatively, one may utilize discrete
methods of computing EEG entropy that do not require data
to be distributed in a particular way (Misra et al., 2005; Magri
et al., 2009). This matter is relevant to the main issue of
EEG reference choice explored in this paper, because different
reference transformations may change the statistics of the EEG
signals in various ways, which in turnmay affect the computation
of CI(X) and I(X) across references. In fact, we did find
different across-reference patterns of CI(X) and I(X) for the non-
Gaussian-transformed data relative to the transformed data (see
Supplementary Material).

Scalp-Level Estimation of Neural Source
Complexity and Integration
We performed dipole source modeling-based simulations in
order to assess the accuracy of scalp-level estimates of complexity
and integration of neural sources and how these estimates are
affected by EEG reference choice. Our simulations were based
on a 4-shell spherical model (Cuffin and Cohen, 1979; Mosher
et al., 1993; Tenke and Kayser, 2015) with 40 oscillating dipole
sources spread over posterior extrastriate cortical shell regions,
and 148 oscillating background “noise” dipoles equally spread
over the remainder of the cortical shell. We created different
statistical dependencies among the extrastriate dipoles in order
to recreate different points of the theoretical “inverted-U”
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non-monotonic complexity-integration function (Tononi et al.,
1994; see Figure 1) at the neural source level. We then computed
the forward solutions of these source configurations, referenced
the simulated scalp EEG with respect to all four EEG references
examined here, and computed complexity and integration.

Our simulations reproduced the basic scalp topography of
between-resting state condition differences in PSD (Figure 6).
We also found that the dipole sources followed the theoretical
complexity-integration curve (Figure 7), with fully independent
sources yielding low complexity and integration values, fully
dependent sources yielding low complexity and high integration,
and heterogeneously dependent sources yielding high complexity
and intermediate integration values. At the level of simulated
scalp EEG (Figures 8, 9), CI(X) and I(X) correctly reproduced
the gradient of the complexity-integration relationship among
the extrastriate dipole sources in the high integration range
where CI(X) is a monotonically decreasing function of I(X).
This was the case for all four EEG references. However, in the
low integration range—where dipole CI(X) is a monotonically
increasing function of I(X)—the scalp-level pattern of CI(X)
and I(X) was distorted from that seen for the dipole moment
sources for all four EEG references. Here, scalp-level CI(X)
reached a maximum at the level-2 stage of independence among
the dipoles, rather than the level-1 independence stage as
observed for CI(X) computed from the dipole sources directly.
Interestingly, this distortion was also present if the background
sources were removed from the simulation (see Figures S1, S2),
suggesting that it results from themixing effects of the extrastriate
source signals due to volume conduction. This scalp-level
distortion of the complexity-integration function of the neural
sources may represent a fundamental limitation of the use of
scalp-recorded EEG to estimate neural source complexity in
the low integration range. However, this limit may not pose a
problem for most EEG studies, as the neural processes detectable
by EEG are oscillatory in nature and thus likely operate at
higher levels of integration. This is because oscillating signals,
even those with random phases, have an intrinsic non-random
autocorrelative structure that cannot be broken down further
without changing the periodicity of the signals. In the absolute
limit, full randomization would cause these signals to either
become non-oscillatory or turn into white noise with equal
spectral power across frequencies. In this case, scalp signals
would either no longer be detectable as rapidly alternating voltage
fluctuations (although theymay be present as slowDCpotentials)
or if detectable, would manifest as very low levels of complexity
and integration resolvable at the scalp (for example, as seen for
the fully independent dipole source model).

Our simulations also yielded smaller scalp-level CI(X) for the
high vs. low amplitude extrastriate dipole sources at intermediate
and high levels of integration (Figures 7, 8). This is a pattern
similar to that observed for the empirical eyes closed vs. open
EEG resting state data. However, this scalp-level CI(X) difference
pattern was reversed when the background sources were removed
from the simulations (Figures S1, S2). Here, CI(X) was larger
for high vs. low amplitude simulations, in agreement with
the CI(X) pattern computed from the dipole source moments
directly. This was the case for all four EEG references. We

suggest that the reversed scalp-level CI(X) differences seen in
the full dipole model results from the volume conduction of
the background noise sources in the model. The high level of
scalp complexity that arises from the large number of randomly
oscillating background sources likely dominated the output of
the CI(X) estimator, with this dominance modulated by the
presence of the partially- or fully-dependent extrastriate sources.
As the latter increased in amplitude, they contributed more to the
scalp signal, thus reducing scalp-level complexity and increasing
scalp-level integration.

We note that the absolute values of CI(X) and I(X) were
considerably higher than the corresponding values for the dipole
sources; this is likely due in part to the added complexity of
the additional background dipole sources. However, volume
conduction also played a role in the inflation of CI(X) and I(X)
values at the scalp because this inflation was also observed when
the background sources were removed from the simulation and
scalp level signals were generated from the extrastriate sources
only (see Figure S1 and Tables S3, S4). Nevertheless, regardless
of whether the background sources were present or not in the
simulation, scalp-level CI(X) values were highest, and I(X) values
were lowest, for the simulated Laplacian-transformed data, as
observed for the empirical EEG data. These observations suggest
that the LAP reference produces the closest approximation
to the true absolute dipole source integration values, but the
worst approximation to the true absolute source complexity
values. However, researchers are more often interested in
between-source dependency level differences across different
EEG references and experimental conditions. In this case, a better
criterion for EEG reference performance is a source- vs. scalp-
level comparison between complexity and integration gradients
across source dependency levels. We compared these gradients
for the case when the background sources were removed from
the simulation and scalp level signals were generated from the
extrastriate sources only (see Table S5). This analysis showed
that, with the exception of theta-alpha-range integration, the
Laplacian-referenced data was better able to reproduce the
gradients of complexity and integration changes across source
dependency levels than the other EEG references.

Finally, we note that the observed CI(X) was larger, and
observed I(X) was smaller, for the eyes open vs. eyes closed resting
state conditions, regardless of choice of EEG reference scheme.
The GEE-based regressions showed that CI(X) was negatively
related, and I(X) was positively-related, to PSD magnitude across
resting state conditions. It is unclear from our simulations
if these PSD, CI(X), and I(X) differences reflect passive
volume-conducted differences in neural source amplitudes
between resting state conditions and the resultant differences
in interelectrode correlations at the scalp, or if they reflect
between-condition differences in the dependency relationships
among the neural sources (irrespective of differences in neural
source amplitude). The latter case could produce between-
condition differences in EEG power without an increase in
the amplitude of individual EEG sources. This is illustrated in
Figure 10, which shows example mean PSD differences between
successive interdipole-dependency levels for the high amplitude
simulations. (Other interdipole dependency levels contrasts are
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FIGURE 10 | Resting state EEG PSD differences may result from differences in dipole source dependencies. Representative pairwise interdependency level n +

1—level n (“1-back”) scalp PSD topography differences for simulated theta-alpha range (top) and beta-range (bottom) EEG data. (a) independent model-level 2—full

independency model, (b) independent model-level 1—independent model-level 2, (c) interdependent model-level 3—independent model-level 1, (d) interdependent

model-level 2—interdependent model-level 3, (e) interdependent model-level 1—interdependent model-level 2, (f) full dependency model—interdependent

model-level 1. Head maps display PSD topographies averaged over the stated frequency ranges; light/dark colors indicate ± values. Scalp maps reflect averages

across 22 separate simulations.

possible, such as the differences between n+2 and n dependency
levels.) The figure shows that simulations with high I(X) and low
CI(X) produced higher PSD levels than simulations with lower
I(X) and CI(X) levels. This explanation would be consistent with
evidence that during the eyes closed resting state the visual cortex
is driven by endogenous pacemakers in the thalamus which
synchronize much of the visual cortex in the alpha, theta and
beta ranges (Adrian and Yamagiwa, 1935; Buzáki, 1992). This
explanation would also be consistent with the hypothesis that
in order to perform specialized information-processing during
rich neurocognitive conditions (such as the eyes open resting
state), the brain organizes itself into distributed neuronal groups

that interact more strongly with themselves than with the rest
of the brain (Tononi et al., 1994, 1996, 1998a). Determining
which neural source model best explains the observed resting
state data could be achieved by either (1) fitting the empirical
data to a dipole model with free parameters (dipole source
frequency, phase, amplitude, and interdipole dependencies) that
minimize an objective error function, or (2) conducting a
source localization analysis (e.g., beamformer, minimum norm
estimation, LORETA) and quantifying the complexity and
integration of the localized sources. These analyses are beyond
the scope of the present study and are a subject for future
research.
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Study Limitations
We performed dipole simulations that provided a benchmark
to compare the ability of scalp-level CI(X) and I(X) measures
to resolve the complexity and integration of neural sources and
how these estimates are affected by choice of EEG reference.
Nevertheless, our models specifically described resting state
conditions that involved ongoing non-phase-locked EEG
oscillations with varying statistical dependencies among
posterior cortical sources. Our models also did not examine
situations in which the number and location of dependent
sources varied between conditions. Moreover, our models
were phenomenological in the sense that they did not directly
simulate the interactions through which neural groups form
interdependent relationships. That said, we believe our findings
will generalize to other tasks that engage similar ongoing
non-phase-locked EEG activity (such as mental arithmetic,
motor grasping, or vigilant attention tasks). However, they
may not generalize to tasks that engage different kinds of
neural dynamics, such as evoked potentials time-locked to
specific events, or conditions that engage vastly different mental
states (e.g., sleep, anesthesia). Moreover, our study utilized a
72-channel sensor montage; it is unclear how the number of
channels affects the computation of CI(X) and I(X). Future
research is needed to determine how these factors affect the
quantification of CI(X) and I(X), and how this interacts with
the choice of EEG reference. One guiding principle that should
assist such endeavors is the theoretical complexity-integration
function (Figure 1), which is a general relationship that should
apply across all experimental situations.

CONCLUSION

In conclusion, we have shown that information-theoretic
measures of integration I(X) are relatively robust to volume-
conduction artifacts across all four EEG references when
comparing resting state condition differences, whereas
complexity CI(X) is the most robust to volume-conduction
artifacts when computed with respect to the LAP reference.
In addition, dipole simulations showed that of the four
EEG references, the LAP reference produced the closest
approximation to the true absolute dipole source integration
values, andmore accurately estimated the gradients of complexity
and integration changes across source dependency levels.
Moreover, the magnitude of the resting state CI(X) and I(X)

differences were generally lowest for the LAP transformation,
suggesting that LAP-transformed data provides a conservative
estimate of between-condition complexity and integration
differences. Thus, when measuring EEG complexity and
integration during resting states (or similar tasks that involve
ongoing, relatively stationary EEG signals), we recommend
use of the Laplacian-transformation due to its positive impact
on EEG signal quality, sharpening of source topography,
reduction of volume-conduction effects, and the resultant
positive effect these have on the measurement of complexity
and integration. Although average or infinity references do
not reduce volume conduction, their use for the computation
of EEG complexity and integration is acceptable in situations
when the Laplacian-transformation is precluded (i.e., the
expectation of deep cortical sources) and when they can
approximate a neutral reference (i.e., when there is sufficient
spread and density of electrode coverage across the scalp;
Junghöfer et al., 1999; Liu et al., 2015). Furthermore, although
we found the average and infinity references to display roughly
equivalent performance for the computation of complexity
and integration, the infinity reference is to be favored due
to its greater accuracy in representing resting state EEG
activity (Qin et al., 2010). Finally, we do not recommend use
of a linked-mastoid reference for the computation of EEG
complexity and integration due to its greater noise levels
and tendency to induce artifactual correlations among scalp
electrodes.
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