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Intraneural interfaces are stimulation/registration devices designed to couple the

peripheral nervous system (PNS) with the environment. Over the last years, their use

has increased in a wide range of applications, such as the control of a new generation

of neural-interfaced prostheses. At present, the success of this technology is limited by

an electrical impedance increase, due to an inflammatory response called foreign body

reaction (FBR), which leads to the formation of a fibrotic tissue around the interface,

eventually causing an inefficient transduction of the electrical signal. Based on recent

developments in biomaterials and inflammatory/fibrotic pathologies, we explore and

select the biological solutions that might be adopted in the neural interfaces FBR context:

modifications of the interface surface, such as organic and synthetic coatings; the use

of specific drugs or molecular biology tools to target the microenvironment around the

interface; the development of bio-engineered-scaffold to reduce immune response and

promote interface-tissue integration. By linking what we believe are the major crucial

steps of the FBR process with related solutions, we point out the main issues that future

research has to focus on: biocompatibility without losing signal conduction properties,

good reproducible in vitro/in vivo models, drugs exhaustion and undesired side effects.

The underlined pros and cons of proposed solutions show clearly the importance of a

better understanding of all the molecular and cellular pathways involved and the need of

a multi-target action based on a bio-engineered combination approach.

Keywords: foreign body reaction, invasive neural interface, peripheral nerve stimulation, intraneural electrodes,

neural interfaced prostheses

INTRODUCTION

The loss of a limb after amputation, altering motor and sensory functions, severely affects
the daily lives of patients (Pasquina et al., 2006). Today’s Robotics is able to offer sensorized
mechatronic hands with amazing performance; to these devices, conventional body-powered
or electromyographic control systems revealed to be inadequate. In order to overcome such
issue, novel advanced neural prosthetic devices, which attempt to interface bidirectionally
with the user through invasive microelectrodes implanted inside stump’s peripheral nerves
(Di Pino et al., 2013), are in developmental phase (Di Pino et al., 2009). Basically, these
neural interfaces are used to deliver afferent information to the nervous system (sensory
feedback) (Benvenuto et al., 2010; Di Pino et al., 2012; Raspopovic et al., 2014), and
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at the same time, to extract consciously-modulated neuronal
signals (motor volition) from healthy portions of the nervous
system (Figure 1). Then, through a variety of signal processing
algorithms, these signals can be used to drive an external device,
such as a prosthesis (Rossini et al., 2010). Such interfaces have the
potential to bring crucial advancements to the user: (a) to get a
more complex signal, compared to the muscular one, allowing to
control more degrees of freedom of the prosthesis; (b) to transmit
the sensory information to the central nervous system (CNS)
allowing to feel and experience the environment; (c) to restore
the original closed “sensory-motor loop” control, meaning to
have prosthesis and user linked by a double connection where
information can travel from one to the other in both directions.
A closed loop control allows to accurately exploit in real time
sensory information to drive motor command, while having
the feed-back of the outcome of the command and constantly
readjust it to reduce any deviation from the desired targeted
action.

When developing new neural interfacing devices, the attempt
of the researchers is, on one hand, to preserve some important
features, such as biocompatibility and selectivity properties,
and on the other hand, to minimize the correlated potential
counterpart, such as immune response reaction, the invasiveness
and the risks of the implanting procedure. In this review, we
focus our attention on biological challenges, mainly because
all the efforts to develop a more immune system-friendly
recording/stimulating device will also prevent the complete loss
of functionality over time and, in turn, the loss of all the
improvements done for reaching high selectivity and implantable
ease.

FIGURE 1 | Prosthesis closed loop control.The continuity of the efferent motor pathway (in red) and the sensory afferent pathway (in blue) creates a double

bidirectional connection between the User and the prosthesis. The prosthesis acts on, and experiments, the environment. In such way it is established a closed loop

control that allows to have an almost real-time feedback of the effects of the motor commands and to correct them accordingly. The Invasive intraneural interface is

the crucial component puts along both arms of the loop, since it mediates the information flow from the brain to the actuators of the prosthesis and from the sensors

embedded on the prosthesis back to the brain. The Figure represents the sensorimotor loop superimposed on the body of the User (left), and a chart of the main

components of the loop and their interrelation (right).

THE FOREIGN BODY REACTION

The placement of any therapeutic biomaterial-based device in
the in vivo environment requires surgical actions that damage
the target tissues (Anderson, 1988). Following those damages, all
the processes to restore tissue homeostasis around the implant
are part of the physiological regeneration called wound healing
(Teller and White, 2009).

However, the continuous presence of any medical implants
contributes to a long-term overstimulation of the immune
system, which leads to chronic inflammation and poor wound
healing. This unbalanced reaction, also known as the foreign
body response or reaction (FBR), determines the implant failure
and might have contributed to implant reduction functionality
in human (Dhillon et al., 2005; Rossini et al., 2010; Horch et al.,
2011; Raspopovic et al., 2014) and animal trials (Lago et al.,
2007b; Badia et al., 2011; Groothuis et al., 2014; Harreby et al.,
2015; Wurth et al., 2017), due to the formation of a cellular,
protein mediated, capsule around the implant.

While it has been suggested that encapsulation is beneficial

in interfaces, such as epimysial and cuff electrodes as it
stabilizes the implant (Grandjean and Mortimer, 1986; Grill

and Mortimer, 1998), FBR is an important issue to be
solved in intraneural electrodes (Navarro et al., 2005), limiting
device function over time, often forcing a premature removal

(Badia et al., 2011). We can divide the FBR process in
four major steps: (1) blood-plasma proteins adsorption to the
foreign body; (2) monocyte recruitment and differentiation
to macrophages; (3) macrophages activation and fusion to
form giant cells; (4) fibroblasts recruitment and activation
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to form fibrotic tissue (Figure 2). Regardless of the tissue
or organ into which a biomaterial is implanted, the initial
inflammatory response is activated by injury to vascularized
connective tissue. Immediately after implantation (step 1),
proteins including fibronectin, vitronectin, albumin, fibrinogen
and complement factors derived from blood-plasma will adsorb
to biomaterial surfaces, generating a blood-based barrier that
causes thrombosis, guides the movement of monocytes and
neutrophils to implant surface and activates complement
and coagulation cascade (Szaba and Smiley, 2002). Monocyte
recruitment and differentiation to macrophages (microglia in
CNS) (step 2) may continue up to weeks, and chemotactic factors
are released over longer periods of time (Tang and Eaton, 1999).
Plasma fibronectin, among all plasma proteins, after coating
the implant surface, changes its conformation and seems to act
specifically as receptor for fibroblast and additional macrophages
(Keselowsky et al., 2007). This persistent inflammatory stimulus
leads to chronic inflammation confined to implant site. More in
details, the cytokine release (e.g., IL-4 and IL-13; IL-1β, and TNFα
in CNS) from the microenvironment (Shen et al., 2004) leads
to the fusion of the accumulated macrophages to form foreign
body giant cells (FBGC) (step 3) (Anderson, 2000). Original
purpose of FBGC formation, producing catabolic enzymes and
acids, is to try to digest the foreign body; its side effect is the
possibility of causing implant damage. Macrophages are probably
the most important cells in chronic inflammation, because of
the great number of biologically active products they produce,

including multiple growth factors that are extremely important
to promote: (i) further recruitment of monocytes/macrophages
cell population; (ii) growth of fibroblasts and their differentiation
in myofibroblasts (astrogliosis in CNS); (iii) blood vessels
and epithelial cells regeneration (Anderson et al., 2008). The
proliferation of myofibroblasts (step 4) in developing granulation
tissue leads to active synthesis of extracellular matrix (ECM)
components, such as collagen and proteoglycans to form the
fibrous capsule, which is an attempt to isolate the foreign
material from local tissue environment (de Fougerolles and
Koteliansky, 2002; Diegelmann and Evans, 2004; Ratner and
Bryant, 2004). The degree and extent of the macrophages
(microglia in CNS) activation, leading to FBR at the implant site,
is dependent on surface properties of the biomaterial (porosity,
roughness, stiffness, and chemistry), the shape of the implant,
the relationship between the surface area of the biomaterial and
the volume of the implant. Thus, FBR may be likely controlled
by acting on those factors. The efforts put on biomaterial
studies to develop a more biocompatible device have led
to understand some important FBR-modulating characteristics
applied to build the more recent neural interfaces: (i) the acute
response is proportional to the diameter of the interface, so
smaller implant size elicits less fibroblasts (astrocytes) reactivity
(Szarowski et al., 2003; Veiseh et al., 2015); (ii) the adhesion of
serum components and macrophages (microglia) is decreased
on hydrophilic materials (Leung et al., 2008); (iii) shape without
sharp corners allows for a mild mechanical trauma insertion

FIGURE 2 | Major FBR process steps in a nerve implanted with a neural interface. (A) Schematic image of the electrode (in yellow) inserted within the nerve (in white).

(B) Zoom in of the nerve section, as in (A), implanted with the electrode (in white) with the metallic active contacts embedded (blue rectangles). This panel resumes

the main steps of FBR over time, which are shown with different colors. Step 1 (in black): blood-plasma proteins adsorption to the foreign body; step 2 (in red):

monocytes recruitment and differentiation into macrophages; step 3: macrophages activation (yellow) and fusion to form giant cells (purple); step 4 (in green):

fibroblasts recruitment and activation to form fibrotic tissue. (C) Final stable encapsulation of the electrode with fibrotic tissue, where fibroblasts (in purple) form a

compact dense tissue.
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(Groothuis et al., 2014; Veiseh et al., 2015); (iv) material requires
a degree of stiffness able to give the interface the right strength
to bear the tissue tension and, at the same time, the flexibility to
reduce the mismatch with the surrounding tissue (Schoen and
Anderson, 2004; Moshayedi et al., 2014); (v) electrical contact
symmetrically distributed along the interface contribute to a
uniform current distribution (Harnack et al., 2004; Groothuis
et al., 2014); (vi) roughness effects are still very unpredictable
since they are cell-specific and dependent on the material and
porosity (Christo et al., 2015).

Intraneural Electrodes for Peripheral
Nervous System (PNS)
This review is focused on peripheral nervous system (PNS)
interfaces as they are a very attractive functional interface, and
represent a good approach to study nerve system stimulation
and recording. Compared to the CNS, the benefits coming from
working on the peripheral nerve is a reduced invasiveness and
the opportunity of using the motor and sensory fibers, both
within the nerves, to create a bidirectional communication.
Depending on nerve invasiveness, different types of electrodes
have been developed to interface the PNS. Here we focus on
intraneural electrodes because, if FBR-related biological issues
will be addressed, they represent a good compromise between
invasiveness and selectivity, so probably the best interface choice.
Intraneural electrodes, such as LIFEs (longitudinal intrafascicular
electrodes) (Yoshida and Horch, 1993; Lawrence et al., 2004),
their evolution tfLIFEs (thin-film longitudinal intrafascicular
electrodes) (Lago et al., 2007a), TIMEs (transverse intrafascicular
multichannel electrodes) (Boretius et al., 2010), SELINE (self-
opening intrafascicular neural interface) (Cutrone et al., 2015)
are implanted within nerve fascicles, which leads to higher nerve
fibers selectivity, lower axons stimulation threshold and better
signal recording (Badia et al., 2011). Utah Slant Electrode Array
(UEA) are arrays composed by tens of different length needles
(Nordhausen et al., 1996) able to reach more fascicles. A more
recent version of these arrays (Lacour et al., 2010) has a less rigid
structure that can be deformed along with the nerve, allowing for
a less trauma and tension at the interface and a lower risk for
the nerve to be damaged. However, from the few experiments
performed so far on PNS, concrete advancements compared to
the other intraneural electrodes, in terms of long-term signal
stability, cannot be gathered (Warwick et al., 2003; Branner et al.,
2004). Compared to other implant devices, neural interfaces
have the peculiarity to deliver current. As discuss later, it is still
a matter of debate whether this has a relevant effect on FBR
development.

Consequences of the FBR on Intraneural
Electrode Performance
The fibrotic encapsulation occurring at the end of the FBR
and the whole inflammatory response with the related increase
of impedance at the electrode contacts, imposing continuous
adjustments of stimulation parameters in terms of intensity
and duration, seem to be the main causes of electrode failure
in intraneural chronically-implanted devices (Lago et al., 2005;

Kundu et al., 2014). In order to have intraneural electrodes
applied in patients, as a part of a new prosthesis generation
and even prospective wider applications (Di Pino et al., 2014),
it is important to assess the electrical stability by monitoring
performance over time. Unfortunately, this goal has not been
achieved so far, due to the difficulties in studying the relative
roles of cytokines and cell-material interactions during the
inflammatory phases in vivo, the lack of their specific control
and the wide range of experimental variables coming into play.
Evidence of the electrical failure associated with FBR came from
the wider experience on cortical electrodes implantation. In rat,
it has been shown that electrodes elicit a significant FBR in terms
of reactive gliosis which, in turn, changes also their impedance
spectrum (Williams et al., 2007; Lempka et al., 2009; McConnell
et al., 2009), confirming in vivo what has been found in a 3D
culture of astrocytes and microglia encapsulating an electrode
(Frampton et al., 2010). It has been also shown a correlation
between the increased impedance of chronically implanted
epineural electrodes in rats and the growth of fibrous tissue
around the electrode contacts (Murphy et al., 2004). In cat brain,
the electrical insulation, caused by the fibrotic encapsulation,
affected electrode recording quality among different session
(Schultz and Willey, 1976; Liu et al., 1999), as well as electrical
impedance (Roitbak and Sykova, 1999). In the perspective of
a long-term implantation, the functional consequence is that
more reactive gliosis leads to higher impedance and requires
higher stimulation intensity, in terms of delivered charge (Brown
et al., 1977; Butson et al., 2006), which may even become
not compatible with the in vivo applications. Routinely, tissue-
component measurements of the impedance at the electrode
implant site using impedance spectroscopy, has been proposed
as a tool to monitor the proportional development of fibrous
tissue, giving the researchers the possibility to check FBR over
time and intervene meanwhile. The formation of fibrotic sheath
is not the only FBR aspect that causes electrode failure, but tissue-
electrode mismatch and micro-motion or nerve damage with
neural cell loss also give a contribution (Groothuis et al., 2014).
Longitudinal intra-fascicular Pt-LIFE and tfLIFE electrodes have
been implanted in the sciatic nerve of rats (Lago et al., 2007b)
and TIME electrodes have been also implanted in pig median
nerve (Badia et al., 2011; Kundu et al., 2014; Harreby et al.,
2015). In all cases, it has been found just a mild fibrous scar
around the implant, increasing over time, with the presence of
infiltrating macrophagic cells. Macrophages indicate an ongoing
inflammatory reaction for up to 90 days, without any signs
of axonal loss or degeneration. Stimulation tests demonstrated
that the conduction velocity and amplitude of muscle response
decreased in the first 4 weeks; however, the functional responses
normalized during the following months. Recently it has been
observed, up to 6 months, a specific correlation between the
thickness of the fibrotic capsule around the implant in rat sciatic
nerve and the stimulation threshold and electrode impedance
increase. Moreover, it seems that electrical stimulation does
not primarily contribute to enhance the FBR, suggesting that
insertion trauma and chemical/mechanical mismatch represent
the major players in the process (Wurth et al., 2017). Studies
on humans implanted with intraneural electrodes have reported
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an increasing amount of electrical charge to be delivered over 4
weeks to evoke the same response after median nerve stimulation
(Dhillon et al., 2005; Rossini et al., 2010; Horch et al., 2011;
Raspopovic et al., 2014). These were the only data obtained, since
the clear impossibility of matching the morphological evaluation
of the tissue around the implant site with the hypothesis
of an ongoing FBR. Although these studies have evaluated
the intraneural electrode in long-term implants, they did not
assess all the microscopic tissue-electrode changes following
implantation.

POSSIBLE STRATEGIES TO REDUCE FBR

There are many ways by which it is possible to interfere with
the FBR, but none of them seemed to solve the issue. Thus,
we think it is mandatory to elucidate molecular and cellular
pathways involved in the host immune response triggered by
the electrode, and how drugs, co-factors and biomaterials can
affect them. However, this kind of studies is very challenging
due to the lack of a good, reproducible in vitro model that
recapitulates what physiologically happens in the nerve tissue
architecture. The 3D in vitro model developed so far to quantify
inflammatory response to biomaterial might be a starting point
to reproduce an immune system cells environment within the
nervous system (Almeida et al., 2014; Parks et al., 2014). Other
challenges are present also in the in vivo model, meaning inter-
species variabilities and the difficulties of monitoring the roles
of each cellular component and cytokine network involved in
FBR. Moreover, all the issues related to how to specific deliver,
locally or systemically, any kind of bio-active anti-inflammatory
substance over the time should be analyzed. This review
highlights the development of strategies with regulating effect

on the FBR, with important implications for PNS stimulation
and for the possibility to create implanted long-term functional
medical devices. We propose a systematic approach for FBR by
linking each step of the FBR process (i.e., blood and plasma
proteins adsorption to the foreign body; monocyte recruitment
and differentiation to macrophages and their fusion to form
giant cells; fibroblasts recruitment and activation to form fibrotic
tissue) with possible solutions. These solutions, of which pros
and cons are underlined, are a selection, from literature and the
related research field, of what we think is the most promising
strategy. Based on these premises, we focus on and provide two
main directions to overcome FBR and promote interface stability:
(1) acting on the interface properties and (2) acting on the
interface-microenvironment interaction.

Acting on the Interface Itself
This means to modify shape and material of electrodes, including
the use of immobilized protein coatings or organic coatings
(Figure 3). Most of the novel intraneural electrodes are made
of a polyimide core with metallic tracks, typically platinum (Pt),
platinum-iridium (Pt-Ir) and gold (Brummer et al., 1983; Geddes
and Roeder, 2003). Those metals seem to be the best choices for
stimulating electrodes due to their electrochemical stability, poor
biological reactivity and corrosion resistance (Merrill et al., 2005;
Polikov et al., 2005).

Because nonspecific absorption on the device surface is the
main step triggering the FBR, acting on the non-fouling quality
of the material may prevent the capsule formation. Carbon
nanotubes (CNTs), conductive polymers (CPs), conductive
hydrogels (CHs) are the latest materials under investigation for a
stable neural interface (Aregueta-Robles et al., 2014). All of them
are organic materials, making them easily bio-functionalized to

FIGURE 3 | Ultra low fouling coatings to modulate protein adsorption to the interface. Schematic image of nerve section implanted with the electrode. The first two

steps of the FBR are shown: blood-plasma proteins (in black: fibrinogen mainly) adsorption to the electrode (in yellow with metallic contacts as blue rectangles) and

monocytes recruitment at the fibrinogen site and differentiation into macrophages. The table resumes the actions that can be done to modify electrode surface. The

creation of ultralow fouling neural interface coatings can modulate monocytes-fibrinogen interaction: pros (red column) and cons (blue column) of organic coatings,

synthetic coatings and immobilized protein on organic and synthetic coatings are evaluated.
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increase biocompatibility and electrochemical surface area and,
in turn, improve performance over time.

CNTs are small, biologically inert (Seidlits et al., 2008) and
enhance electrical properties of the electrode (Green et al., 2008;
He et al., 2011; David-Pur et al., 2014), however they are cytotoxic
at high concentration (Bottini et al., 2006; Tian et al., 2006).

An innovative and promising material developed from CNT
is a nanostructured boron-doped diamond (BDD) made of
vertically aligned nanotubes template encapsulated in two BDD
nanolayers. Such biomaterial seems to be well suited for
neural interface since it combines the diamond electrochemical
properties, providing good neural stimulation and recording
performance, with the structural stability of the nano-structure.
The concerns about the cytotoxicity were addressed by some
in vitro and in vivo (subcutaneous implant up to 4 weeks)
experiments that have shown good biocompatibility together
with lower inflammation response and smaller fibrous capsule
formation (Piret et al., 2015; Alcaide et al., 2016).

Poly (3,4-ethylenedioxythiophene) PEDOT and some of its
modified versions, are the most promising CPs that have been
evaluated, and they have been shown to improve electrochemical
impedance (Kim et al., 2004, 2008; Abidian et al., 2010; Green
et al., 2013) and charge injection limit as a result of the PEDOT
roughness within a hydrated environment (Cui et al., 2003;
Ravichandran et al., 2010; Green et al., 2013). Despite some
promising results in vitro (Bolin et al., 2009; Evans et al., 2009;
Green et al., 2009), there are no in vivo results supporting
conductive polymers long-term mechanical and bio-stability
(Wilks et al., 2011).

Poly (ethylene glycol) PEG (Drury and Mooney, 2003) and
poly (2-hydroxyethyl methacrylate) PHEMA (Mario Cheong
et al., 2014) synthetic hydrogels are the most widely low-fouling
material used in vivo, but their long-term application is limited
due to oxidative mechanisms partially reducing non-specific
protein absorption.

Recently, a new class of ultra-low-fouling biomaterial,
called zwitterionic hydrogels, are under consideration for
their biomimetic and proangiogenic properties, and because
they are very easy to be functionalized by incorporating
bioactive molecules (Willerth and Sakiyama-Elbert, 2007), such
as growth factors or drugs. Zwitterionic hydrogels, prepared
from carboxybetaine, not only strongly resist the formation of
the fibrotic capsule in a mouse model for at least 3 months,
but they are also able to more effectively recruit pro-healing
macrophages phenotype and enhance micro-vessels formation in
the surrounding tissue (Zhang et al., 2013).

The issue that hydrogels do not improve electrical properties
might be solved in the future by incorporating some conductive
components, such as conductive polymers (CPs) like PEDOT,
previously analyzed. Basically, the CP-hydrogels hybrids will join
the mechanical stability and biocompatibility of the hydrogels
with the enhanced electrical features of the CPs, resulting
from their rough morphology and from the incorporation of
some dopant ions, including poly-styrene sulphonate (PSS),
paratoluene sulphonate (pTS), dexamethasone phosphate
(Dex-P), and perchlorate (ClO4). There are some promising
preliminary in vitro studies that need to be confirmed by

successful in vivo performances (Green et al., 2013; Aregueta-
Robles et al., 2014). Moreover, it is important to deeper
understand how the two polymers integrate one another in
order to control the system structure and function to meet the
long-term electrode stimulation requirements.

In contrast to synthetics, organic biomaterials and hydrogels
composed of ECM components, collagen (Suri and Schmidt,
2010), hyaluronic acid (Hsieh et al., 2014), fibrin (Ahmed et al.,
2008), and alginate (Banerjee et al., 2009) represent a better
choice, because they exhibit superior biocompatibility (Kim et al.,
2007; Fujihara et al., 2010) and have been shown to effectively
regulate the macrophage adhesion and activation in vitro, as well
as the capsule formation in vivo (Hsieh et al., 2014). Previous
studies have found that allogeneic human ECM proteins are
well tolerated by the host and do not appear to elicit either a
cell mediated or humoral immune response (Allaire et al., 1994,
1997). Moreover, in a futuristic picture, a patient own biopsied
cells could also be used to create autograft material. However, to
these days, the production of an autograft material would require
preoperative cell harvest followed by a moderate cultivation
period (weeks/months), limiting its use to clinical applications,
only if time is not a critical factor.

Short-Term Acting on the
Interface-Microenvironment
This intervention includes coupling the implant with absorbable
scaffolds (Chan and Leong, 2008) that make the local delivery
of FBR blocking drugs (anti-inflammatory, anti-fibrotic) possible
at high concentration, but for a period of time limited by
scaffold degradation. Looking for a reduced FBR on the surface
of the implants, the material chemistry has been optimized and
functionalized to reduce protein deposition, the first step of
FBR (Thevenot et al., 2008; Goodman et al., 2013). Therapeutic
molecules, such as growth factors or anti-inflammatory drugs,
have been embedded onto the implant surface for slow release
into the tissue microenvironment (Couto et al., 2012; Goodman
et al., 2013; Lerner and Dombrowski, 2015). However, they just
seem to delay and not prevent the FBR.

Delivery of Anti-inflammatory Agents

Pro-inflammatory and cytotoxic soluble factors secreted by
reactive macrophages at the device-tissue interface, are the
most likely mediators of the cellular changes underlying
the FBR. Based on this assumption, electrodes developed
in a way that can reduce macrophages activation, or the
concentrations of their released soluble factors surrounding
the implant, will affect the severity of the FBR. Some
potential strategies to reduce FBR are decreasing the amount
of device surface area for macrophage interaction/activation
and, more intriguing, incorporating permeable coatings that
release cytokines to improve clearance of macrophage-released
factors (Figure 4). Based on work in which anti-inflammatory
minocycline drug administration seemed to improve recording
performance (Rennaker et al., 2007), probe coatings that locally
released anti-inflammatory dexamethasone were developed
(Zhong and Bellamkonda, 2007). While systemic dexamethasone
administration was long-term effective but caused undesirable
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FIGURE 4 | Anti-inflammatory agents to modulate the interface-microenvironment immune-mediated interaction. Schematic image of nerve section implanted with

the electrode. The third step of the FBR is shown: monocytes are activated into pro-inflammatory macrophages M1 (in yellow) and they fuse together to form giant

cells (in purple). Pro-inflammatory and cytotoxic soluble factors, secreted by reactive macrophages at the device-tissue interface, are the most likely mediators of the

cellular changes underlying the FBR. The table resumes anti-inflammatory agents (drugs, siRNA, miR) that can modulate the interface-microenvironment

immune-mediated interaction. Pros (in red) and cons (in blue) of acting on some mediators of pro-inflammatory pathways are summarized.

side effects (Zhong and Bellamkonda, 2007), dexamethasone
coatings significantly reduced activated macrophages and
improved impedance measurements (Spataro et al., 2005; Kim
and Martin, 2006; Mercanzini et al., 2010) 1 week post-
implantation in rat cortex. Unfortunately, this reduction effect
was lost after 4 weeks, probably because of the drug source
exhaustion. If this were the case, a chronic anti-inflammatory
regimen might be needed to reduce the FBR through the whole
lifetime of the implanted device.

Lots of drugs, extensively investigated as potent cell cycle
regulators in cancer, may represent a good target to prevent also
the fibroblasts hyperproliferation that occurs in FBR. Rapamycin,
a specific mTOR inhibitor, has been reported to be effective in
modulating in vivo fibrosis not only in cardiac and pulmonary
context, but also in the FBR, as a key activator of collagen type I.
A device-based local delivery of siRNA (small interfering RNA)
against mTOR has been tested to inhibit fibrous encapsulation in
a murine subcutaneous implant model (Takahashi et al., 2010).
In general, targeting siRNA in a systemic disease represents a risk
for pathological off-target effects, such as silencing unintended
genes (Singh et al., 2011), but, in the context of the localized
process of the FBR, this issue can be overcome with a polymer-
based delivery system. Therefore, siRNA-releasing hydrogel-
coated device has been used to suppress fibroblast proliferation
and down-regulate type I collagen mRNA expression. Even if
they were not able to reproduce in vivo the same good results
got in vitro, the use of specific siRNA targeting fibroblasts,
combined with the local delivery, remains an attractive therapy
(Ozcan et al., 2015). Problems, such as siRNA degradation
or better transfection efficacy, need to be solved in order to
better exploit the siRNA specificity for a successful application
in the FBR context. A better choice could be the use of
chemically modified antisense miRs (microRNA). They have
been proposed as good candidates to re-direct host immune

response toward implant integration (Ong et al., 2015), in
particular to promote anti-inflammatory polarization of adherent
macrophages (M2), for example with IL-4, IL-10, IL-13 (van
Putten et al., 2009; Sica and Mantovani, 2012). Compared to
siRNA/shRNA, miRs are stable in blood plasma because they
are normally secreted by immune system (Hunter et al., 2008;
Mitchell et al., 2008; Weber et al., 2010) and they can act on
different targets, exerting a wider effect on multiple pathways
and biological mechanisms (Lim et al., 2005; Selbach et al.,
2008).

Delivery of Anti-fibrotic Agents

The last step of FBR development is represented by the formation
of the fibrotic tissue encapsulating the intraneural interface
(Figure 5). Fibrosis is deeply studied (Rosenbloom et al., 2013)
due to the wide range of diseases and organ-specific disorders
that are characterized by its devastating effects (Schnaper and
Kopp, 2003; Bataller and Brenner, 2005; Varga and Abraham,
2007; Cowper, 2008). Although they have a quite different
etiology, all the fibrotic processes share common features and
mechanisms, leading to the presence of activated fibroblasts
or myofibroblasts, expressing the activation marker α-SMA
(smooth muscle actin) and producing ECM macromolecules,
such as fibrillary type I and type III collagens (Abraham et al.,
2007; Krieg et al., 2007). Since the molecular processes involved
in fibrosis are very complex and different signaling pathways are
activated, a variety of compounds targeting those pathways have
been developed as potential anti-fibrotic drugs and they should
be considered for their potential effectiveness in FBR context as
well.

TGF-β (Transforming Growth Factor-β) signaling is
undoubtedly the predominant pathway in fibroblast activation
process and its deregulation occurs in essentially all fibrotic
reactions. There are two different strategies to act on TGF-β: (i)
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FIGURE 5 | Anti-fibrotic agents to modulate the interface-microenvironment interaction. Schematic image of nerve section implanted with the electrode. The fibrotic

process, the last step of FBR, is shown (in green) and represents the fibroblasts recruitment at the implanted inflammation site and their activation to produce

extracellular matrix components to form a final dense connective tissue. The table resumes anti-fibrotic agents that can modulate the interface-microenvironment

interaction: pros (in red) and cons (in blue) of potential anti-fibrotic drugs targeting mediators of fibrosis are evaluated.

to directly interfere with its expression and activation, and (ii) to
inhibit its receptor and the downstream signaling. Pirfiridone,
a TGF-β gene suppressor, has been evaluated in pulmonary
(Antoniu, 2006), and in liver fibrosis (Westra et al., 2014),
showing its ability to attenuate the fibrotic progression. On the
contrary, the clinical trial on CAT-192, the human monoclonal
antibody against TGF-β1, has not shown promising results so far.
The reason for that can be found in some untoward wide-ranging
effects due to the total block of TGF-β (Denton et al., 2007). As
for the receptor and pathway inhibitors, there have been several
studies on SM305, a specific inhibitor of TGF-β receptors ALK4
and 5, and on SIS3, a specific Smad3 inhibitor (Jinnin et al.,
2006). Both of them exert their anti-fibrotic activity in vitro and
in vivo, abrogating TGF-β induced ECM gene expression and
fibroblasts transdifferentiation (Ishida et al., 2006).

Imatinib, Sorafenib and Sunitinib are a generation of tyrosine
kinase inhibitors that mainly target PDGF (Platelet derived
growth factor) pathway, whose inhibition enhances the anti-
fibrotic effect of TGF-β blocking drugs. They have been shown to
prevent kidney, liver, lung and skin fibrosis formation in several
animal models (Daniels et al., 2004; Wang et al., 2005; Yoshiji
et al., 2005; Distler et al., 2007; Akhmetshina et al., 2009).

Further interesting kinase in the TGF-β downstream pathway
is Rho-associated kinase (ROCK), which plays a role in the actin
cytoskeleton reorganization during the activation of fibroblasts
into myofibroblasts (Riento and Ridley, 2003; Shimizu et al.,
2005). Y27632 (Akhmetshina et al., 2008) and fasudil (Mohri
et al., 2003) are two ROCK inhibitors that have been effectively
used to block myofibroblasts formation. The absence of cell
toxicity makes them good anti-fibrotic candidates.

TGF-β triggers other pro-fibrotic pathways, such as Wnt,
Hedgehog and Notch whose inhibitors, respectively, Dkk-1

(Akhmetshina et al., 2012), LDE223, and DAPT are currently
under evaluation. Data suggest that Dkk-1, investigated in
other diseases, is able to block the pro-fibrotic TGF-β signal;
LDE223, evaluated in anti-cancer trial with minimal toxicity,
is able to prevent bleomycin-induced dermal fibrosis (Horn
et al., 2012) and DAPT is effective on pulmonary and dermal
fibrosis in animal model (Kavian et al., 2010; Dees et al.,
2011).

It is important to point out that systemic administration
of all these anti-fibrotic agents, on one hand, might be not
effective due to their rapid degradation and consequent inability
to reach a good concentration at the implant site, and, on
the other hand, it might raise some safety issues because of
their pleiotropic physiological effects. It is very reasonable to
think about a topical drug delivery to modulate the local TGF-β
pathway activation, since there are already some studies testing
this issue on skin fibrosis (Santiago et al., 2005), skin cancer
(Mordasky Markell et al., 2010), and corneal fibrosis (Jester
et al., 1997). In these studies, the topical use of TGF-β receptor
inhibitor or TGF-β blocking antibody showed a remarkable
suppression of skin fibrosis via lipogel treatment on shaved
skin, a significantly reduction of the fibrotic component of
papillomas via injection in the tumor area, and an important
modulation of corneal fibrosis via eyewash on the eye. These
drugs, even if used in a context different from the intraneural
interface field, exert their effects modulating targets of the TGF-
β downstream pathway which are common in all types of
fibrosis. For the topical administration of TGF-β inhibitors in
proximity of implanted electrode, it seems to us very important to
evaluate the efficacy of the release perineurally and intraneurally,
and to find the best dose to use over time without cytotoxic
effects.
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CONCLUSIONS AND FUTURE
PERSPECTIVES

Over the last years, the use of intraneural interfaces has increased
in a wide range of applications, such as the control of a new
generation of neurally-interfaced prostheses. At present, the
success of this technology is limited by an inefficient transduction
of the electrical signal, mostly due to the formation of a fibrotic
tissue around the implant caused by the FBR. There are many
ways by which it is possible to interfere with the FBR, but none
of them seems to have solved the issue so far. Starting from
recent developments in biomaterials and from novel approaches
to inflammatory/fibrotic pathologies, in this review, we have
explored and selected the biological solutions that might be
adopted in the neural interfaces FBR context.

In particular, we have focused on and provided two main
directions to overcome FBR and promote interface stability:
acting on the interface properties and acting on the interface-
microenvironment interaction. Hitherto, we tried to objectively
highlight pros and cons of each approach and, in the following
line, we critically state which one, in our opinion, seems the most
promising.

Acting on the interface properties, meaning modifying
porosity, roughness, stiffness, chemistry with specific surface
coatings, is probably the most efficient and feasible strategy,
since it modulates the FBR from the initial plasma protein
absorption to the interface, the first trigger of the FBR cascade.
These coatings are long-term chemically stable, small enough
to not alter the surface shape, biocompatible; they can be
very easily functionalized and their chemical and electrical
properties can be improved. Having the competence and the
suitable instrumentation, it is more feasible to modify a material
physically and chemically and then directly test it in vivo,
than having to deal with the choice of a specific target of
the complex downstream activated pathway. Indeed, acting on
the interface-microenvironment foresees the use of drugs that
target the complicated immune system components or the
fibroblast cell population. This option, even if doable, requires
a more comprehensive evaluation and a more complex set up:
i) a good, reproducible in vitro model that recapitulates what
physiologically happens in vivo-so far, there are few 3D in vitro
model, still not consistent enough, but they might be a starting
point to reproduce an immune system cell environment within
the nervous system-; ii) the choice of dose and how to specifically
deliver any kind of anti-inflammatory/fibrotic substance over
the time in order to avoid cytotoxic effects. The choice of
a systemic delivery has undesirable long-term and wide-range
effects, while topic delivery from specific scaffolds has a limited
lifetime. Local release with a tested concentration appears to be
a better solution, since it elicits a more specific and less toxic
response in the area surrounding the interface. The issue of
refilling the scaffold can be overcome by specific technologies for
a long-term release, even if it adds more variables to the system.
In our opinion, acting on the interface-microenvironment is
more difficult to handle and evaluate, is less stable over time,
produces more undesirable effects and has less impact on the
FBR.

However the possibility of developing a futuristic material
to promote electrode bio-integration could open new ways
toward the immune response modulation strategy. A promising
approach may come from the development of “bio-scaffolds”
(Struzyna et al., 2015).

The novelty of this type of scaffolds is the incorporation
of living cells (Eberli and Atala, 2006; Korecka et al., 2007),
with the main purpose of the creation of a biological interface
covering and hiding the electrode, so that the immune system
does not recognize it as non-self body (Cullen et al., 2011a,b;
Cullen and Smith, 2013) and does not trigger the inflammatory
response. The scaffold, placed on an intraneural electrode, can
provide a 3D, anisotropic biomaterial structure for different
types of cells. A futuristic approach may even see the use
of stem cells or autologous nervous cells to avoid host tissue
inflammation and over-engineered cells that secrete factors to
completely inhibit some FBR driven pathways and promote
physiological integration, overcoming the lifetime limitation
of soluble factors loaded or coated scaffolds (Eberli and
Atala, 2006; Madduri et al., 2010; Rosenstein et al., 2010).
Moreover, in case of nerve fiber damage, demyelination and
axon retraction, which is a risk that we cannot exclude during
the insertion of the intraneural electrode, these scaffolds could
secrete trophic factors (Korecka et al., 2007), such as nerve
growth factor, glial derived neurotrophic factor, insulin growth
factor (Fine et al., 2002; Apel et al., 2010; Madduri et al.,
2010; Yan et al., 2012), that mimic the microenvironment,
helping cells to restore the damaged nerves (Thompson et al.,
2016). Hitherto, in order to create these bio-scaffolds, there
are few novel technologies available: (i) 3D printing, that
has the advantage of having control over stiffness, pore size
and integration of soluble factors and cells more closely
resembling the in vivo environment (Lee et al., 2014); (ii) “cells
electrospinning,” for generation of cell fibers integrated in a
scaffold (Arumuganathar and Jayasinghe, 2008); (iii) intraneural
electrode with cells electrospinned microchannels coupled with
an already existing micro-fluidic technology (Takehara et al.,
2014), developed for low invasive biocompatible installation and
drug delivery.

The analysis done so far is comprehensive, but the insights
we can gather on the successful strategy to overcome intra-
peripheral nerve electrode FBR are limited by the following
issues: (a) most of the studies on the topic were performed
in the CNS; (b) most of the long-term experiments with
intraneural electrodes were performed in rats that exhibit
different inflammatory response and fibrotic reaction compared
to human, also due to the different electrode/nerve size ratio;
(c) only one experiment, which lasted <30 days, was done in a
large animal (pig); (d) the few implants of intraneural electrodes
in human subjects published so far did not established a direct
correlation between functional data and FBR. In order to be able
to manage intraneural electrodes and deeply understand their
real efficacy and clinical applicability, further long-term implants
are warranted.

Despite the likely impact of FBR on the long-
term implant functionality, it is indeed not possible
to estimate the exact incidence or provide statistical
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data. This is due to the lack of a consistent number of
systematical studies involving a coherent group of animals,
significant time-points and a reliable general method to
measure FBR.

For our scope, how to achieve a reliable measure
of FBR is a pertinent topic, but actually, there are no
standardized scales; here we summarize the approaches
used so far in vitro and in vivo. In vitro, it is possible a
direct quantification on fixed tissues from animal model,
where macroscopic and microscopic analyses can be
made. The general morphological evaluation of the nerve
and the capsule surrounding the implant is performed
through the histological analysis of the nerve sections,
while the grade of inflammatory response is evaluated by
immunohistochemistry (IHC) for macrophages and the impact
of fibrosis on nerve fiber density by IHC for axons and myelin
markers.

Today, only indirect FBR measures have been used in vivo,
such as the impedance of the electrode contacts which, despite
being influenced by multiple factors, correlates with fibrotic
tissue development. Indeed, a repeated monitoring of impedance
spectrum change can give interesting information on FBR
development over time.

Moreover, linked with an impedance increase, FBR
alters nerve conduction. Nerve conduction studies provide
electrophysiological parameters (amplitude and latency of
motor and sensory evoked responses: compound motor action
potential-CMAP- and compound nerve action potential-CNAP)
that are considered good predictors of an ongoing FBR (Badia
et al., 2011; Wurth et al., 2017). In an in vivo human application
perspective, it would be also very useful to improve some existing
non-invasive imaging techniques to gather structural data on
FBR, such as echography, with a spatial resolution good enough
to discriminate and evaluate the small area around the nerve
implant.

A final important consideration is that, compared to other
implant devices, neural interfaces have the peculiarity to deliver
currents. It is still matter of debate whether this is relevant for
FBR development. So far, the only data correlating electrical
stimulation with a side effect on surrounding tissues came
from brain studies where intracortical stimulating electrodes

caused a thicker layer of fibrosis, compared to the non-
stimulating ones (Dauth et al., 1977). The size of the lesion,
the inflammatory response and the final fibrosis influence local
electrical field, charge density and duration of stimulation, due
to electrochemical reactions and overheating at the implant site
(van Kuyck et al., 2007). However, in a recent publication it
has been reported that electrical stimulation does not primarily
contribute to enhance the FBR, thus insertion trauma and
chemical/mechanical mismatch represent the major players in
this process (Wurth et al., 2017). Therefore, even if all the
intraneural technology uses a safe range of electrical parameters,
thus allowing a prospective clinically-safe stimulation and
recording process, it is very important to deeply understand
the processes affecting the FBR-stimulation relation. To present
knowledge, despite we cannot exclude a peculiar effect of
current delivering on post-implantation tissue response, there
is not enough scientific evidence to exploit the modulation of
the stimulation parameters (waveform and frequency) as an
additional strategy to reduce FBR.
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