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Idiopathic normal pressure hydrocephalus (iNPH) is characterized by a clinical triad (gait

disturbance, dementia, and urinary incontinence), and by radiological findings of enlarged

ventricles reflecting disturbance of central spinal fluid circulation. A diagnosis of iNPH is

sometimes challenging, and the pathophysiological mechanisms underlying the clinical

symptoms of iNPH remain largely unknown. Here, we used an emerging MRI technique,

resting-state functional connectivity MRI (rsfcMRI), to develop a subsidiary diagnostic

technique and to explore the underlying pathophysiological mechanisms of iNPH.

rsfcMRI data were obtained from 11 patients with iNPH and 11 age-matched healthy

volunteers, yielding rsfcMRI-derived functional connectivity (FC) from both groups. A

linear support vector machine classifier was trained to distinguish the patterns of FCs of

the patients with iNPH from those of the healthy volunteers. After dimensional reduction,

the support vector machine successfully classified the two groups with an accuracy

of 80%. Moreover, we found that rsfcMRI-derived FC carried information to predict

the severity of the triad in iNPH. FCs relevant to the classification of severity were

mainly based on interhemispheric connectivity, suggesting that disruption of the corpus

callosum fibers due to ventricular enlargement may explain the triad of iNPH. The present

results support the usefulness of rsfcMRI as a tool to understand pathophysiology of

iNPH, and also to help with its clinical diagnosis.

Keywords: resting-state functional connectivity MRI, idiopathic normal pressure hydrocephalus, functional

connectivity, supervised machine learning, support-vector machine, interhemispheric connectivity

INTRODUCTION

Idiopathic normal pressure hydrocephalus (iNPH) is a cryptogenic disorder characterized clinically
by a triad (gait disturbance, cognitive impairment and urinary incontinence), and radiologically by
enlarged cerebral ventricles because of non-obstructive disturbance of cerebrospinal fluid (CSF)
circulation (Ishikawa, 2004). The diagnosis of iNPH is important, because it is one of the few
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treatable dementias; namely, the clinical symptoms can be often
relieved by a shunt operation. Although typical iNPH shows
characteristic neuroradiological findings (Kitagaki et al., 1998;
Ishikawa et al., 2008; Mori et al., 2012), the diagnosis of iNPH
remains challenging in atypical cases, because no functional
biomarkers of iNPH have been established (Leinonen et al.,
2011; Jingami et al., 2015). The clinical guidelines of iNPH
in Japan recommend a “tap test” involving the drainage of
a small amount of CSF (30–50ml) by a lumbar puncture to
predict the effectiveness of a shunt operation. However, the
tap test has limitations: it is an invasive procedure and carries
some risks of adverse events, such as headache. Additionally,
although a positive tap test result has a high predictive value
for shunt operation outcomes, a negative result has a low
predictive value because of a high false negative rate (Sakakibara
et al., 2012). Thus, it is important to develop non-invasive and
reliable diagnostic methods for iNPH. In particular, a functional
neuroimaging method would not only help with a diagnosis of
iNPH, but would also provide insight into the pathophysiological
mechanisms of iNPH.

Recently, resting-state functional connectivity MRI (rsfcMRI)
has drawn attention as a tool to help with a clinical diagnosis
and the evaluation of neuropsychiatric disease. For rsfcMRI,
participants are not required to perform demanding cognitive
tasks, instead they only have to lie quietly in an MRI scanner.
This property is advantageous for the application of rsfcMRI to
patients with dementia, who might have difficulty in performing
cognitive tasks. In fact, rsfcMRI has recently been applied to
neuropsychiatric disorders (Greicius et al., 2004; Damoiseaux
et al., 2006; Zhang et al., 2010; Khoo et al., 2015; Takamura and
Hanakawa, 2017). In particular, Khoo et al. reported that resting-
state functional connectivity (RSFC) was reduced in the default
mode network (DMN) in iNPH patients, and that the reduction
of the RSFC in DMN was positively correlated with symptoms of
iNPH (Khoo et al., 2015). This pioneering study indicates that
RSFCs may provide a useful biomarker for the assessment of
iNPH. However, an alteration of RSFCs other thanDMN remains
unclear, because the analysis was limited to the DMN. Thus,
it is important to test the contribution of multiple large-scale
brain networks to the diagnosis of patients with iNPH. In this
regard, an emerging method for a multivariate RSFC analysis
is the application of machine-learning classification algorithms
(Craddock et al., 2009; Arbabshirani et al., 2013). For example,
Craddock and colleagues successfully applied support-vector
machine (SVM) classification to identifying a pattern of RSFCs
representing major depressive disorder (Craddock et al., 2009).
A previous study (Arbabshirani et al., 2013) demonstrated that
SVM with RSFC features could classify more accurately patients
with neuropsychiatric disease than other linear classification
methods. In addition, the SVM is particularly suitable to deal
with the classification task with limited number of the training
instances, and high feature dimensionality. This availability of
SVM is suitable to clinical neuroimaging studies where typically
just a limited number of dataset is available.

Recently, several researchers used SVM to examine the
diagnostic, and prognostic potential of structuralMRI, functional
MRI, and rsfcMRI in various areas of neurological, and

psychiatric disorders, including mild cognitive impairment,
probable dementia of Alzheimer type, major depression, bipolar
disorder, and schizophrenia (Chen et al., 2011; Costafreda et al.,
2011; Orru et al., 2012; Wee et al., 2012; Zeng et al., 2012).

However, to our knowledge, machine-learning classification
has not been applied to iNPH. A supervised machine-learning
classification algorithm uses multivariate datasets such as whole-
brain RSFC, and is able to classify the data into predetermined
categories (i.e., iNPH and healthy). Moreover, a multivariate
pattern analysis on RSFC has the potential to classify the severity
of disease, like the iNPH grading scale (iNPH-GS).

In this study, we applied SVM to rsfcMRI data to test
the hypothesis that differences in RSFCs might differentiate
between iNPH patients, and healthy volunteers, and might also
discriminate across the severity stages of iNPH symptoms.

METHODS

Participants
Eleven patients with iNPH (iNPH group; 5 male, 6 female;
average age ± SD: 78.2 ± 6.8 years) and 11 age-matched
healthy controls (HC group; 4 male, 7 female; average age ±

SD: 69.8 ± 13.6) participated in the study. The two groups
did not significantly differ in terms of age (two-sample t-test,
p = 0.07) or sex (chi-square test, p = 0.53). Nine out of
11 patients fulfilled the criteria for probable iNPH (Ishikawa,
2004; Yamashita et al., 2014): (1) age of 60 years or older; (2)
presence of at least one of the classic triad (gait disturbance,
cognitive impairment, and urinary incontinence); (3) ventricular
dilation with Evans’ index >.3; (4) normal CSF pressure and
content; (5) exclusion of other neurological or non-neurological
disorder; and (6) a positive CSF tap test. Two patients were
diagnosed as possible iNPH because the result of a CSF tap test
was equivocal. The general clinical status of the iNPH patients
was assessed with the iNPH grading scale (iNPH-GS) (Kubo
et al., 2008). The iNPH-GS grades the severity of three main
categories of symptoms (cognitive impairment, gait disturbance,
and urinary disturbance) with five levels ranging from 0 (normal)
to 4 (severe). Additionally, cognitive impairment was assessed
with the Mini-Mental State Examination (MMSE), and the
Frontal Assessment Battery (FAB). From the HC group, only the
MMSE was available. The score of the MMSE showed significant
differences between the iNPH group (22.8± 4.3, mean± SD) and
the HC group (28.9± 1.0) [T(20) = 3.93, p < 0.001]. The profiles
and clinical information of the iNPH patients are summarized in
Table 1.

The iNPH patients were enrolled at the Kitano Hospital and
the healthy participants were enrolled at the National Center of
Neurology and Psychiatry. All participants gave their informed
consent prior to their inclusion in the study according to the
study protocol approved by the institutional ethics committee.

rsfcMRI Acquisition
For rsfcMRI, the participants were scanned for 7 min with a 3T-
MRI system (Achieva 3.0TX, Philips Medical Systems, Best, The
Netherlands). The participants were asked to stay relaxed and to
close their eyes, but not to fall asleep, in a comfortable position
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TABLE 1 | Profiles of the iNPH patients and healthy controls.

Age group MMSE FAB iNPH-GS gait iNPH-GS cognition iNPH-GS urinary CSF tap test

iNPH1 80–85 17 10 3 3 0 Positive

iNPH2 80–85 25 11 2 1 1 Positive

iNPH3 70–75 22 10 2 2 0 Positive

iNPH4 70–75 16 9 3 3 3 Positive

iNPH5 76–80 19 6 3 2 2 Positive

iNPH6 70–75 28 13 2 2 2 Positive

iNPH7 80–85 25 6 2 2 0 Positive

iNPH8 66–70 29 13 1 2 0 Negative

iNPH9 76–80 25 17 1 1 0 Negative

iNPH10 76–80 25 16 2 2 4 Positive

iNPH11 86–90 20 12 2 3 2 Positive

iNPH (mean ± SD) 78.2 ± 6.8 22.8 ± 4.3 11.2 ± 3.5 2.1 ± 0.7 2.1 ± 0.7 1.3 ± 1.4

Control (mean ± SD) 69.8 ± 13.6 28.9 ± 1.0 NA NA NA NA NA

MMSE, Mini-Mental State Examination; FAB, Frontal Assessment Battery; iNPH-GS, idiopathic normal pressure hydrocephalus grading scale; NA, not available.

within the scanner. They were also instructed not to think about
anything in particular, and not to imagine specific figures or
scenes. RsfcMRI data were acquired with a T2

∗-weighted echo-
planer imaging (EPI) sequence using the following parameters:
repetition time (TR) = 3,000 ms, echo time (TE) = 30 ms, flip
angle (FA) = 90◦, 3-mm slice thickness with a 1-mm gap, voxel
size = 1.875 × 1.875 × 3 mm, and 34 slices (descending order).
In total, 120 volumes were acquired, and the first 4 volumes were
discarded to exclude signal changes arising from T1 saturation
effects.

Extracting Functional Connectivity
Preprocessing of the rsfcMRI data was conducted with Statistical
Parametric Mapping 8 (SPM8, Well-come Department of
Imaging Neuroscience, London, UK) implemented on MATLAB
(MATHWORKS, Inc., MA, USA). After slice-timing correction
was applied to the EPI images, the images were realigned to
the first image, using a rigid-body transformation for correcting
head motion. Then, the images were spatially normalized to the
EPI image template conforming to the Montreal Neurological
Institute (MNI) space, using the SPM normalization algorithm.
These normalized images were resampled to a 3 × 3 × 3-
mm3 voxel size. The normalized EPI images were then spatially
smoothed with an isotropic Gaussian kernel of 6-mm full
width at half maximum. In addition, we computed gray matter,
white matter and cerebrospinal fluid (CSF) images as binary
masks for later use. High-quality three-dimensional anatomical
images were available for the healthy controls, but not for
the iNPH patients due to the limitation of scanning time. To
avoid introducing a bias to the WM/CSF mask images between
the groups, we directly segmented the normalized EPI images
into GM, WM, and CSF images in both groups, by using a
segmentation algorithm implemented in SPM8. The purpose of
the segmentation here was to create masks for WM and CSF to
compute signals to be regressed out from the data (denoising).
This is recommended for the analysis of rsfMRI since signals
from CSF and WM produce pseudo-correlations, resulting in

non-zero mean and large standard deviations of the functional
connectivity data (Whitfield-Gabrieli and Nieto-Castanon, 2012)
For the quality check of our de-noising procedure using the
EPI-derived WM, and CSF masks, we computed the degree to
which false correlation was corrected by removing the signal
fromWM, and CSF. The QC results showed that the distribution
of correlation coefficients was reasonably corrected to nearby
zero mean and small standard deviation (before removal; average
of mean = 0.18, average of standard deviation = 0.40, after
removal; average ofmean= 0.09, average of standard deviation=
0.21). Judging from this QC result, we believe that segmentation
procedure has providedWM/CSF signals of reasonable quality to
reduce the pseudo-correlation.

After these preprocessing steps, the CONN toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012) was used
for conducting a region-of-interest (ROI)-to-ROI analysis to
compute RSFC, indexing the degree of correlation between MRI
signal time-courses in each pair of ROIs. For defining ROIs,
90 ROIs were defined according to the automated anatomical
labeling (AAL) template implemented in the WFU Pickatlas
(Tzourio-Mazoyer et al., 2002; Maldjian et al., 2003). First,
we used standard AAL ROIs to compute FC. However, in
this procedure, some ROIs overlapped the enlarged ventricles
only in the iNPH group. To reduce the effects of the ventricle
enlargement onto signals from ROIs, we next created modified
AAL ROIs, by removing the intersection of the AAL, and
the iNPH ventricle template. The iNPH ventricle template
represented a map of voxels affected by enlarged ventricle in a
group of iNPH patients compared with a group of healthy elderly
subjects (Yamashita et al., 2010). We applied the same set of the
modified AAL ROIs to the iNPH patients and healthy subjects.
Because the results of SVM classification were essentially the
same between the standard and modified AAL versions, we
only described the results from the modified AAL approach
for simplicity. For the removal of signals of no interest, signals
correlated with six motion parameters from the realignment
procedure and signals derived from the entire WM and CSF
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mask were regressed out in each participant, by using a general
linear model-based multiple regression.

After that, a signal time-series averaged across voxels was
extracted from each ROI. Next, all of the confound-removed time
course data underwent band-pass filtering of 0.001–0.1Hz. Then,
the correlation coefficient of the BOLD signal time-course was
computed between all the pairs of ROIs, and Fisher’s z-transform
was applied for each coefficient, yielding an FC matrix including
all the ROI pairs in each participant.

Classification Analysis Using
Support-Vector Machine
We tested whether RSFC information could classify each
participant into the iNPH group or the HC group. To do so, we
used a linear SVM, a machine-learning algorithm implemented
in the e1071 machine-learning package of R version 3.1.3. SVM
is a method for classifying data consisting of multi-dimensional
features. SVM labels each data input by computing a hyperplane
that best classifies the data in the feature space. Under the context
of supervisedmachine learning, SVM identifies the closest data to
a hyperplane as sample (or representative) data, and reconfigures
the hyperplane to maximize the distance between the sample
data with different labels. We used a z-transformed FC between
each ROI pair as a feature and computed weights on the FC for
successful classification of the iNPH and HC groups. We also
tested if RSFC was able to predict the severity of iNPH patients
(i.e., iNPH-GS). For the prediction of iNPH-GS, multi-class SVM
with a one-against-all classificationmethodwas used. Because the
iNPH-GS score of iNPH participants in the present cohort varied
from 0 to 3 in the gait assessment, from 0 to 3 in the cognitive
assessment, from 0 to 4 in the urinary assessment, these scores
were set as a label for classification. Because of the limited number
of participants, we included data from healthy volunteers for the
training of SVM. Because iNPH-GS assessment was not available
for the HC group, the label of these data was assumed to be 0
(normal). First, all the FC pairs were fed in to the SVM algorithm
in both analyses as feature quantity. All of the features were scaled
internally to zero mean and unit variance. The SVM model was
constructed with parameters as follows: linear kernel function,
C-classification algorithm, and cost factor = 1. Also, to avoid a
bias arising from the asymmetry of labels, we defined class the
weight vector as 1 divided by number of each labels (Chang and
Lin, 2011). Second, we used a feature selection method with a
t-test filter to reduce the feature dimension in view of the excess
of features against the number of data samples (Craddock et al.,
2009). For the t-test filter, we applied a two-sample t-test on the
FC comparing between iNPH and HC, and then employed FC
with a difference (p-value threshold= 0.05). To validate the SVM
model for predicting a new data set, we employed a leave-one-out
cross validation (LOOCV) procedure. In the LOOCV analysis, an
SVM was trained with FC from a randomly selected 21 out of
the 22 participants. After learning, the performance of the SVM
classifier was tested to classify the remaining participant. After
this procedure was repeated until the FC from every participant
had become the test data, we calculated the classification accuracy
as the number of correct labels divided by the number of LOOCV

tests. To evaluate the specificity of classification accuracy for
iNPH patients, we limited the LOOCV test round to the data
derived from the iNPH patients in the iNPH-GS classification.
A binomial test was used to determine the significance of the
classification accuracy.

RESULTS

Classification between iNPH and HC
When the SVM was trained with all 4,005 pairs of the FC
(no feature selection), the classifier was able to distinguish
iNPH from HC with an accuracy of 63% (Figure 1), which was
not significantly different from chance level (binominal test,
14 of 22 LOOCV tests, p = 0.28). However, when the SVM
was trained with 476 features after the feature selection (t-test
filtering), classification accuracy was 81% (Figure 1), which was
significantly above chance level (18 of 22 tests, p < 0.01).

To clarify which FC was important for the classification, we
assessed SVM weights, representing the degree of contribution
of each FC to the classification. We found that relatively high
weights were placed onto the FC between the left superior
temporal pole and left inferior frontal operculum, the bilateral
insula, the left middle temporal pole, and right hippocampus,
the right superior medial frontal cortex, and left superior
orbitofrontal cortex, and the left paracentral lobule, and left
medial frontal cortex. Interhemispheric connectivity accounted
for more than half (56%) of the FCs that contributed to the
classification after the t-test filtering. Figure 2, Table 2 show the
top 20 FC with high-level weights. These 20 weights accounted
for 15.6% of the total weights.

Prediction of iNPH-GS
We next tested whether the RSFCs contained information about
the severity of iNPH-related symptoms. Specifically, we applied
SVMwith LOOCV to FCs to predict the level of gait disturbance,

FIGURE 1 | Classification accuracy without (left) and with (right) future

selection. Error bars mean 95% confidence interval from a binomial test.
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FIGURE 2 | Top 20 functional connectivity pairs contributing to the classification between iNPH and HC groups in the views from the left (left), top (middle), front

(right). The spheres represent the barycenter of ROIs, and the lines connecting spheres stand for edges with high SVM weights listed in Table 2. The thickness of the

lines represents relative SVM weights.

TABLE 2 | SVM weights contributing to the classification of iNPH and HC.

Functional connectivity Weight of SVM

L superior temporal pole–L inferior frontal operculum 0.0072

R insula–L insula 0.0064

L middle temporal pole–R hippocampus 0.0061

R superior frontal gyrus, medial orbital–L superior frontal

gyrus, orbital part

0.0059

L paracentral lobule–L medial frontal cortex 0.0059

L inferior occipital gyrus–L gyrus rectus 0.0058

L insula–R supplementary motor area 0.0058

R postcentral gyrus–L postcentral gyrus 0.0055

R inferior temporal gyrus–R inferior parietal gyrus 0.0054

L paracentral lobule–R gyrus rectus 0.0053

L pallidum–L olfactory cortex 0.0052

L insula–L supplementary motor area 0.0049

L calcarine fissure–L gyrus rectus 0.0048

R parahippocampal gyrus–L median cingulate gyrus 0.0047

R inferior temporal gyrus–R middle frontal gyrus 0.0046

R middle temporal gyrus–R thalamus 0.0046

L superior temporal gyrus–L supplementary motor area 0.0045

L inferior frontal gyrus, opercular part–R middle frontal

gyrus

0.0045

L thalamus–R rolandic operculum 0.0044

R hippocampus–L olfactory cortex 0.0043

cognitive impairment and urinary incontinence as indexed by
iNPH-GS. This was done after the feature selection by applying
t-test filtering comparing the two groups as described above.
We found that FC contained significant information concerning
the severity of iNPH (Figure 3). Classification accuracy was
significantly higher than chance when we limited the test round
to the data derived from the iNPH patients: 81% for the iNPH-GS
cognition (9 out of 11 tests, p< 0.05 by a binominal test), 55% for
the iNPH-GS gait (6 out of 11 tests, p < 0.001), and 72% for the
iNPH-GS urinary score (8 tests of 11 tests, p < 1.0× 10−7).

FIGURE 3 | Classification accuracy for severity of iNPH symptoms when we

limited the test round to the data derived from the iNPH patients, using

functional connectivity as the classification feature. Error bars mean 95%

confidence interval of binomial test.

For all the three symptoms, the assessment of SVM
weights indicated the importance of inter-hemispheric functional
connectivity. The top 30 FCs with high contributions to
classification are shown inTables 3–5; Figure 4. The sum of these
top 30 weights accounts for 16.9% of the total weights for iNPH-
GS gait, 16.4% for iNPH-GS cognition, and 15.0% for iNPH-GS
urinary incontinence.

To confirm the significance of inter-hemispheric FC for
classification, we calculated the sum of weights of inter-
hemispheric FC and that of intra-hemispheric FC, all of which
contributed to the prediction of iNPH-GS (Table 6).

The results showed greater contribution of the inter-
hemispheric FC than that of the intra-hemispheric FC
significantly for gait (p = 0.02, Wilcoxon rank-sum test),
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TABLE 3 | SVM weight for classification with iNPH grading scale for gait

disturbance.

Functional connectivity Weight of SVM

iNPH-GS gait

R postcentral gyrus–L postcentral gyrus 0.048

R paracentral lobule–L paracentral lobule 0.047

R median cingulate gyri–L median cingulate gyri 0.047

R superior frontal gyrus, medial orbital–L superior

frontal gyrus, medial orbital

0.046

R cuneus–R calcarine fissure 0.046

R superior frontal gyrus, medial orbital–R superior frontal

gyrus, dorsolateral

0.042

R cuneus–L calcarine fissure 0.041

L superior occipital gyrus–L calcarine fissure 0.039

R paracentral lobule–R supplementary motor area 0.038

R inferior frontal gyrus, orbital part–L inferior frontal

gyrus, orbital part

0.036

R supplementary motor area–R precentral gyrus 0.036

L paracentral lobule–R supplementary motor area 0.036

L paracentral lobule–R postcentral gyrus 0.036

R angular gyrus–R middle frontal gyrus, orbital part 0.035

L supplementary motor area–L precentral gyrus 0.034

R supplementary motor area–L precentral gyrus 0.033

R inferior temporal gyrus–L inferior temporal gyrus 0.032

R postcentral gyrus–R supplementary motor area 0.032

L paracentral lobule–R precentral gyrus 0.031

L superior frontal gyrus, medial orbital–R superior

frontal gyrus, dorsolateral

0.030

R rolandic operculum–L rolandic operculum 0.030

R inferior frontal gyrus, opercular part–R middle frontal gyrus 0.030

R insula–L insula 0.030

R middle temporal gyrus–L superior temporal gyrus 0.030

R precuneus–R superior frontal gyrus, dorsolateral 0.028

R superior frontal gyrus, medial orbital–R middle frontal gyrus 0.028

R hippocampus–L hippocampus 0.028

L middle frontal gyrus, orbital part–L superior frontal gyrus,

orbital part

0.028

R inferior frontal gyrus, opercular part–L inferior frontal

gyrus, opercular part

0.028

L inferior frontal gyrus, orbital part–L superior frontal gyrus,

orbital part

0.028

Bold fonts indicate interhemispheric connectivity.

cognition (p = 0.002), and marginally for urinary symptoms
(p= 0.07).

DISCUSSION

The SVM classifier, combined with feature selection, was able
to learn differences in high-dimensional FCs between the iNPH
patients, and the healthy controls, thereby successfully classifying
each participant with an accuracy of 80%. Considering the
importance, and difficulty of a clinical diagnosis of iNPH,
rsfcMRI is promising as a tool for providing a biomarker for the
diagnosis of iNPH. Furthermore, the assessment of the spatial

TABLE 4 | SVM weight for classification with iNPH grading scale for cognitive

impairment.

Functional connectivity Weight of SVM

iNPH-GS cognition

R superior frontal gyrus, medial orbital–L superior

frontal gyrus, medial orbital

0.053

R superior frontal gyrus, medial orbital–R superior frontal

gyrus, dorsolateral

0.050

R median cingulate gyri–L median cingulate gyri 0.049

R postcentral gyrus–L postcentral gyrus 0.047

R paracentral lobule–L paracentral lobule 0.046

R cuneus–R calcarine fissure 0.045

R cuneus–L calcarine fissure 0.041

R insular cortex–L insular cortex 0.041

L superior occipital gyrus–L calcarine fissure 0.038

L supplementary motor area–L precentral gyrus 0.038

R supplementary motor area–R precentral gyrus 0.036

R precuneus–R angular gyrus 0.036

R inferior frontal gyrus, orbital part–L inferior frontal

gyrus, orbital part

0.036

R angular gyrus–R middle frontal gyrus, orbital part 0.035

L paracentral lobule–R supplementary motor area 0.035

R paracentral lobule–R supplementary motor area 0.034

R angular gyrus–R posterior cingulate gyrus 0.034

R hippocampus–L hippocampus 0.033

L paracentral lobule–R postcentral gyrus 0.033

R rolandic operculum–L rolandic operculum 0.033

R inferior frontal gyrus, opercular part–R middle frontal gyrus 0.033

R superior frontal gyrus, medial orbital–R middle frontal gyrus 0.033

L middle frontal gyrus, orbital part–L superior frontal gyrus,

orbital part

0.032

L superior frontal gyrus, medial orbital–R superior

frontal gyrus, dorsolateral

0.032

R precuneus–R superior frontal gyrus, dorsolateral 0.032

R postcentral gyrus–R supplementary motor area 0.032

R inferior frontal gyrus, opercular part–L inferior frontal

gyrus, opercular part

0.031

R middle temporal gyrus–R precuneus 0.031

R supplementary motor area–L precentral gyrus 0.030

L precuneus–R superior frontal gyrus, dorsolateral 0.029

Bold font indicates interhemispheric connectivity.

distribution of FC contributing to classification has shed light on
the pathophysiology of iNPH.

FCs having relevance to the classification of iNPH included
the superior temporal pole, middle temporal pole, insula,
orbitofrontal cortex, and medial frontal cortex. Almost all of
these areas were located near the enlarged cerebral sulci (i.e.,
increased CSF space) in iNPH patients as shown in a previous
voxel-based morphometry study (Yamashita et al., 2010, 2014).
In a study by Lenfeldt et al. (2008), the left dorsal premotor
cortex and bilateral supplementary motor areas (SMA) showed
enhanced activation during hand motor task performance after
a three-day continuous CSF drainage in iNPH patients (Lenfeldt
et al., 2008). In the present study, FC between insula and SMA,
and between bilateral postcentral gyri showed relatively high
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TABLE 5 | SVM weight for classification with iNPH grading scale for urinary

incontinence.

Functional connectivity Weight of SVM

iNPH-GS urinary

R superior frontal gyrus, medial orbital–L superior

frontal gyrus, medial orbital

0.047

R median cingulate gyri–L median cingulate gyri 0.043

R superior frontal gyrus, medial orbita–R superior frontal

gyrus, dorsolateral

0.042

R postcentral gyrus–L postcentral gyrus 0.036

R paracentral lobule–L paracentral lobule 0.035

R superior frontal gyrus, medial orbital–R middle frontal gyrus 0.034

R cuneus–R calcarine fissure 0.034

R cuneus–L calcarine fissure 0.034

R hippocampus–L hippocampus 0.032

R insular cortex–L insular cortex 0.032

R inferior frontal gyrus, orbital part–L inferior frontal

gyrus, orbital part

0.032

R precuneus–R superior frontal gyrus, dorsolateral 0.032

R inferior frontal gyrus, opercular part–R middle frontal gyrus 0.031

L superior frontal gyrus, medial orbital–R superior

frontal gyrus, dorsolateral

0.031

L supplementary motor area–L precentral gyrus 0.030

R angular gyrus–R middle frontal gyrus, orbital part 0.030

L precuneus–R superior frontal gyrus, dorsolateral 0.029

R supplementary motor area–R precentral gyrus 0.029

L superior occipital gyrus–L calcarine fissure 0.028

R inferior frontal gyrus, opercular part–L inferior frontal

gyrus, opercular part

0.028

L paracentral lobule–R supplementary motor area 0.028

L inferior frontal gyrus, orbital part–L superior frontal gyrus,

orbital part

0.028

L inferior frontal gyrus, opercular part–L middle frontal gyrus 0.028

L paracentral lobule–R postcentral gyrus 0.027

R middle temporal gyrus–R superior frontal gyrus, dorsolateral 0.027

R rolandic operculum–L rolandic operculum 0.027

R angular gyrus–R posterior cingulate gyrus 0.027

L paracentral lobule–R precentral gyrus 0.026

R postcentral gyrus–R supplementary motor area 0.026

L postcentral gyrus–R supplementary motor area 0.026

Bold font indicates interhemispheric connectivity.

contribution to the classification of iNPH, and HC as indexed
by the SVM weights. Additionally, it is suggested that that the
effectiveness of CSF drainage possibly results from the reversal
of subcortical chronic ischemia, especially in the periventricular
zones (Momjian et al., 2004; Malm and Eklund, 2006; Lenfeldt
et al., 2008). Our results suggest that the contribution of
periventricular areas to the iNPH-HC classification may indicate
the abnormality of these FCs because of the compression of fiber
connections by enlarged ventricles.

Moreover, the prediction of iNPH-GS indicated the relevance
of inter-hemispheric connectivity to the discrimination of
the triad: gait disturbance, cognitive impairment, and urinary
incontinence. This finding is consistent with the idea that damage

to the inter-hemispheric connections via the corpus callosum
may underlie the pathophysiology of iNPH. A majority of
previous diffusion tensor imaging studies have observed lower
fractional anisotropy (FA) values in the corpus callosum in iNPH
patients than in normal controls. For instance, Koyama et al.
showed that there was a conspicuous decline in FA values in the
corpus callosum in iNPH patients, and that the degree of FA
reduction was associated with the severity of gait disturbance,
which is the most frequent clinical manifestation of iNPH
(Koyama et al., 2012, 2013). Consistent with this result, the
reduction of FA in the corpus callosum is correlated with gait
disturbance and cognitive decline in patients with age-related
white matter changes (Iseki et al., 2015). In this study, the corpus
callosum connections are suggested to mediate information
relevant to gait planning.

Previous imaging studies suggest that the micturition center is
located in the pons, and that SMA is involved in the inhibitory
control of the micturition reflex (Fukuyama et al., 1996; Zhang
et al., 2005). Because we did not include the pons in the ROI
set, the results of the present study would mainly reflect the
decline of functional connections to and from the SMA related
to the inhibitory control of micturition. The insular cortex and
cingulate cortex are thought to be involved in the regulation
of the bladder filling sensation and void control (Fowler et al.,
2008; de Groat et al., 2015). In our results, the interhemispheric
connectivity of cingulate cortex, and insular cortex showed
respectively high weights for iNPH-GS urinary classification (see
Table 5).

To account for cognitive impairment in iNPH, the present
finding of inter-hemispheric disconnectivity in iNPH is
consistent with the findings that the severity of Alzheimer’s
disease is correlated with the reduction of volume and FA in the
corpus callosum (Chaim et al., 2007; Tomaiuolo et al., 2007).
Additionally, Khoo and coworkers have demonstrated that the
reduction of RSFC in the DMN was positively correlated with
iNPH-GS cognition and urinary incontinence in the iNPH
patients (Khoo et al., 2015). Consistent with this result, the
present study showed that interhemispheric connectivity in
the medial orbital part of the superior frontal gyrus, a part
of the DMN, had high weight for all symptoms for iNPH-GS
classification. Several researchers reported that white matter
alterations in NPH include not only the reduction of FA, but
also the alteration of mean diffusivity (MD) and radial diffusivity
(RD) (Hattingen et al., 2010; Kanno et al., 2011). In addition,
a recent study by Horinek et al. demonstrated reduced FA in
the corpus callosum and increased FA, MD, and RD in the
cortico-fugal fibers in NPH patients (Horinek et al., 2016). It is
possible that the alteration of interhemispheric FC in the iNPH
patients shown here is founded on the structural changes of
the white matter indexed by those diffusion measures. In sum,
the present study suggests the importance of interhemispheric
functional connectivity in accounting for the triad of iNPH. For
the treatment of iNPH, it is well-recognized that the symptoms
are relievable by a shunt operation. The improvement of iNPH
triads by CSF drainage can be explained by the idea that a shunt
operation releases the compression of the corpus callosum and
restores the inter-hemispheric functional connectivity. In a study
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FIGURE 4 | Top 30 functional connectivity with higher SVM weights in classification for iNPH grading scale as viewed from the left (left), top (middle), and front

(right). Spheres represent the barycenter of each ROI, and lines between spheres stand for connections that showed higher SVM weights listed in Tables 3–5.

TABLE 6 | Sum of SVM weights from inter-hemispheric and intra-hemispheric

connectivity contributing to prediction of iNPH-GS.

iNPH-GS

gait

iNPH-GS

cognition

iNPH-GS

urinary

Inter-hemispheric connectivity 3.361 3.568 4.057

Intra-hemispheric connectivity 2.873 3.190 3.441

by Scheel et al. (2012), abnormality of the corpus callosum FA in
iNPH patients showed a trend toward normalization following
shunt surgery. It is likely that the enlarged ventricles compressed
the corpus callosum, affecting inter-hemispheric functional
connectivity. The present findings also suggest that the degree of
such compression and the resulting functional disconnectivity
are correlated with the severity of iNPH symptoms.

This study has several limitations. First, the present data
are derived from a relatively small number of participants.
Moreover, we acquired data with the same MRI aperture and EPI
sequences, but in different hospital sites. This was for a purely
practical reason; scanning of the healthy population was not
possible in one hospital, and iNPH patients were not available
in the other hospital. It is possible that differences in the sites
affected the characteristics of the MRI data, because between-
site reliability might be relatively low compared with test-retest
reliability (Friedman et al., 2008). However, Turner and collages
carried out a multi-site rsfcMRI study on schizophrenia patients,
and suggested that critical RSFC information important for
disease classification was preserved when the scanner model,
and scanning parameters were the same. In the present study,
we used the same MRI model, and scanning parameters.
Therefore, we believe that the difference in site did not critically
impair the RSFC information important for the disease/severity
classification.

Second, we were not able to associate the present findings
with the information regarding treatment of iNPH, such as

responsiveness to a CSF tap test. Aoki et al. (2013, 2015)
found that responders to a shunt operation showed higher
variance in the power of beta-frequency electroencephalography
oscillations in the right fronto-temporo-occipital region than
non-responders. Because a CSF tapping test is an invasive
procedure and carries some risks of adverse events, we agree that
predicting the responsiveness to a CSF tap test beforehand is of
clinical benefit. However, we only had two negative responders
to a tap test, precluding further analysis between responders,
and non-responders. The question of whether rsfcMRI-derived
functional connectivity can predict the responsiveness to CSF
drainage should be tested in the future.

Finally, it may be possible to enhance classification accuracy
by improving the machine-learning algorithm. Recently, many
methods have been proposed such as linear discrimination
analysis, random forest, and sparse logistic regression (Yamashita
et al., 2008). We used SVM for the machine-learning classifier,
because SVM does not need many samples under the condition
that the number of feature dimensions is optimally reduced
(Hua et al., 2005). Moreover, classification accuracy may be
further improved by optimizing the cost function, kernel
type, and classification algorithm. However, considering the
computational cost, the exploration of the huge parameter
space is beyond the scope of the present study. Future
challenges include the improvement of classification accuracy
by optimizing the classifiers and feature selection methods.
Future challenges include the improvement of classification
accuracy by optimizing the classifiers and feature selection
methods.

CONCLUSION

In conclusion, a machine-learning algorithm combined with
rsfcMRI data was able to discriminate between patients
with iNPH and elderly controls. This result indicates
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that iNPH patients have abnormalities in the RSFC,
especially in inter-hemispheric functional connectivity, which
contributed to the classification of clinical stages. RsfcMRI
may have the potential to discriminate iNPH from other
neurological diseases, contributing to a differential diagnosis
of iNPH.
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