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Functional connectivity (FC) has become a leading method for resting-state functional

magnetic resonance imaging (rs-fMRI) analysis. However, the majority of the previous

studies utilized pairwise, temporal synchronization-based FC. Recently, high-order FC

(HOFC) methods were proposed with the idea of computing “correlation of correlations”

to capture high-level, more complex associations among the brain regions. There are two

types of HOFC. The first type is topographical profile similarity-based HOFC (tHOFC) and

its variant, associated HOFC (aHOFC), for capturing different levels of HOFC. Instead of

measuring the similarity of the original rs-fMRI signals with the traditional FC (low-order

FC, or LOFC), tHOFC measures the similarity of LOFC profiles (i.e., a set of LOFC values

between a region and all other regions) between each pair of brain regions. The second

type is dynamics-based HOFC (dHOFC) which defines the quadruple relationship among

every four brain regions by first calculating two pairwise dynamic LOFC “time series” and

then measuring their temporal synchronization (i.e., temporal correlation of the LOFC

fluctuations, not the BOLD fluctuations). Applications have shown the superiority of

HOFC in both disease biomarker detection and individualized diagnosis than LOFC.

However, no study has been carried out for the assessment of test-retest reliability of

different HOFC metrics. In this paper, we systematically evaluate the reliability of the two

types of HOFC methods using test-retest rs-fMRI data from 25 (12 females, age 24.48

± 2.55 years) young healthy adults with seven repeated scans (with interval= 3–8 days).

We found that all HOFC metrics have satisfactory reliability, specifically (1) fair-to-good

for tHOFC and aHOFC, and (2) fair-to-moderate for dHOFC with relatively strong

connectivity strength. We further give an in-depth analysis of the biological meanings

of each HOFC metric and highlight their differences compared to the LOFC from the

aspects of cross-level information exchanges, within-/between-network connectivity,

and modulatory connectivity. In addition, how the dynamic analysis parameter (i.e.,

sliding window length) affects dHOFC reliability is also investigated. Our study reveals

unique functional associations characterized by the HOFC metrics. Guidance and

recommendations for future applications and clinical research using HOFC are provided.

This study has made a further step toward unveiling more complex human brain

connectome.

Keywords: test-retest, reliability, functional connectivity, high-order connectivity, resting-state fMRI, dynamic

connectivity
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INTRODUCTION

Functional connectivity (FC), as originally proposed as the
temporal dependence between different spatially-distant brain
regions (Friston et al., 1993), has become the major method
to analyze resting-state functional magnetic resonance imaging
(rs-fMRI) data (Biswal et al., 2010; Fox and Greicius, 2010;
Van Dijk et al., 2010; Friston, 2011; Yeo et al., 2011; Fox
et al., 2012). Except for the seed-based correlation that mainly
focuses on voxel-wise massive one-to-one FC, the mostly
adopted FC analysis strategy is pairwise correlation of region-
averaged rs-fMRI signals for each pair of N brain regions, often
resulting in an N × N FC matrix that represents whole-brain
functional connectome. Various post-processing methods can be
applied to these matrices to detect the potential connectivity
biomarkers for brain diseases, includingmass-univariate analyses
that reveal group-level FC differences, or pattern cognition

FIGURE 1 | The diagram for illustrating the hierarchical definitions of LOFC (A), tHOFC (B), and aHOFC (C). The original version of tHOFC is illustrated in the subplot

(B), and its variant measuring inter-level interactions, namely the associated HOFC (aHOFC), is illustrated in the subplot (C). For simplicity, only three regions of interest

(regions a, b, and c) are used to demonstrate the LOFC and the HOFC. For an illustration of the LOFC profiles of each region in (B), only five other brain regions are

used (regions 1–5) to calculate the LOFC strength with regions a–c. For each region’s tHOFC profile, five of the regions 1–5’s LOFC profiles are used for illustration,

each of which has 4–6 regions connected. Different line widths indicate different connectivity strengths. For each type of connectivity metrics, we show both strong

and weak connectivity strengths. The black curves indicate the LOFC, the blue curves represent the tHOFC, and the red curves depict the aHOFC.

and individualized classification based on the features of all
the FCs.

However, such a one-to-one pairwise FC calculation has a
well-known limitation since it reveals only simple temporal
synchronization between two brain regions (Figure 1A). With
simple FC, the high-level relationship among the brain regions
may not be fully captured. To address this issue, we have
proposed several metrics to capture high-level relationship based
on “correlation’s correlation,” namely high-order FC (HOFC),
among the brain regions. There are two major types of HOFC.
The first is calculated based on the topological architecture of
the complex brain FC networks. As shown in Figure 1B, by
extracting a regional one-to-all FC profile that constitutes a set
of the FC strengths between one region to all other regions, we
can characterize the FC topographical similarity for each pair of
the brain regions by calculating a second round of correlation
on these regional FC profiles (Zhang H. et al., 2016). This
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metric captures the high-level functional similarities between two
brain regions beyond the traditional temporal synchronization
based merely on the raw rs-fMRI signals. We have shown that,
with such a “correlation of correlations” strategy, this HOFC
metric reveals complementary information to the traditional
FC for biomarker detection for brain disease (Zhang H. et al.,
2016). From then on, we call the traditional FC as low-order
FC (LOFC), and use topographical profile similarity-based HOFC
(tHOFC) to name this topographical similarity-based HOFC
method. If two regions have strong tHOFC, they have quite
similar LOFC patterns to all the brain regions but they may have
quite distinct rs-fMRI signals. Further comparison of tHOFC
between the mild cognitive impairment (MCI) and the healthy
elderly groups has unveiled novel potential biomarkers for early
Alzheimer’s diseases (AD) detection (Zhang H. et al., 2016).
Later on, a variant of tHOFC, named as “associated HOFC
(aHOFC),” was also proposed for further assessment of the
resemblance between the topographical profile of LOFC and that
of the tHOFC (Figure 1C), which indicates a modulation and
inter-level functional association between the low- and high-
level functional organizations. aHOFC has demonstrated its
better performance than LOFC and even the tHOFC in MCI
classification (Zhang et al., 2017). Of note, although both tHOFC
and aHOFC measure high-level functional association, it is still
the pairwise relationship characterized, similar to pairwise LOFC.

The second type of HOFC is based on a different interpretation
of the “correlations’ correlation” and can measure more complex
relationship than a pairwise one. Rather than using the whole
length of the rs-fMRI signals to obtain static LOFC, we use

a brief segment of the data to conduct LOFC analysis for
generating an instantaneous whole-brain LOFC network. By
moving the window segment forward, a set of “dynamic” whole-
brain LOFC is generated. For each pair of the brain regions,
there is a dynamic LOFC time series reflecting the time-
varying LOFC; it can be further correlated with the dynamic
LOFC time series from another pair of brain regions, thus
measuring high-level, quadruple interactions among four brain
regions or two brain region pairs (Chen et al., 2016a). We
call this as dynamics-based HOFC (dHOFC), which can be
regarded as a “hyperlink” connecting two “hypernodes,” and
each of the hypernodes represent a regular link between two
brain regions (Figure 2). Since the dynamic LOFC may reflect
adaptive and state-related temporary functional architecture, the
dHOFC can measure the coherence of such processes, thus
can reveal what LOFC cannot find. In addition, as shown in
Figure 2, by calculating dHOFC on every quadruplet, we get
a larger connectivity matrix of dHOFC compared with the
small LOFC matrix. This indicates that we can use dHOFC
to further construct more complex brain functional networks
with more information introduced. This HOFC method has
been successfully applied to early MCI detection (Chen et al.,
2016a) and early AD detection (Chen et al., 2016b), as well as
prediction of overall survival time of patients with brain gliomas
(Liu et al., 2016), all with significantly better accuracy than
LOFC.

Despite success in the abovementioned series of studies and
the promising future of the HOFC applications, an essential
question of how reliable and reproducible of such high-level

FIGURE 2 | The calculation of dHOFC. This schematic plot shows how dHOFC is calculated and how the amount of information is increased from LOFC network to

dHOFC network. Pairwise static LOFC only generates a 264 × 264 matrix, representing the static low-order brain functional network. By performing the

sliding-window based dynamic LOFC (dLOFC) calculation for each pair of brain regions (i.e., i and l, and j and k, respectively), two dLOFC time series are generated.

A further correlation of these two time series produces dHOFC among the four regions: i, l, j, and k. The information is geometrically increased in its amount, when

using dHOFC matrix rather than LOFC to represent a brain network.
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FC metrics is still unanswered. Compared to the traditional
LOFC with its test-retest reliability systematically assessed,
which is fair-to-good when examined in both region- (Wang
et al., 2011) and voxel-wise manners (Shehzad et al., 2009;
Somandepalli et al., 2015), the state-of-the-art HOFC algorithms
still lack comprehensive reliability assessment. Timely evaluation
of HOFC reliability is crucial for their broader applications.
Only with adequate reliability, we can then expect the detected
HOFC biomarkers, or the HOFC-based disease detection, to be
reproducible. Notably, the recent revisits of previously famous
biomarker detection studies have found that those biomarkers
could not be properly reproduced (Horrigan et al., 2017),
which has been ringing a warning bell to the field and further
increases the urgency of HOFC reliability study. In this paper,
we will systematically evaluate the test-retest reliability of both
topographical similarity-based HOFC (tHOFC and aHOFC)
and dynamics-based HOFC (dHOFC) at the single connection
level using repeated rs-fMRI scans. Note that good test-retest
reliability of HOFC will indicate that the estimated HOFC
from a subject based on one rs-fMRI session can be largely
replicated based on the data of the same subject but from
another rs-fMRI session. In addition, if a method or metric
is proven to be test-retest reliable, its result could be more
robust to noise, thus can be more easily to be reproduced
by other researchers. Another aim of this HOFC test-retest
reliability study is to investigate the underlying neurobiological
meaning of the HOFC metrics according to the reliability
evaluation. Test-retest reliability and its difference for different
connections are informative to let us draw conclusions, especially
on differentiating the noise from the signal. For example,
previous studies found that the noise-related component derived
from independent component analysis (ICA) on the rs-fMRI
have lower test-retest reliability than that of the biologically
meaningful components representing brain functional networks
(Zuo et al., 2010). Finally, as the HOFC is still a new concept to
the field, a timely test-retest reliability assessment will provide
guidelines to further studies to prevent from unreliable results
being misinterpreted.

We hypothesize that all the HOFC metrics (tHOFC, aHOFC,
and dHOFC) have at least fair test-retest reliability, which means
the major pattern of the HOFC can be largely reproduced
based on a repeated rs-fMRI scan, because these metrics
were proposed to reflect stable and biologically meaningful
brain functional organizations that could thus be consistent.
Different from tHOFC and aHOFC, dHOFC is based on
dynamic LOFC which captures transient brain states. Although
such dynamic LOFC could be different at a different time
(such as different rs-fMRI scans), we think that the second
round of correlations based on the dynamic LOFC time series
could produce stable dHOFC that may reflect higher-level
brain functional organization (i.e., synchronized brain state
transition). Therefore, we also proposed that the dHOFC is
considerably test-retest reliable. As an important influencing
factor, whether different parameter settings such as different
sliding window lengths could affect the dHOFC reliability
will be also investigated. Based on the reliability results,
practical guidelines and recommendations are provided for
future studies.

MATERIALS AND METHODS

Data
We adopted a publicly available test-retest data (http://dx.doi.
org/10.15387/fcp_indi.corr.hnu1) as part of the Consortium for
Reliability and Reproducibility (CoRR) (Zuo et al., 2014). This
dataset includes 30 healthy adults (aged 20–30 years old, 15
females) with 10 repeated rs-fMRI scans (sessions) within 1
month. The 10-session rs-fMRI scans are essential for more
accurate reliability estimation because it constitutes adequate
samples at both the group (# of repeated scans) and individual (#
of subjects) levels; however, many previous test-retest reliability
studies only used two sessions (Zhang et al., 2011a,b). Based on
this dataset, intra-class correlation (ICC) for test-retest reliability
evaluation can be more accurately estimated based on multiple
repeated scans. Another advantage of this dataset is that the
whole period of data collection was completed within 1 month,
with each rs-fMRI session separated by 3–4 days. This reduces the
potential inference of other longitudinal factors to the reliability
estimation, such as development, plasticity, etc. This study was
carried out in accordance with the recommendations of the ethics
committee of the Center for Cognition and Brain Disorders at
Hangzhou Normal University. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol was approved by the ethics committee of the Center for
Cognition and Brain Disorders at Hangzhou Normal University.

The data was acquired by a GE MR750 3.0 Tesla MRI
scanner, including both a T1-weighted image (used for rs-fMRI
registration) and an rs-fMRI (echo-planar imaging, TR/TE =

2,000/30 ms, voxel size = 3.4 × 3.4 × 3.4 mm3, slice number =
43, matrix size= 64× 64× 64, 10 min, 300 time points). During
rs-fMRI, all subjects stared at a fixation point on the screen
without falling asleep. For detailed data information, please refer
to the data release and CoRR websites.

Data Preprocessing
The rs-fMRI preprocessing was carried out based on DPARSF
v2.3 (Yan and Zang, 2010) with routine procedures following the
previous studies (Mao et al., 2015; Yu et al., 2017). It includes:
(1) removing the first 5 time points, (2) slice timing correction,
(3) head motion correction, (4) unified segmentation of the
T1-weighted image after it was aligned to the rs-fMRI data,
(5) warping the rs-fMRI data based on the deformation field
produced by the previous step to the Montreal Neurological
Institute (MNI) standard space, (6) spatially smoothing with a 6-
mm Full Width at Half Maximum (FWHM) isotropic Gaussian
kernel, (7) band-pass filtering (0.01–0.1 Hz), and 8) regressing
out covariate signals including the first- and second-order
polynomial functions, averaged signals from the white matter
and cerebrospinal fluid (CSF), as well as the Friston 24-parameter
head motion curves. Similar to our previous works (Chen et al.,
2016a), we did not conduct data scrubbing to remove the data
with larger frame-wise head motion. Although this step could
further reduce head motion effect to LOFC analysis (Power et al.,
2014), scrubbing itself will interrupt the temporal structure of
the data and probably introduce artifacts into the dynamic LOFC
analysis (Hutchison et al., 2013) before the dHOFC calculation.
Instead, we used a stringent head motion exclusion criterion.
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That is, the subject with head motion larger than 1.5 mm or
1.5◦ in any rs-fMRI session was discarded. The rs-fMRI sessions
with too many (>3) subjects discarded were not used for the
test-retest reliability estimation. Therefore, sessions #2, #6, and
#10 were discarded. Only 7 rs-fMRI sessions and 25 subjects (13
males, 12 females, age 24.48 ± 2.55 years old, ranging from 20
to 30 years old) were finally chosen for the following analysis.
We also calculated the percentage of the rs-fMRI frames with
excessive (>0.5) frame-wise displacement based on Power et al.’s
method (Power et al., 2014) for each subject and each session; all
the remained subjects have < 5% (i.e., 14) frames with excessive
micro-head motion. In addition, we further test whether data
scrubbing will affect the LOFC, tHOFC, and aHOFC estimation
by conducting the similar analysis based on the scrubbed data; as
we anticipated, the reliability did not change significantly.

LOFC: Temporal Synchronization of
rs-fMRI Signals
We first calculate the traditional FC (i.e., LOFC) based on
the pair-wise temporal correlation of the preprocessed rs-fMRI
signals for each of two brain regions using Pearson’s correlation.
Letting xi (t) and xj (t) represent the rs-fMRI signals for two brain
regions i and j at time point t (t = 1, ..., T), the LOFCij can be
defined as

LOFCij =

∑T
t=1 (xi (t) − xi)

(

xj (t) − xj
)

√

∑T
t=1 (xi (t) − xi)

2
√

∑T
t=1

(

xj (t) − xj
)2

where xi is the mean of the rs-fMRI signals at region i. A 264-
region brain atlas (Power et al., 2013) was used to parcellate the
brain; each region of interest (ROI) was represented by a sphere
with 5-mm radius. The mean rs-fMRI signals from each ROI
were extracted. LOFC matrix with the size of 264 × 264 was
calculated for each subject for each session, which served as a
baseline for comparison with the topographical similarity-based
HOFC methods (tHOFC/aHOFC).

tHOFC/aHOFC: Similarity of Topographical
Connectivity Profiles
tHOFC and aHOFC calculations are straightforward without
free parameters to be estimated, both of which characterize
the relationship between two brain regions. However, they
characterize different pairwise relationship from that of the
LOFC due to the difference in the input “signals” (for LOFC
calculation, the input signals are the rs-fMRI time series; but, for
tHOFC, they are regional LOFC profile). Different input signals
may cause prominent difference between LOFC and tHOFC (or
aHOFC) between the same two brain regions. In fact, we have
found that two brain regions with little temporal synchronization
(indicating weak LOFC) have highly similar topographical LOFC
profiles (suggesting strong tHOFC).

Specifically, tHOFC was calculated by column-wise
correlation for each pair of the columns (with each column
representing the LOFC profile of each brain region) from the 264
× 264 LOFC matrix. Letting LOFCi represents the LOFC profile
for region i, and LOFCi. =

{

LOFCik|k ∈ R,k 6= i

}

(where R is the

set of all brain regions), the tHOFCij can be defined as,

tHOFCij=

∑

k

(

LOFCik − LOFCi.
)

(

LOFCjk − LOFCj.
)

√

∑

k

(

LOFCik − LOFCi.
)2

√

∑

k

(

LOFCjk − LOFCi.
)2

where k ∈ R, k 6= i, j. Before such correlation, all the LOFC values
were transformed to z-scores using Fisher’s r-to-z transformation
to satisfy the hypothesis of the second round of Pearson’s
correlation. Of note, self-connections of the two regions were
excluded, i.e., the LOFC profile of each region is a 262-length
vector (262= 264–2).

The aHOFC is defined further based on the topographical
profiles of the tHOFC. It measures the similarity between
the LOFC topographical profiles and the tHOFC topographical
profiles. Each brain region, when viewed from different levels,
could interact with all other regions in both low-level (i.e., LOFC)
and high-level (i.e., HOFC) manners. The aHOFC focuses on
such a modulatory association between the two levels. During the
aHOFC calculation, both LOFC and tHOFC profiles were first
transformed into z-scores; the self-connections were ignored,
similar to the calculation of tHOFC. Similarly, we use tHOFCi.
to represent the tHOFC profile for region i, where HOFCi. =
{

HOFCik|k ∈ R,k 6= i

}

. The Pearson’s correlation between any
tHOFCi and any LOFCj defines aHOFCij:

aHOFCij =
∑

k

(

tHOFCik − tHOFCi.

) (

LOFCjk − LOFCj.
)

√

∑

k

(

tHOFCik − tHOFCi

)2
√

∑

k

(

LOFCjk − LOFCj.

)2

where k ∈ R, k 6= i, j. The motivation of aHOFC is that,
we think there are not only low-level and high-level FCs
in the brain, but also inter-level interactions between LOFC
and tHOFC connecting the two levels of FCs, similar to the
common observations in many other biological networks, e.g.,
hierarchical organization and self-resemblance across multiple
spatial scales (Guimera et al., 2003). Supposing that, in the
human brain, the LOFC may collect and process information
and the tHOFC may abstract information via the hierarchy
(i.e., correlation’s correlation), the possible functions of such
inter-level connections could be (1) to facilitate the two
levels of information talking to each other, (2) to let the
low-level information guide high-level abstraction, and (3)
to change the way of low-level information collection for a
better high-level information integration. In addition, from
robust system point of view, a network or complex biological
system could be less fragile and more resilient to the targeted
pathological attacks if it has inter-level connections. Taking brain
psychophysiological interaction modeling as an example, high-
level preset of a psychological status (e.g., attention level) may
change sensory information collection, processing, and synthesis.
All the evidence together suggests the existence of such an inter-
level connection. We have applied the aHOFC to early detection
of AD; compared with LOFC, using aHOFC as features not only
improved the classification accuracy (Zhang et al., 2017) but
also identified different discriminative features as potential AD
biomarkers.
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Of note, by definition, tHOFCi and LOFCi could be different,
and thus it is also possible to calculate “self-associated HOFC”
or aHOFCii. Similarly, aHOFCij is not necessary to equal to
aHOFCji. Different from the previous study (Zhang et al., 2017),
where the finally obtained aHOFC matrices were converted to
be symmetric by adding each subject’s dHOFC matrix with its
transpose and dividing the result by two, we did not force

the aHOFC matrices derived in this study to be symmetric

as our purpose was to assess the aHOFC’s reliability rather
than to construct undirected aHOFC networks and make

certain neurobiological conclusions. However, to make the mean
connectivity matrices comparable among LOFC, tHOFC and

aHOFC, we changed the diagonal values in the finally obtained
aHOFC matrix to be zeros, i.e., in this study we did not

count for the self-associated HOFC. In the future, we should
further use the directed aHOFC network with non-zero self-

associated HOFC as defined by an asymmetric aHOFC matrix
and apply directed network analysis methods on the aHOFC

network to reveal more information. Figure 1 summarize all the

three pairwise FC metrics. See the first three columns of the

Table 1 for the summarized differences among these three FC

metrics.

dHOFC: Correlation between Pairwise
LOFC Dynamics
The calculation of dHOFC is quite different from that of the
topographical similarity-basedHOFCmetrics (tHOFC/dHOFC),
as the tHOFC/aHOFC measures static connectivity but dHOFC
is calculated based on dynamic, time-varying LOFC profiles.
As for the network topology, dHOFC also differs from tHOFC
and aHOFC. As shown in Figure 2 and summarized in the first
three columns ofTable 1, for dHOFC calculation, dynamic LOFC

for each pair of the brain regions was first calculated using
a widely adopted sliding-window strategy (i.e., with window
length ω = 30 time points or 60 s, step size = 1 time point
or 2 s); then two dynamic LOFC time series (involving four
regions) were correlated using Pearson’s correlation to produce
dHOFC between one region pair to another region pair. Letting
dLOFC (τ ) represent the dynamic LOFC strength within a brief
time window from τ to τ + ω − 1, and the dLOFC time series
between region i and l can be characterized based on

dLOFCil (τ ) =

∑τ+ω−1
t=τ

(

xi (t) − xτ
i

) (

xl (t) − xτ
l

)

√

∑τ+ω−1
t=τ

(

xi (t) − xτ
i

)2
√

∑τ+ω−1
t=τ

(

xl (t) − xτ
l

)2

(

τ = 1, . . . ,T − ω + 1; i, l ∈ R, i 6= l
)

where xτ
i represents the mean value of such a brief segment

of the rs-fMRI signal starting from τ . Similarly, we can
define the dLOFC time series between regions j and k
as dLOFCjk (τ )

(

τ = 1, . . . ,T − ω + 1; j, k ∈ R, j 6= k
)

. The
further Pearson’s correlation between the two dLOFC time series
defines dHOFC between region pairs i – l and j – k based on,

dHOFCil,jk =

∑T−ω+1
τ=1

(

dLOFCil (τ ) − dLOFCil

) (

dLOFCjk (τ ) − dLOFCjk

)

√

∑T−ω+1
τ=1

(

dLOFCil (τ ) − dLOFCil

)2
√

∑T−ω+1
τ=1

(

dLOFCjk (τ ) − dLOFCjk

)2

where dLOFCil indicates the mean value of the dLOFCil time
series along the whole time. Based on the combination theory,
a 264 × 264 LOFC matrix has 264 × (264–1)/2 = 34716
unique region pairs; thus a complete dHOFC network will have
34716 × 34716 in size and over 600 million unique four-region
combinations. This will increase the amount of connectomic
information and may reveal novel information that cannot be
discovered by LOFC/tHOFC/dHOFC. For more details, please
see the previous paper (Chen et al., 2016a).

TABLE 1 | Differences among LOFC and various HOFC metrics.

Input Output Test-retest reliability

LOFC BOLD signals Temporal synchronization, functional

coherence

Fair-to-good; nearly all connections have fair or better reliability. Within-network

connections have better reliability; high-level cognitive function-related

connections have better reliability.

tHOFC Regional LOFC topographical

profiles

To what extent two regions share

similar LOFC topographical profiles

Fair-to-good; similar to LOFC reliability, but with reduced reliability at

within-network connections. Better reliability at inter-network connections (esp.

between high-level cognition and primary regions).

aHOFC Both regional LOFC and

regional tHOFC topographical

profiles

To what extent topographical LOFC

modulates topographical tHOFC

Fair-to-good; similar to LOFC reliability, but with further reduced reliability at

within-network connections. Better reliability at inter-network connections.

dHOFC Dynamic, time varying LOFC

time series between two brain

regions

Temporal synchronization of two

time-varying LOFC time series among

four brain regions

Fewer connections have fair or better reliability. Strong (within-network and

modulatory) connections have fair-to-moderate reliability. Between-network

connections have poor reliability. Shorter window length produces better

reliability.

BOLD, Blood-oxygen-level dependent; LOFC, low-order functional connectivity; tHOFC, topographical similarity-based high-order functional connectivity; aHOFC, associated HOFC;

dHOFC, dynamics-based HOFC.
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In the previous classification-orientated studies, to avoid
the curse of dimensionality, dHOFC matrix dimension was
further reduced based on hierarchical clustering, which generates
relatively fewer clusters by grouping similarly co-varied dynamic
LOFC time series together. By doing so, we can detect a
few hundreds of the clusters and calculate dHOFC based on
the clusters’ centroids (Chen et al., 2016a). In the current
reliability study, it is not necessary to conduct such a clustering
analysis because we are focusing only on the reliability of the
dHOFC links, while clustering itself is irrelevant to such a
goal and will unnecessarily introduce an additional parameter
(i.e., the total number of clusters) which could complicate
the current study. Therefore, in this paper, we chose a few
ROIs from the total 264 of them to generate a relatively
smaller and more interpretable dHOFC network. Specifically,
we chose 26 ROIs from the hand-associated sensorimotor areas

for investigation of the dHOFC in the primary functional
system; we also chose 17 ROIs from the fronto-parietal task
control network (FPN) and 15 from the salience network (SN)
to investigate dHOFC in the high-level cognitive function-
related brain systems. See Figure 3 and Table 2 for the details
the ROI definitions. Therefore, we separately generated a
dHOFC matrix for the primary areas (with the size of 325
× 325, where 325 = 26 × 25/2) and another dHOFC matrix
for two high-level functional areas (with the size of 496 ×

496, where 496 = 32 × 31/2, since there are totally 32
high-level function-related ROIs, 32 = 17 + 15). Of note,
this is the first paper to systemically investigate the possible
neurobiological correlation of the dHOFC in the specific
functional systems.

Different window length could affect the
accuracy of dynamic LOFC (Hutchison et al., 2013);

TABLE 2 | ROI definitions for dHOFC calculation.

# Orig # x y z Suggested system # Orig # x y z Suggested system

1 16 10 −2 45 Sensorimotor Hand 1 186 47 10 33 Fronto-parietal Control

2 17 −7 −21 65 Sensorimotor Hand 2 187 −41 6 33 Fronto-parietal Control

3 18 −7 −33 72 Sensorimotor Hand 3 188 −42 38 21 Fronto-parietal Control

4 19 13 −33 75 Sensorimotor Hand 4 189 38 43 15 Fronto-parietal Control

5 20 −54 −23 43 Sensorimotor Hand 5 190 49 −42 45 Fronto-parietal Control

6 21 29 −17 71 Sensorimotor Hand 6 191 −28 −58 48 Fronto-parietal Control

7 22 10 −46 73 Sensorimotor Hand 7 192 44 −53 47 Fronto-parietal Control

8 23 −23 −30 72 Sensorimotor Hand 8 193 32 14 56 Fronto-parietal Control

9 24 −40 −19 54 Sensorimotor Hand 9 194 37 −65 40 Fronto-parietal Control

10 25 29 −39 59 Sensorimotor Hand 10 195 −42 −55 45 Fronto-parietal Control

11 26 50 −20 42 Sensorimotor Hand 11 196 40 18 40 Fronto-parietal Control

12 27 −38 −27 69 Sensorimotor Hand 12 197 −34 55 4 Fronto-parietal Control

13 28 20 −29 60 Sensorimotor Hand 13 198 −42 45 −2 Fronto-parietal Control

14 29 44 −8 57 Sensorimotor Hand 14 199 33 −53 44 Fronto-parietal Control

15 30 −29 −43 61 Sensorimotor Hand 15 200 43 49 −2 Fronto-parietal Control

16 31 10 −17 74 Sensorimotor Hand 16 201 −42 25 30 Fronto-parietal Control

17 32 22 −42 69 Sensorimotor Hand 17 202 −3 26 44 Fronto-parietal Control

18 33 −45 −32 47 Sensorimotor Hand 18 206 31 33 26 Salience Network

19 34 −21 −31 61 Sensorimotor Hand 19 207 48 22 10 Salience Network

20 35 −13 −17 75 Sensorimotor Hand 20 208 −35 20 0 Salience Network

21 36 42 −20 55 Sensorimotor Hand 21 209 36 22 3 Salience Network

22 37 −38 −15 69 Sensorimotor Hand 22 210 37 32 −2 Salience Network

23 38 −16 −46 73 Sensorimotor Hand 23 211 34 16 −8 Salience Network

24 39 2 −28 60 Sensorimotor Hand 24 212 −11 26 25 Salience Network

25 40 3 −17 58 Sensorimotor Hand 25 213 −1 15 44 Salience Network

26 41 38 −17 45 Sensorimotor Hand 26 214 −28 52 21 Salience Network

27 215 0 30 27 Salience Network

28 216 5 23 37 Salience Network

29 217 10 22 27 Salience Network

30 218 31 56 14 Salience Network

31 219 26 50 27 Salience Network

32 220 −39 51 17 Salience Network

Orig #, Original ROI index in the 264 brain region atlas. x, y, z, coordinates of each ROI’s center in the MNI space. Suggested system: the functional system suggested by the atlas. We

deleted 3 ROIs in the salience network, 8 ROIs in the fronto-parietal control network, and 3 hand sensorimotor ROIs since their belongingness to the suggested functional systems is

less replicable across different data sets as suggested by Power et al. (2013).
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FIGURE 3 | ROI locations for three functional networks used for dHOFC calculation. The underlying brain image is the ICBM152 template. Left is right and right is left.

(Leonardi and Van De Ville, 2015; Zalesky and Breakspear, 2015),
thus may further affect dHOFC and its reliability. Therefore,
we further examined the relationship between the window
length and the test-retest reliability of the dHOFC within the
hand sensorimotor areas. The above calculation was repeated
with different window length settings (i.e., 20, 40, and 50 time
points, corresponding to 40, 80, and 100 s, as TR = 2 s). Of
note, the window length of 20 and 30 time points are within the
recommended range (30–60 s) from previous studies (Zalesky
and Breakspear, 2015), while the larger values (i.e., 80–100 s) are
also used in previous dynamic LOFC studies (Leonardi and Van
De Ville, 2015).

In addition, according to the previous studies on dynamic
LOFC, small correlation values from the dynamic analysis could
probably be caused by random noise (Leonardi and Van De Ville,
2015), we think that the reliability of the dHOFC which has weak
connectivity strength could also be mainly contributed by noise.
To this end, we also used a dHOFC threshold of 0.36 as suggested
by Leonardi and Van De Ville (2015) to further filter the
dHOFC matrix. If there is a significant modular structure after
thresholding, we may be able to draw a conclusion that, although
weak dHOFC may be driven by noise, the relatively stronger
dHOFC could be biologically meaningful. This is because that, if
all dHOFC connections are dominated by noise, the thresholded
dHOFC matrix will have a somewhat random spatial pattern
rather than a structured one. Similar to the tHOFC and aHOFC,
test-retest reliability was also calculated for the relatively strong
dHOFC connectivities.

Intra-Class Correlation for Test-Retest
Reliability Evaluation
To investigate test-retest reliability of all types of HOFC
connections, we utilized a commonly adopted index called ICC
(Shrout and Fleiss, 1979). ICC is a method based on the one-
way analysis of variance (ANOVA) which divides the total sum
of variance across subjects and repeated rs-fMRI scans into two

parts: between-subject (σ 2
b
) and within-subject (or inter-session

variance, σ 2
w) sum of variance. The theoretical definition of

ICC is:

ICC =
σ 2
w

σ 2
b
+ σ 2

w

;

but the estimation of the ICC based on real samples can be
written by:

ICC =
MSb −MSw

MSb +
(

k− 1
)

×MSw
,

where MSb is the mean square of between-subject sum of
variance, MSw is the mean square of within-subject sum of
variance, and k is the number of repeated rs-fMRI scans (here
k= 7). ICC is conceptually positive between 0 (not reliable at all)
and 1 (perfectly consistent between repeated measurements), but
its estimation can be negative in a few cases. We put the negative
ICC values to be zeros as always done by previous studies (Zhang
et al., 2011a). Based on the value of ICC, reliability is usually
categorized as poor (ICC= 0–0.2), fair (0.2–0.4), moderate (0.4–
0.6), substantially good (0.6–0.8), and excellent (>0.8) (Landis
and Koch, 1977; Chen et al., 2015).

We first calculated ICC for LOFC, tHOFC and aHOFC, as
they are convenient to compare. We then calculate ICC for
dHOFC in both primary functional systems (hand sensorimotor
areas) and high-level cognition-related functional networks (FPN
and SN), to compare the dHOFC in these primary and high-level
functional systems.

RESULTS

tHOFC and aHOFC Have
Moderate-To-Good Test-Retest Reliability
As shown in Figure 4, the test-retest reliability of the tHOFC
is generally fair-to-moderate, although slightly lower than that
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FIGURE 4 | ICC value for each connection of LOFC, tHOFC, and aHOFC. The three rows show test-retest reliability, as assessed by ICC at each connection, for

LOFC, tHOFC, and aHOFC, respectively. From left to right are the ICC matrix without thresholding, ICC matrix showing the connectivities with moderate or better

reliability (thresholded by ICC > 0.4), and the ICC distribution for all connections. In the right of each row, the vertical red line indicates ICC = 0.2, above which are the

connectivities with acceptable (fair or better) reliability; the percentage of the connection with fair, moderate, good and excellent reliability are also shown.

of the LOFC. The test-retest reliability of the aHOFC is similar
to that of the tHOFC, with slightly fewer connections having
fair-to-moderate ICC. These results indicate that the tHOFC
and aHOFC are still reliable metrics. An interesting finding is
that the overall pattern of the reliable connections are quite
consistent among the LOFC, tHOFC and dHOFC, all of which
show prominently better reliability for the connections within
default mode network (DMN), as well as those within the FPN
and SN, respectively (see those major blocks in the main diagonal
and off-diagonal of the Figure 4). In addition, we also notice
that the off-diagonal connections among the DMN, FPN, and SN
have also high reliability. All these high-reliability connections,
although a little bit weakened, still exist for tHOFC and dHOFC.

Links with Increased Reliability for tHOFC
and aHOFC, Compared with LOFC
In addition to the overall reduction of reliability for
tHOFC/aHOFC compared with LOFC, we further found
interesting increased reliability for several tHOFC (Figure 5) and
aHOFC (Figure 6) links. Different from the reduced reliability
for mainly intra-network strong connections (see Figures 5A,B
for the block pattern), the links with increased reliability in

tHOFC compared with LOFC are mainly located at the weak
links that connect different systems. Specifically, we found
that such links connect high-level cognition-related network
(DMN, FPN, or SN) and primary function-related network
(sensorimotor or visual network). For example, as indicated by
white arrows in Figure 5C, the tHOFC links between the DMN
and the hand sensorimotor regions, as well as those between
the SN and visual areas, show great (by 0.2) increase in their
ICC values. Notably, the group-averaged aHOFC matrix is quite
similar to that for LOFC and tHOFC, with the strong aHOFC
links mainly located within modules, and the weak aHOFC links
between modules (result not shown). Similarily, aHOFC shows
the similar result as the tHOFC for the links with increased ICC
values, where such increase and reduction in the ICC values are
even more prominent (Figure 6A).

We further show the specific brain regions with prominent
reliability increment by comparing aHOFC with LOFC. To do
this, for each brain region, we summarized the extent of ICC
increment across all the aHOFC connections to this region with
increased ICC. Different regions have various extent of reliability
increment (see the bar plot under the matrix of Figure 6A). Such
differences are further drawn in Figure 6B with different sizes
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FIGURE 5 | The test-retest reliability difference between tHOFC and LOFC. For better understanding which functional system contributes to such ICC increment, we

also show the group-averaged LOFC in (A) and the group-averaged tHOFC in (B) across all subjects and all rs-fMRI sessions. Nine functional systems are shown,

with higher intra-system connectivity and sparse inter-system connectivity. The tHOFC with increased reliability (C) are located mostly at inter-system links (as also

highlighted by white arrows). The functional systems with many increased reliability are marked in (C) above the matrix and under the names of the functional systems.

The abbreviations of the functional systems are: mot (sensorimotor), cing-oper (cingulo-opercular), aud (auditory), vis (visual), fpn (fronto-parietal task control network),

sn (salience network), sub (subcortical regions), att (attention-related networks including the dorsal and ventral attentional systems).

FIGURE 6 | The test-retest reliability differences between aHOFC and LOFC. Subplot (A) shows the difference in ICC values between aHOFC and LOFC for all

connections, with the quantitative measurement of ICC gain for each brain region (i.e., the sum of ICC increment across all the connections to each region) shown as

a bar graph under the matrix. Such ICC increment is further visualized as the size of the node for all the brain regions in a brain surface (B). Different colors indicate

different functional systems.

of the nodes (with a bigger node indicating greater reliability
increment for its aHOFC links). The brain regions with the
greatest reliability increment are mainly distributed at the high-

level cognitive function-related areas, such as the medial and

lateral prefrontal cortices.

Taken together, our results show that both tHOFC and

aHOFC have general moderate or better reliability, and that

the tHOFC and aHOFC indeed capture novel (mostly high-
level cognition-related) information as indirectly reflected by the
higher reliability than LOFC.

Strong dHOFC in the Primary Functional
System Has Fair-To-Moderate Reliability
The group-averaged dHOFC within 26 hand sensorimotor ROIs
(one of the primary functional system) across all subjects and
all sessions is represented by a larger matrix, which shows a
significant structure with spatial sparsity (Figure 7A). For all the
325 × 324/2 = 52650 dHOFC hyperconnections (by treating
the 325 region pairs as hypernodes), their test-retest reliability
is shown as an ICC matrix with the same dimension (325 ×

325) in Figure 7B, with its thresholded (ICC > 0.2) version
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FIGURE 7 | Test-retest reliability of dynamics-based HOFC (dHOFC) in the primary functional system. (A) Averaged dHOFC matrix across all subjects and all imaging

sessions, showing the dHOFC strength for every possible high-order links; (B) ICC matrix, indicating test-retest reliability for all dHOFC links; (C) dHOFC links with fair

or better (ICC > 0.2) test-retest reliability.

(highlighting only the fairly or better reliable dHOFC) shown
in Figure 7C. Although many dHOFC links have acceptable
reliability as indicated by Figure 7C, specific amount of the
dHOFC links with ICC > 0.2 is only 11.63% of all possible
dHOFC links (Figure 8A). We have noted that the dHOFC links
with higher reliability tend to be those with greater connectivity
strength. If only counting for strong dHOFC (i.e., group mean
dHOFC > 0.36), a half (49.5%) of such connections will have
acceptable reliability (Figure 8B). Figure 9 shows the dHOFC
matrix from a randomly selected subject from each of the seven
rs-fMRI sessions. We can see that the overall individual dHOFC
spatial patterns are consistent across different rs-fMRI sessions.
However, there are significant block structures in the group
averaged dHOFC matrix (Figure 7A) but it is less prominent at
the individual-level (Figure 9). This difference could be due to
the relatively high individual variability in many dHOFC links.
While the group average could retain individually consistent
dHOFC links, it also suppressed those with relatively high inter-
subject variability, thus creating such prominent block structure
in the mean dHOFC matrix.

Strong dHOFC in the High-Level Functional
Systems Has Better Reliability
In addition to assessing the reliability for within-primary
functional system dHOFC, we also investigated the reliability of
high-level cognition-related dHOFC by calculating the dHOFC
in the two typical high-order functional systems, i.e., the FPN and
SN. Figure 10A shows the group-averaged dHOFC in these high-
level systems, while Figure 10B shows their reliability. Since there
are two functional systems involved, the dHOFC can be divided
into three main types (see Figure 10C and also the summary in
Figure 11) based on the functional system belongingness of the
four brain regions that constitute a dHOFC hyperlink:

• Within-network dHOFC. For each dHOFC consisting of four
ROIs, all ROIs belong to the same functional system. For
example, a link between two intra-FPN ROIs (regarded as
intra-FPN hypernode) has dHOFC with another link between

two intra-FPN ROIs. In this case, both hypernodes are intra-
FPN, thus we call this type of dHOFC links within-FPN
dHOFC. Similarly, we can define within-SN dHOFC between
two hypernodes that both constitute intra-SN ROIs. This
type of the dHOFC characterizes within-network high-order
relationship, which has moderate connectivity strength and
acceptable reliability (see the first two big blocks in the main
diagonal of the matrices in Figure 10).

• Between-network dHOFC. This type of dHOFC characterizes
the high-order relationship between two intra-network
links (or hypernodes) which belong to different functional
networks. For example, a hypernode that connects two FPN
ROIs has dHOFC with another hypernode that connects two
SN ROIs (i.e., an “intraFPN-to-intraSN” hyperlink). This type
of the dHOFC measures high-order functional association
between two functional systems. Interestingly, such dHOFC
are mostly weak in the connectivity strength and have overall
poor reliability (Figures 10B,C).

• Modulatory dHOFC. This is a new type of connectivity that
has not been defined in the previous studies. It contains
two hypernodes, at least one of which contains an inter-
network link. This type of the dHOFC constitutes the most
part of the dHOFC matrix. There are two subtypes for
the modulatory dHOFC. The first subtype consists of the
dHOFC between one inter-network hypernode and one intra-
network hypernode, e.g., the dHOFC between an intra-FPN
hypernode and an FPN–SN link. The second subtype is that
both of the hypernodes are the inter-network links. Both of
these two cases are able to characterize high-order functional
relationships manifesting as “one functional systemmodulates
another.” Compared with the first two types of the dHOFC,
the modulatory dHOFC show extensive connections (see the
third main block in the main diagonal of Figure 10A) and
acceptable reliability (Figure 10C).

As shown in Figure 10, the mean dHOFC strength matrix and
the dHOFC reliability matrices have highly similar structured
and blocked patterns. Please note that we did not re-arrange
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FIGURE 8 | Distribution of test-retest reliability (ICC values) for the dHOFC links. (A,B) Results for the primary functional system; (C,D) results for the high-level

functional systems. (A,C) show the distribution of the ICC values for all dHOFC links, while (B,D) show the distribution of the ICC values for the relatively strong (i.e.,

mean dHOFC > 0.36) dHOFC links. We selected the hand sensorimotor areas as an example of the primary functional system, and selected both fronto-parietal task

control network and salience network as examples of the high-level cognition-related functional systems. Again, the red line indicates the same ICC threshold of 0.2;

the bars on the right side of the red line are the numbers of dHOFC links with fair or better reliability.

FIGURE 9 | Individual dHOFC matrices for all 7 sessions. The dHOFC matrices for the hand sensorimotor network of a randomly selected subject (#9) are plotted.

the columns and the rows of these matrices in a post hoc way
(e.g., based on module detection using the dHOFC strength);
instead, we just grouped the same type of the hypernodes
(three types: intra-FPN, intra-SN, and FPN-to-SN) together

before calculating dHOFC and re-arranging the columns and
the rows of these matrices in an order of firstly intra-FPN, then
intra-SN, and finally FPN-to-SN. Merely through this a priori
grouping and rearranging could we reveal such an interesting
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FIGURE 10 | Test-retest reliability of dHOFC in the two high-level cognition-related functional systems. We selected the fronto-parietal task control network and

salience network as examples of the high-level functional system. (A) Averaged dHOFC matrix; (B) ICC matrix for all dHOFC links; (C) ICC matrix for the dHOFC links

with fair or better reliability (ICC > 0.2). The order of dHOFC links in the matrices is rearranged according to the types of the “hypernodes” (where a hypernode

represents a dynamic link between two brain regions). If the hypernode consists of two brain regions that are both from the fronto-parietal task control network, we

call it “intraFPN” hypernode and re-order them into the first 136 (136 = 17 × 16/2) columns of the dHOFC matrix. We further re-group the 105 (105 = 15 × 14/2)

hypernodes which consist of two brain regions both from the salience network (intraSN) and put them after the intraFPN hypernodes. At last, we put all the remaining

255 (255 = 17 × 15) hypernodes (consisting of one region from FPN and the other from SN, thus called inter-network “FPN-SN” hypernodes) after the intraSN

hypernodes. In this way, the dHOFC matrix is rearranged. According to different types of hypernodes, there are also three different types of (dHOFC) hyperlinks.

Among them, the “within-FPN” (with both hypernodes being intraFPN nodes) and “within-SN” (with both hypernodes being intraSN nodes) are both indicated by black

arrows; the between-network dHOFC hyperlinks (named here as “intraFPN-intraSN,” with one hypernode from intraFPN and another from intraSN) are indicated by

the red arrows; and all the remaining dHOFC hyperlinks are named as “modulatory” dHOFC (with at least one hypernode belonging to the “FPN-SN” type) as

indicated by the green arrows.

FIGURE 11 | Three types of dHOFC and their overall connectivity strength and

reliability. dHOFCwithin-net is the within-network dHOFC, including within-FPN

and within-SN hyperlinks (A); dHOFCbetween-net is the between-network

dHOFC (including “intraFPN-intraSN” hyperlinks) (B); dHOFCmodulate is the

modulatory dHOFC links (C) which can be further categorized into two cases

(case 1: both of the two hypernodes belong to the “FPN-SN” type; case 2:

one of the two hypernodes belongs to the “FPN-SN” type while the other

belonging to either intraFPN or intraSN type).

structured and block-like pattern for both dHOFC strength and
reliability.

Different from the dHOFC in the primary functional
system (Figure 7), the dHOFC of the two high-level functional

systems show meaningful and visually detectable and systematic
differences in the test-retest reliability, which becomes more
prominent when only looking at the connections with fair
or better reliability (Figure 10C). That is, for between-
network dHOFC, their connectivity strength is weak, and
their connectivity reliability is also poor, while the other two
types of the dHOFC have both greater strength and better
reliability. At the subject level, Figure 12 shows the dHOFC
matrices derived from all the seven rs-fMRI sessions of the same
subject (subject #9), with a roughly stable pattern.

Compare with the dHOFC in the primary functional system,
those in the high-level functional systems have better reliability
for several (mainly the between-network and the modulatory)
connections while lower reliability for several other (mainly
within-network) connections (Figure 8C). When only looking
at the strong and putative connections, dHOFCs in the high-
level system are more reliable (Figure 8D), with more (66.4%)
connections characterized as fairly reliable or better.

Sliding Window Length Significantly
Affects dHOFC Reliability
We further show how the length of sliding window (or the
window width), an important parameter for both dynamic LOFC
and dHOFC analyses, will affect dHOFC reliability. The ICC
matrices based on different window lengths of 40, 80, and 100 s
are shown in Figure 13. Together with the main dHOFC ICC
result using a window length of 60 s (Figure 7C), we, for the
first time, revealed that the setting of sliding-window length
significantly affected the dHOFC test-retest reliability. Shorter
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FIGURE 12 | Individual dHOFC matrices of the same subject for all 7 sessions. The dHOFC matrices for the high-level cognition-related networks (fronto-parietal task

control and salience networks) from a randomly selected subject (#9) are plotted. Note this is the same subject for demonstration the reliability of dHOFC within the

primary functional system in Figure 9. The parcellation of the dHOFC matrix is based on the different types of the hypernodes (see Figure 10).

FIGURE 13 | ICC of the dHOFC calculated based on different window length settings (40s, 80s, and 100s in panels A–C, respectively). The dHOFCs in the hand

sensorimotor areas (the primary functional system) are shown. The dHOFC links with ICC > 0.2 (fair reliability or better) are indicated in orange-to-red colors.

window length generated better reliable dHOFC. Based on the
ICC values, the window length of 40, 60, 80, and 100 produces
77.3, 49.5, 30.3, and 18.9% fairly reliable (ICC > 0.2) dHOFC
links among all the strong dHOFC links (Figure 14).

We still chose the window length setting of 60 s as the main
dHOFC result, because the previous comprehensive simulated
experiments have shown that a too short window length setting
may cause limited sample size in the calculation of dynamic
LOFC within each window and could overestimate the dynamic
FC. In other words, with small window length, we may inflate
the window-based LOFC estimations and increase the possibility
of type-I error in finding the significant dynamic FC. This will,
in turn, compromise the dHOFC calculation because dHOFC
is based on the second round of the correlation analysis on the

dynamic LOFC time series, and the overestimated LOFC changes
may cause bias in the following dHOFC calculation.

DISCUSSION

General Discussion
In this paper, we assessed the test-retest reliability of all
existing HOFC (high-order FC) metrics extracted from young
healthy adults. Table 1 summarized all definitions and potential
biological meanings for all the HOFC metrics involved. We
found that, in general, all the methods have acceptable test-
retest reliability. Please also see Table 1 for a summary of
all reliability assessment results, and Figure 11 for specially
summarized connectivity strength and reliability characteristics
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FIGURE 14 | ICC distributions for all strong dHOFC links with different window

length settings (40s, 80s and 100s in panels A–C, respectively). The dHOFCs

in the hand sensorimotor areas (the primary functional system) are used. The

strong dHOFC links are defined as those having group-averaged dHOFC >

0.36. The red line indicates an ICC threshold of 0.2 (thus, the right side of this

red line indicates fair or better reliability).

for different types of the dHOFC links. The goal of presenting
such reliability analysis results is to obtain new knowledge based
on the reliability analysis for better understanding the biological
meaning of different types of HOFC, deriving guidance for future
HOFC studies, and accelerating wider clinical applications using
HOFC.

To our best knowledge, there is no such reliability study before
on the HOFC metrics. We note that there is a recent study
investigating the reproducibility of dynamics LOFC-based brain
transient status detection across different data sets (Abrol et al.,
2016), which suggested that a few transient LOFC patterns are
reproducible; but this study didn’t go further to analyze the high-
order FC and its reproducibility. Here, we use a dedicated dataset
with amply repeated scans and sample size to produce an accurate

estimation of the HOFC’s test-retest reliability. We believe that
this novel test-retest reliability studies on such state-of-the-art
connectomic metrics could have instructive meanings toward
understanding how the human brain is functionally organized.

Why Focusing on HOFC’s Test-Retest
Reliability?
Besides characterizing pair-wise temporal synchronization of
rs-fMRI BOLD signals and building such traditional LOFC brain
networks, researchers are also eager to look for the methods
that can capture more complex functional organization of the
human brain, i.e., HOFC. The HOFCmay have more generalized
definition, as long as it captures more complex functional
organization, e.g., hierarchical FC architectures (Cordes et al.,
2002), modularity/rich-club from deep analysis to the LOFC
networks (van den Heuvel and Sporns, 2011), hypergraph
consisting of hypernodes and hyperlinks (Jie et al., 2016), cross-
modality association (Honey et al., 2009) and context-sensitive
divergence (Hermundstad et al., 2013), but here we only focus
on the narrowly defined HOFC metrics, which are the metrics
that have been explicitly proposed to be “high order” based
on “correlation’s correlation.” Of note, a previous study first
calculated dynamic local LOFC and then calculated regional
covariance of the regional dynamic local LOFC time series
(Deng et al., 2016), which is somewhat also based on the
correlation of correlations. We think that this method is more
like the dHOFC, but still characterizing the pairwise relationship
since the first round of correlations are collapse into regional
time series. Although this paper did not provide reliability or
reproducibility results, it did show a highly structured high-level
functional organization. Another recent work also calculated
topographical LOFC profiles (Zhang J. et al., 2016) and their
dynamics, but they further calculated the similarity among each
brain region’s topographical LOFC profiles across time to define
a variation-based metric for each brain region. Therefore, they
did not use inter-regional topographical similarity to define
HOFC but rather using intra-regional time varying topographical
information to capture brain function. All these state-of-the-
art studies have indicated that characterizing high-order brain
functional organization is the common research interest and
also a hot topic. Therefore, test-retest reliability on these HOFC
metrics is highly necessary.

Of all the studies which explicitly defined or adopted HOFC,
the tHOFC characterizes similarity of the topographical LOFC
profile between any two brain regions; the aHOFC defines a
different pair-wise topographic profile similarity which is actually
a cross-level (i.e., the modulation between the low-level and
the high-level FC organizations among brain regions) HOFC
measurement; and the dHOFC defines an even more complex,
i.e., four region-based functional relationships by adopting
dynamic LOFC profiles, where the covariance of two LOFC
dynamic time series naturally reflect a modulatory interaction.
Based on the network belongingness of every four brain regions,
we have the opportunity to explicitly define different types of
high-level modulation rather than just inherently considering
such high-level functional coherence like most of the existing
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LOFC dynamics studies on brain “status.” In summary, all the
HOFCmetrics are methodologically innovative and state-of-the-
art. Most importantly, these metrics may characterize different
aspects of biologically meaningful functional organization
architecture, which is systematically different from LOFC. In
order to further validate this argument, we need to assess their
reliability to add further support to this hypothesis.

Reasons and Factors That May Cause
Variation in HOFC Reliability
There are several factors that could cause the difference in
reliability among the HOFC metrics. Next, we will discuss the
possible contributing factors that may lead to such differences in
HOFC reliability, which include:

• Various types of noise and artifacts (e.g., cardiac pulsation
and head motion) in the rs-fMRI data may interfere LOFC
estimation (Chang andGlover, 2009; Power et al., 2014), which
often leads to overestimated LOFC due to the structured and
spatially overspread noise. Since HOFC is calculated based on
LOFC, the noise and artifacts can interfere HOFC as well,
although the effect will be different for HOFC compared to
LOFC.

• The complexity of the algorithm. First, noise problem can be
exaggerated when there are more operations (“correlation’s
correlation”) applied on the data. In other words, the noise-
induced error may propagate and increase by further steps
of correlation analysis. Similar substantial reliability reduction
has been witnessed in the previous reliability studies on the
graph-theoretic analysis-derived network properties from the
LOFC network (Wang et al., 2011). Moreover, dHOFC has
several freely estimable parameters, one of which is the sliding
window length. From the Figure 7C and Figures 13–14, we
can see that window length indeed affects dHOFC reliability
(with the shorter window length leading to more reliable
dHOFC). Therefore, if using dHOFC to detect potential
disease biomarkers, we may not only have a risk in the
reliability reduction due to the computational complexity, but
also have to decide the optimal parameter setting. On the other
hand, tHOFC and aHOFC do not have free parameters as long
as the region-averaged rs-fMRI signals are obtained.

• The HOFC strength itself. An interesting finding for all types
of HOFC (and the LOFC previously) is that, generally,
connections with greater strength may be more reliable, and
vice versa. Such a phenomenon is more prominent for the
dHOFC. This may be because weaker connectivities are more
likely to be affected by the noise and artifacts. Of note, it is
difficult to determine the threshold for weak/strong dHOFC as
the parametric testing, such as the t-tests tends to overestimate
the “significant” dHOFC, i.e., even a small dHOFC could be
significantly large due to a large number of sliding windows
and the statistical dependence among nearby windows. Based
on the suggestion of previous dynamic FC study (Leonardi
and Van De Ville, 2015), even a large dynamic FC could
be purely induced by noise. Thus, we use a relatively large
threshold to determine strong dHOFC (>0.36). In future, non-
parametric analysis, such as permutation test can also be used

to generate the “null model” of dHOFC and determine which
is significantly strong. Here, to make fair comparison among
different window lengths, we use the predefined threshold of
dHOFC> 0.36 to identify strong dHOFC links. However, such
a rule does not apply to several LOFC, tHOFC and aHOFC
links, such as the connections among the DMN, FPN, and SN;
interestingly, their weak connectivities are astonishingly stable
across repeated scans (see Figures 4–6).

• The subject’s varying status. Recently, studies on brain LOFC
dynamics have revealed that the brain functional network is
not a static but a continuously changing system (Hutchison
et al., 2013; Calhoun et al., 2014; Preti et al., in press).
Decompositions to the LOFC spatiotemporal dynamics have
revealed a few instantaneous LOFC network patterns that
occur from time to time and switch to each other with certain
transformation probability, which may represent different
brain “statuses” (Allen et al., 2014). The occurrence frequency
and the dwelling time of the status may be substantially
different in different rs-fMRI sessions; moreover, several
statuses may not occur at all during a particular scanning
session (Abrol et al., 2016). Such a variation could be larger
if the interval of the repeated scans is longer. Although
our test-retest data were acquired within a month, such
a period will still allow unneglectable changes in subject’s
physical and mental conditions (e.g., drowsiness) to happen
and lead to differences in status switching and their occurrence
frequency. Since HOFC is proposed to measure high-level
brain functional architecture, a small variation may still affect
its reliability. We think that dHOFC could be affected more
because this metric per se is directly estimated on the basis of
dynamic analysis.

• Head motion. Although we had stringently controlled head
motion effect according to the strict data inclusion criteria,
head motion can still be a source of the reduced reliability.
We believe that the head motion will have more effect on
dHOFC estimation because sliding window-based analysis
uses fewer samples to conduct temporal correlation, such that
the robustness to the head motion-related artifacts could drop.
This argument has been supported by both previous studies
(Laumann et al., 2016) and the leftward shift of the ICC
histogram from Figure 4 to Figures 8A,C.

• Other unavoidable factors, such as the changing condition and
status of the MRI scanner, will likely to affect the test-retest
reliability.

Biological Meaning of HOFC Indicated by
Reliability Assessment Result
Based on reliability analysis, we may have a chance to revisit the
underlying biological meaning of the HOFC. Our result has four
major implications. First, we examined which HOFC links have
reliability gain when comparing tHOFC (and aHOFC, with the
similar result) and LOFC. We found that the links with better
reliability than those of the LOFC are highly structured with
highly specified anatomical location. Most of them are the inter-
network connectivities between the high-level and the primary
functional systems (Figure 5C). The primary systems are the
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sensorimotor and visual areas, while the high-level functional
systems include the DMN, FPN and SN, which have a perfect
agreement with so-called “triple networks” (Menon, 2011). The
triple networks have been proposed to be responsible for high-
order cognitive functions, such as task control, attention, self-
awareness, etc. Meanwhile, many neurological and psychiatric
diseases (such as AD and schizophrenia) have abnormalities
commonly located at such three networks. The increment of test-
retest reliability for the tHOFC and aHOFC indicates that the
tHOFC can more reliably estimate the connections between the
high-level and low-level brain networks. These results support
the previous finding using the tHOFC, that is, the topographical
LOFC profile can suppress noise in several links (Zhang H.
et al., 2016). Because these “reliability enhanced” links are
mostly the weak connections, if the noise level is not favorable,
these connectivities cannot be used for biomarker detection
and disease classification due to the noise-induced reliability
reduction. Our result suggests that tHOFC and aHOFC could
be more suitable for such studies if these particular (although
weak) connections are of interest. From another viewpoint, this
result indicates that tHOFC and aHOFC are able to model the
feedforward and feedback functional relationships, which may
reflect information exchange between the high-level and the
primary areas.

Second, after visualizing the extent of the reliability gain for
each brain region, we found that the mostly benefiting nodes
are the medial frontal regions in the DMN and the lateral
frontal regions in the FPN and SN (Figure 6B), indicating the
importance of these areas in such a cross-level information
exchange. Moreover, we, for the first time, show that these
medial and lateral frontal regions could be functionally important
based on the reliability gain against LOFC. In the future,
more efforts should be made on these putative but weak high-
order cross-level interactions between the triple networks to
the primary functional areas. The importance of such a type
of HOFC links could be diminished if only traditional LOFC
is used. Based on this finding, we have a further tentative
assumption that, for the neurodegenerative diseases, such as
AD and the neurodevelopmental disorders, such as autism
spectrum disorder, at the very beginning, the pathological
attack (such as neurofibrillary tangles and amyloid beta-peptide
deposition in AD) could first occur at these frontal areas
(Braak and Braak, 1991). At this early stage, there is usually
no significant cognitive abnormalities for the patients. We
hypothesize that it is such high-order cross-level feedback and
feedforward connections that could be affected at this period,
and the high-level to primary information exchanges are likely to
be already changed. Traditional LOFC is less reliable for such
connections, thus early detection is difficult and less sensitive. If
tHOFC, especially aHOFC, is used as connectivity-based metrics,
we could have much larger chances to detect such early but subtle
changes.

Third, as shown in Figure 7A, the group-level dHOFC
matrix in the hand sensorimotor system shows the prominent
modular structure (i.e., small blocks along the main diagonal of
the dHOFC matrix). The dHOFC strength within modules is
higher than that betweenmodules. Further investigation revealed
that the higher dHOFC in each of the block or module had

a brain region acting as a common driving source, so that
any dLOFC links sharing the same driving region had quite
similar dynamic patterns along time. For example, the dHOFC
among dLOFC12, dLOFC13, ..., dLOFC1R (which all share the
region #1) are stronger than the dHOFC between dLOFC12 and
dLOFC34 (because they share no region). This could indicate
the organization architecture of the dHOFC in the sensorimotor
system; that is, many strong dHOFC hypernodes (dLOFC links)
share a common driving source from a single brain region and
this can form a “star-shaped” local topological structure. This
star-shaped cluster could be the basic unit for high-level brain
functional organization. Traditionally, it is impossible to reveal
such a high-level spatiotemporal organization architecture.

Fourth, in this study, we have included two high-level
functional systems (FPN and SN) for dHOFC analysis. The
reliability matrix has shown a structured and inherently
well-organized pattern (Figures 10B,C), consistent with the
pattern of the dHOFC strength (Figure 10A). Based on the
complexity of the dHOFC’s definition (involving four regions for
characterizing a hyperlink of dHOFC), we have further separated
dHOFC hyperlinks into the within-network, between-network
and, completely new,modulatory types (containing hybrid inter-
network connection(s) as hypernode(s); see Figure 11C). Note
that, previously, there is no study on the third type of the
connections. We found that the between-network dHOFC,
which consists of two intra-network hypernodes for each of the
two networks, respectively, are nearly zero (weak connections).
This result indicates that the two high-level functional systems,
as shown by their respective nearly uncorrelated dynamic
connectivity profiles, may work quite independently. The
reliability of such type of dHOFC is also poor, meaning that
such weak high-order connectivities are prone to be affected by
noise. However, the within-network dHOFC, similar to previous
findings for the within-network LOFC, is relatively strong
and much more reliable than the between-network dHOFC
or LOFC. The most interesting finding is that the modulatory
dHOFC, especially when both hypernodes are inter-network
connections (with the two ROIs of each hypernode belonging to
two different functional systems), are also relatively strong with
better reliability. This result indicates that the brain functional
organization is not in a one-by-one or pairwise manner. The
two high-level functional networks may not only interact with
each other via pairwise LOFCs, but also have extensive and
deep modulatory relationship in a high-order way. Such a high-
order relationship can be further divided into two subtypes
(Figure 11C), reflecting different modulatory interactions. In
this sense, the dHOFC may be able to model more complex
interactions among the brain networks that cannot be easily
modeled using the traditional inter-network LOFC.

Finally, as shown by Figure 10A, there are strong off-
diagonal connections for the case 1 of the modulatory dHOFC,
indicating that the two high-level cognitive function-related
networks indeed communicate with each other more in a more
complex manner than any LOFC can capture. However, when
compared the connectivity strength of the similar off-diagonal
LOFC (i.e., the mean inter-network LOFC between the FPN
and SN), for the strongest 50 connections, we found that
the dHOFC values are significantly (p < 0.0001) larger than
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LOFC (Figure 15). Moreover, such a type of the dHOFCs has
acceptable reliability. Therefore, we propose that the modulatory
dHOFC with each of the two hypernodes connecting with
both networks (see Figure 11C, case 1) can better characterize
inter-network functional association via complex high-order
modulatory interactions. In the future, this type of dHOFC
could be specifically selected as features to search for potential
biomarkers of brain disease if inter-network connectivity is the
main target.

Suggestions and Guideline to Future HOFC
Study
Based on the findings on HOFC reliability, we give several
suggestions to future studies that focus on high-order
brain functional organization or its modulation by different
experimental states or diseases:

• The tHOFC and aHOFC may have less reliability for within-
network connections than LOFC, but are still moderately
reliable. If interested in the within-network connectivity, it’s
better to use LOFC.

• The tHOFC and aHOFC have higher reliability for the weak
between-network connections. If interested in such type of
connections, it’s better to use tHOFC or aHOFC. The tHOFC
seems to have both acceptable reliability for within-network
connectivity andmore reliable between-network connectivity.
Due to such a trade-off, the tHOFC may be more suitable for
the exploratory whole-brain network analysis, including both
within- and between-network connectivities.

• The aHOFC is especially reliable for modeling high-level
feedback and feedforward relationship between the high-level
cognition-related and the primary functional systems, which is
suitable for studies on top-down or bottom-up connectivities.

FIGURE 15 | Comparison between inter-network LOFC and modulatory

dHOFC. The inter-network LOFC shown in the first bar are the largest 50

LOFC links between fronto-parietal task control and salience network. The

modulatory dHOFC shown in the second bar are the largest 50 dHOFC links

for the third category of three different types of dHOFC (i.e., with both

hyper-nodes being the inter-network connections). Error bar shows the

standard deviation. The p-value is derived from non-parametric group

difference test (Mann-Whitney test, two-tailed).

• dHOFC implementation should be careful due to its
lower reliability compared with that for static LOFC or
HOFC. However, within-network and modulatory dHOFC
or relatively strong dHOFC are still sufficiently reliable.
Future dHOFC studies should focus on these dHOFC
links.

• Data processing parameters, such as sliding-window length
should be carefully determined for dHOFC calculation. Too
small window length may be less robust to noise and may
lead to spuriously high “reliability.” A window length of 60 s
is a recommended choice for robust dHOFC estimation with
adequate reliability.

• For early diagnosis studies, in order to increase detection
sensitivity, it’s better to choose a certain type of HOFC
to characterize the subtle connectivity abnormalities. For
example, weak connections might be more likely to be
affected by the pathological attacks than strong connections;
all the HOFC metrics have satisfactory reliability for the weak
connections.

• While static LOFC does not have adequate sensitivity for
biomarker detection, modulatory dHOFC, especially the case
1, could be an alternative approach to estimate those deeply
inherent inter-network interactions.

LIMITATIONS AND FUTURE WORKS

First, in this paper, we only focused on the reliability assessment
of the connectivity strength without going further to assess the
reliability of graph-theoretical analysis-based network properties,
which we think deserves a dedicated research after more
suitable complex network construction approach for the HOFC
is proposed. Second, this paper is dedicated to investigating
HOFC reliability, the further study on the biological relationship
(validity) between the HOFC strength and neurocognitive
measurements or disease states are not our main goal and will
be investigated in the future. Third, the test-retest reliability with
varied inter-scan interval (especially the intra-session reliability)
will better disentangle the mixed effect of influencing factors on
the HOFC reliability. This is especially important for the dHOFC,
because it is based on the dynamic LOFC which is theoretically
expected to be fluctuating. Although the dHOFC calculates the
coordination of the dynamic LOFC, making this HOFC metric
more like a measurement of “trait” than “state,” a dedicated
study on how the changing brain “state” may affect the trait
characterization is highly required. Finally, due to the increased
dimensionality, we only calculate dHOFC for a few functional
systems. In the future, the better algorithm needs to be proposed
to overcome such a limitation and extend our understanding of
the neurobiological meaning of the dHOFC in the whole-brain
level.
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