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Mechanical perturbations applied to the wrist joint typically evoke a stereotypical

sequence of cortical and muscle responses. The early cortical responses (<100 ms) are

thought be involved in the “rapid” transcortical reaction to the perturbation while the late

cortical responses (>100 ms) are related to the “slow” transcortical reaction. Although

previous studies indicated that both responses involve the primary motor cortex, it

remains unclear if both responses are engaged by the same effective connectivity in

the cortical network. To answer this question, we investigated the effective connectivity

cortical network after a “ramp-and-hold” mechanical perturbation, in both the early

(<100 ms) and late (>100 ms) periods, using dynamic causal modeling. Ramp-and-hold

perturbations were applied to the wrist joint while the subject maintained an isometric

wrist flexion. Cortical activity was recorded using a 128-channel electroencephalogram

(EEG). We investigated how the perturbation modulated the effective connectivity for the

early and late periods. Bayesian model comparisons suggested that different effective

connectivity networks are engaged in these two periods. For the early period, we found

that only a few cortico-cortical connections were modulated, while more complicated

connectivity was identified in the cortical network during the late period with multiple

modulated cortico-cortical connections. The limited early cortical network likely allows

for a rapid muscle response without involving high-level cognitive processes, while the

complexity of the late network may facilitate coordinated responses.

Keywords: sensory feedback, stretch response, dynamic causal modeling, sensorimotor network, EEG, effective

connectivity

INTRODUCTION

Bodily movement is one of the main ways how humans interact with the physical world (Schwartz,
2016). Movement can be generated by voluntary and reflex driven actions. Muscle stretch during
active motor task (e.g., maintain an isotonic wrist flexion) results in a sequence of cortical and
muscle responses, involving the central nervous system and the periphery.

In the periphery, the immediate muscle responses to stretch are known as stretch reflexes. Many
studies investigated muscle responses to stretch using electromyography (EMG) after ramp-and-
hold mechanical perturbations. For lower arm muscles, they typically reported a short-latency
stretch response (20–50 ms post-perturbation onset) followed by a long-latency stretch response
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(50–120 ms) and later voluntary reactions (>120 ms) (Scott,
2002; Pruszynski et al., 2011). The short-latency stretch response
depends on the stretch velocity and involves a spinal network
(Houk et al., 1981). The time delays in the afferent pathway
from the periphery to the brain (20–30 ms) (MacKinnon et al.,
2000) and the efferent pathway from the brain to the periphery
(∼20 ms) (Perenboom et al., 2015) would not allow for a
transcortical pathway in the short-latency stretch response.
Several experimental studies indicated cortical contributions
to the long-latency stretch response. Recordings from cortico-
motoneuronal cells in Macaque monkeys showed a cortical effect
on the long-latency stretch response (Cheney and Fetz, 1984).
Subthreshold transcranial magnetic stimulation (TMS) over the
contralateral motor cortex can modulate the long-latency stretch
response but not the short-latency stretch response (Perenboom
et al., 2015). Recent studies indicate the long-latency stretch
response is not as simple as a “reflex” and at least could partly
involve a voluntary feedback control component (Pruszynski
et al., 2011; Pruszynski and Scott, 2012). Thus, we avoid the term
“reflex” and “voluntary” in this paper and use “rapid” and “slow”
transcortical muscle reactions to roughly distinguish the cortical-
involvedmuscle reactions before 120ms (i.e., long-latency stretch
response) and after 120 ms (i.e., “standard” voluntary reaction)
post-perturbation. Similar terminology has been previously used
in a review from Pruszynski and Scott (2012).

In the central nervous system, cortical responses to muscle
stretch have been investigated by previous studies using the
event-related potential (ERP) (Abbruzzese et al., 1985; Campfens
et al., 2015). The latencies and topographies of the stretch-
evoked ERP reflect the time courses of cortical activity and
most active areas in response to the muscle stretch. Both
early (<100 ms post-perturbation onset) and late (>100 ms)
ERP components were reported around the contralateral motor
cortex (Campfens et al., 2015). Considering the efferent motor
conduction delay (∼20 ms), the early cortical response is thought
to related to the rapid transcortical muscle reaction to the
perturbation (<∼120 ms) while the late cortical response may
be related to the slow transcortical muscle reaction (>∼120
ms) (MacKinnon et al., 2000; Pruszynski and Scott, 2012). ERP
results indicate that the primary motor cortex may contribute
to both rapid and slow transcortical muscle reactions; however,
exact cortical pathways are yet to investigate. The full cortical
network for motor control is thought to involve multiple brain
areas, including primary somatosensory cortex (S1), primary
motor cortex (M1), premotor cortex (PM), supplementary motor
area (SMA), and posterior parietal cortex (PPC) (Scott, 2004;
Szameitat et al., 2012). These regions constitute the cortical
sensorimotor network, which is a distributed and adaptable
network that orchestrates the overall human motor behavior
(Scott, 2004; Shibasaki, 2012).

In this study, we used dynamic causal modeling (DCM)
to model the effective connectivity in the cortical network
modulated by muscle stretch. Effective cortical connectivity
refers to the strength of the causal influences between multiple
cortical areas, which can be modulated by external perturbations
(Friston, 2011). A few studies suggested that the rapid and slow
transcortical muscle reactions are engaged by similar neural

circuitries in the brain (Pruszynski et al., 2011; Pruszynski and
Scott, 2012). However, we hypothesize that the early response
engages effective cortical connectivity in a less complex network
to accelerate the muscle response with a shorter delay, i.e.,
rapid transcortical muscle reactions; while the slow transcortical
muscle reaction is governed by a more complex cortical network
in the late cortical response.

To valid our hypothesis, we estimated effective connectivity
among the cortical areas involved in sensorimotor control
of the wrist in response to a perturbation. Previous studies
considered only M1, SMA, and PM as “key motor regions” for
upper limb movement (Grefkes et al., 2008; Chen et al., 2010).
In line with review papers on feedback based motor control
(Scott, 2002, 2004), we added S1 and PPC to our possible
functional cortical network models, since these two areas are
closely related to feedback-based motor control. S1 is the brain
area receiving the peripheral somatosensory input, while the
PPC is known as a sensory association area which is essential
to integrate different sensory inputs. We investigated effective
cortical connectivity in the early period within 100 ms post-
perturbation onset in comparison to the late period between
100 and 350 ms post-perturbation onset to check if the rapid
and slow transcortical muscle reactions involve similar cortical
areas and signal propagation pathways. Considering the afferent
sensory transmission time delay (∼20 ms) (Abbruzzese et al.,
1985; Campfens et al., 2015), we used 20–100 ms as the period
to investigate the early cortical network.

MATERIALS AND METHODS

Subjects and Ethical Statement
Seven healthy right-handed volunteers (one female) aged 23–28
years old participated in the experiment. This study was carried
out in accordance with the recommendations of Human Subject
Research guidelines, the Human Research Ethics Committee
of the Delft University of Technology with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. All
subjects signed informed consent before the experiment and
received a small financial compensation for their participations.
The protocol was approved by the Human Research Ethics
Committee of the Delft University of Technology.

Experimental Protocol
Subjects sat next to a wrist manipulator (Wristalyzer, Moog
Inc., the Netherlands), which is an actuated rotating device
with a single degree of freedom to exert flexion and extension
perturbations to the wrist joint. The lower arm of the subject was
strapped in the armrest, while the subject was closely touching
the handle of the wrist manipulator (fixed with velcro). Subjects
were instructed to relax their fingers and only use the wrist to do
the task. The axis of wrist manipulator rotation was aligned with
the axis of wrist rotation. Wrist torque was measured by a force
transducer within the handle of the wrist manipulator.

The protocol contained 30 trials. Each trial started with
auditory cue “beep” and a fixation in the center of the screen
with a random period of 1.5–2 s. After this random period,
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visual feedback was provided with an arrow in a circle. The
angle of the arrow is proportional to the (low-pass filtered 1
Hz) torque applied by subjects. Subjects were instructed to push
with a constant flexion torque (1.0 Nm) to the handle with
their right wrist (keeping the arrow pointing upwards) using the
visual feedback. Each trial contains 20 flexion and 20 extension
ramp perturbations. Note that the visual feedback was low-pass
filtered to avoid fast visual corrections to the perturbations. The
wrist manipulator applied angular ramp perturbation to stretch
the wrist muscles when the subject maintained the constant
flexion torque (with std. <5%) for a random period of 1.5–
2 s, and then stopped (and held) at the new position until the
next perturbation. A ramp duration of 40 ms was used with the
velocity 1.5 rad/s; giving a ramp amplitude of 0.06 rad. This
duration is below the expected saturation level of long-latency
EMG response and allows for both inhabitation and facilitation of
the long-latency stretch response (Lee and Tatton, 1982; Meskers
et al., 2009; Perenboom et al., 2015). During the ramp, subjects
were instructed to maintain the same level of force. Since the
subjects were required to maintain a flexion torque, only the
data from the extension ramp perturbations (stretching the wrist
flexors) were included for analysis.

Electroencephalogram (EEG) was recorded using a 128-
channel cap (5/10 systems, WaveGuard cap, ANT Neuro,
The Netherlands) with Al/AgCl electrodes. EMG signals were
measured from the flexor and extensor carpi radialis muscles of
the right forearm using bipolar derivations 2 cm inter-electrode
distance. EEG signals were recorded at by a bio-signal amplifier
(Refa System, TMSi, The Netherlands), which acquired data at
a sampling frequency of 2,048 Hz. The amplifier contains an
antialiasing low-pass filter with the cut-off frequency of 552 Hz.

Data Preprocessing
The continuous EEG signals were filtered by a 0.5–100 Hz zero-
phase shift band-pass filter using EEGLAB (Delorme andMakeig,
2004) to remove possible high-frequency noise and slow trends in
the data (e.g., blood pressure, heartbeat, breathing). A notch filter
was used to reject the 50 Hz line power noise. Afterwards, EEG
were segmented into 570 ms epochs with 220 ms pre-stimulus
baseline plus 350 ms post-stimulus recording. The epochs
contaminated by the artifacts (e.g., eye blinks/movements and
EMG artifacts) were removed by visual inspection. In the data,
we did not see visible artifacts due to the transient perturbations.
On average 118 epochs were removed per participant, leaving
472 ± 53 epochs per participants for analysis. Then the ERPs
were derived by grand averaging the remaining epochs using the
period of 220–20 ms before stimulus onset as the baseline. These
extracted ERPs corresponding to the neural activity in the cortical
regions of interest are used to quantify effective connectivity
between those regions via DCM.

Dynamic Causal Modeling
DCM was applied to analyse the effective cortical connectivity.
Although various methods are available for analyzing effective
cortical connectivity, most of them focus on the linear
connectivity, such as partial directed coherence (Kaminski and
Blinowska, 1991; Porcaro et al., 2013) and directed transfer

function (Babiloni et al., 2005). Previous studies have reported
non-linear neuronal coupling in human stretch responses (Yang
et al., 2016b) and voluntary motor control (Chen et al., 2010;
Yang et al., 2016a) of lower arm muscles. Different from
linear connectivity methods, DCM is a non-linear identification
approach to reveal how external inputs cause changes in the
coupling of neural populations in the effective connectivity
network (Friston et al., 2003; Goulden et al., 2014).

We used the standard DCM for ERP (David et al., 2006) as
implemented in Statistical Parametric Mapping toolbox (SPM12,
Wellcome Trust Centre for Neuroimaging, London, UK) to
model effective connectivity among distributed cortical sources
within the sensorimotor network. The analysis was performed
for two different periods 20–100 and 100–350 ms after the
perturbation onset.

DCM estimates effective connectivity in a network of
reconstructed cortical sources. DCM is a neurobiologically
constrained source reconstruction scheme including both spatial
forward modeling and model inversion (David et al., 2006).
For the spatial forward model, DCM uses similar leadfields as
other source reconstructionmethods (Kiebel et al., 2006). Beyond
other source reconstruction methods, DCM combines the spatial
forward model with a biologically informed temporal forward
model to estimate the connectivity between sources (Friston et al.,
2003; David et al., 2006).

In this paper, the leadfield of each source is modeled by
a single equivalent current dipole (Kiebel et al., 2006). DCM
analysis requires users to specify the prior locations (in mm
in MNI coordinates) of each source in the cortical network
for building the spatial forward model (David et al., 2006).
Based on the review from Scott (2002) (Scott, 2002), we selected
eight key regions in the cortical sensorimotor network: left and
right primary somatosensory cortex (S1), left and right primary
motor cortex (M1), left and right bilateral premotor cortex (PM),
supplementary motor area (SMA), and posterior parietal cortex
(PPC). The MNI coordinates of hand/wrist regions in these eight
cortical areas were informed by previous fMRI studies (Szameitat
et al., 2012; Vlaar et al., 2016) and provided in Table 1. Based
on these eight cortical sources (see Figure 1), we specified six
different connectivity models as shown in Figure 2. In all of
the models, the S1 is the source receiving the external input.
The model space was created using two model attributes: (1)
whether the connectivity is partially or fully modulated by the
stimulus, and (2) whether interhemispheric connectivity is left
lateralized (since the perturbation is given to the right wrist) or
symmetric.

The network model is inverted using a Bayesian approach
described by Friston (2002), where a fix-form Laplace
approximation is used to estimate probability distributions
of parameters. This is under the Gaussian assumption, which
enables computation of the likelihood from the prediction
error. We then used Bayesian model comparison to identify
the best model, based on approximation to the log-evidence
obtained in the model inversion (Friston and Penny, 2011).
In this study, we did not find an identical optimal model for
all individuals. According to the practical recommendations
provided by Stephan et al. (2010), the group-level analysis
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was performed to find the best cross-subject model, where the
pooled log-evidence for each model (mi) across subjects (y1,
..., y7) is defined as ln p(y1, ..., y7|mi). Assuming that the data
for different subjects are independent, we then have ln p(y1,
..., y7|mi) = ln p(y1|mi) + ln p(y2|mi) +... + p(y7|mi) (Penny
et al., 2004). This pooled log-evidence indicates how well a
particular model explains multiple datasets. To compare model
evidences on group level, we used random-effect group Bayesian
model selection (BMS). Classical random-effect analysis detects
whether model evidence is consistent across subjects. In contrast,
the group-BMS approach identifies the proportion of subjects,
which is best described in terms of the model evidence, i.e., the
posterior probability that each model is more frequent than
others (Rigoux et al., 2014). The log group Bayes factor (ln BFi,j)
between models is computed from pooled log-evidences, i.e., ln
BFi,j = ln (y1, ..., y7|mi) -ln p(y1, ..., y7|mj), to indicate that how
much model i is superior to model j for the whole data set. The
value of ln BFi,j between 20 and 150 indicates a strong evidence
(according to 95% confidence level) in favor of model i than
model j, while ln BFi,j larger than 150 indicates a very strong
evidence (99% confidence level) (Penny et al., 2004).

TABLE 1 | MNI coordinates (mm) of eight sources in the cortical sensorimotor

network: left (L) and right (R) primary somatosensory cortex (S1), left and right

primary motor cortex (M1), left and right bilateral premotor cortex (PM), and

supplementary motor area (SMA), posterior parietal cortex (PPC).

Sources MNI coordinates (mm)

S1 L −26 −40 68

S1 R 26 −40 68

M1 L −33 −28 70

M1 R 33 −28 70

PM L −54 −2 46

PM R 54 −2 46

SMA −4 −10 64

PPC −4 −46 68

After identifying the best cross-subject model (with the
highest pooled log-evidence), we obtained the mean posterior
estimates of all effective connectivity parameters for each
subject and each period. These parameters represent the relative
connectivity strengths between the two sources. The inferences
on these parameters reflect the input (i.e., the muscle stretch)
modulated changes in the effective connectivity. By investigating
these inferences, we can identify the activities of which cortical
areas are modulated by themuscle stretch and how they influence
other cortical areas.

We averaged the connectivity strengths over subjects using
Bayesian parameter averaging to get the mean estimate for each
directional cortical interaction. We used one-sample t-test (two-
tailed) to identify significant changes in the effective connectivity
(p < 0.05, adjusted by false discovery rate estimation) in the best
cross-subject model to get the perturbation-modulated effective
connectivity for each period.

RESULTS

Bayesian Model Selection
The effective connectivity in the cortical network after stretching
the flexor muscles of the right wrist was modeled with DCM. We
compared different Bayesian model families shown in Figure 2.
Family-level Bayesian model comparison show that the left
lateralized (L) models fit the data better than the symmetric (S)
models for both periods (ln BFL,S = 1,350 for 20–100 ms, and ln
BFL,S = 611 for 100–350 ms). The partial (P) modulated models
fit the data better than the fully (F) modulated models for the
period of 20–100ms (ln BFP,F = 1,706), while the fully modulated
models provide substantially better fit for the period of 100–350
ms (ln BFF,P = 3,670).

Figure 3 shows the pooled log-evidences for different models.
For the period of 20–100 ms, the model comparison shows the
strongest evidence for Model 5, which is a partially modulated
left lateral model, with a Bayes Factor (ln BF5,6) of 168 over the
second-best model (Model 6). For the period of 100–350 ms,

FIGURE 1 | Eight selected cortical regions: left and right primary somatosensory cortex (S1), left and right primary motor cortex (M1), left and right bilateral premotor

cortex (PM), and supplementary motor area (SMA), posterior parietal cortex (PPC).
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FIGURE 2 | Six biologically plausible models for perturbation-modulated network. All of the models, the left S1 (marked in red) is the source receiving the external

input (stretch of the flexor muscles of the right wrist). Model spaces are created using two attributes: partially (P) vs. fully (F) modulated by the stimulus, and left

lateralized (L) vs. symmetric (S).

FIGURE 3 | Results of Bayesian model selection. Comparison of the pooled log-evidences of the six models indicates: (A) Model 5 is the best model (log-evidence =

−7,600) for the period of 20–100 ms and (B) Model 6 is the best model (log-evidence = −1,440) for the period of 100–350 ms.

the strongest evidence is present for Model 6, which is a fully
modulated left lateral model, with a with a Bayes Factor (ln BF6,5)
of 72 over the second-best model (Model 5).

Inference on Coupling Parameters
The analysis of coupling parameters under the best cross-
subject models reveals the significant modulations of effective
connectivity by the perturbation for the period of 20–100 ms
(Model 5) and 100–350ms (Model 6), respectively (see Figure 4).
During the period of 20–100ms, the significant modulations only
occur in the connectivity between M1 and a few cortical areas. In

the left hemisphere (contralateral side to the perturbation), we
detected a decrease in the effective connectivity from PM to M1
while an increase from S1 to M1. In the right hemisphere, only
an increase of effective connectivity is shown from PM to M1.
The cross-hemisphere interaction shows a reduced connectivity
from rightM1 to left M1. The left M1, which comprises the upper
motoneurons of the right wrist muscles, appears a “sink” for all
modulated connectivity pathways in this period.

During the period of 100–350 ms, a larger number of
connections among more cortical areas is modulated by the
perturbation. Different from the period of 20–100 ms, the
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FIGURE 4 | Modulatory effects of wrist muscle stretch on effective connectivity in the best model for (A) the period 20–100 ms post-perturbation and (B) the period of

100–350 ms post-perturbation. The significantly modulated effective connectivity and associated brain areas are highlighted in bold. The increased connectivity is

indicated in blue, while the reduced connectivity is given in red. We also provide percentages of coupling change and p-value (in parentheses) for all the significantly

modulated connectivity. The S1 (marked in red circle) is the source receiving the external input (stretch of right wrist).

connectivity with SMA, PPC and right S1 are also modulated.
Specially, we found that a reduced connectivity pathway started
from PPC through SMA to left M1. Additionally, there are three
reduced connectivity pathways starting from PPC, left S1 andM1
all passing through right PM and arriving at left M1.

DISCUSSION

In this study, we investigated the response of the effective
connectivity in the cortical network to stretch of the flexor
muscles of the right wrist. We built model spaces with
left lateralized (i.e., contralateral to the perturbed wrist) and
symmetric models for comparison. We did not include right
lateralized models, since all subjects are right-handed and the
task is performed with the right wrist. DCM suggested strong
evidence that contralateral (left) lateralized models were superior
to the symmetric models for both rapid (20–100 ms) and slow
(100–350 ms) periods. These results are in line with previous
studies reporting contralateral hemisphere dominance of the
cortical response to wrist perturbations (Campfens et al., 2015)
and during motor control (Chen et al., 2010; Yang et al.,
2016b).

DCM for the Early Cortical Response to
Muscle Stretch
During the early period of 20–100 ms, the partially modulated
models (of the effective connectivity in the cortical network)
fit the data better than the fully modulated models, showing
a relatively simpler network compared to the period of 100–
350 ms. In the best model (Model 5), only a few connections
among several key cortical areas are significantly modulated
during the early period (see Figure 4A). This likely facilitates

a rapid motor reaction to the perturbation without involving
high level cognitive processes. Previous studies have found direct
monosynaptic connections between the S1 and M1, which allows
fast signal propagations between S1 and M1 (Rocco-Donovan
et al., 2011). Here, we detected an increased connectivity from
S1 to M1 in the contralateral hemisphere. This enhanced S1-M1
connectivity may lead to a quick sensory-motor processing in
response to the unpredicted change (caused by the perturbation)
in the sensory periphery.

A reduced connectivity from PM to M1 is shown at
contralateral hemisphere in the early period. The PM is thought
to be associated with predictions of sensory consequences
of voluntary movements (Christensen et al., 2007). In the
experiment, the subjects were required to maintain an isotonic
wrist flexor torque before the perturbation. Thus, this voluntary
control was accompanied with both the efferent motor command
and an “efference copy” of this information (Wolpert and
Flanagan, 2001). The communication between the M1 and PM
is likely related to the cortical process of the efference copy to
mediate movement predictions. This process may be inhibited
due to the unpredicted change of sensory input, showing a
decrease of effective connectivity from the PM to M1.

Additionally, a decreased effective connectivity is also shown
from ipsilateral M1 to contralateral M1. The interhemispheric
interaction of M1 has been reported by TMS and EEG studies
during forearm muscle movement control (Ferbert et al., 1992;
Bönstrup et al., 2016). This interhemispheric inhibition is
thought to be related to the activity of inhibitory GABA-ergic
interneurons (Daskalakis et al., 2002) to prevent the interference
from the opposite hemisphere (e.g., mirror movement) during
movement control (Mayston et al., 1999). Thus, this inhibitory
effect may facilitate the cortical response to the unpredictable
perturbation without the interruption of ipsilateral M1. All the
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information of modulation eventually flows into the contralateral
M1which allows the early cortical activity to be transmitted to the
motor units through the monosynaptic corticospinal connection
(Nielsen, 2016). This is the fastest cortical pathway contributing
to the muscle stretch response, which likely lead to the rapid
transcortical muscle response.

Effective Connectivity during the Late
Cortical Response to Muscle Stretch
In the late period of 100–350 ms, there are more cortical areas
and connections are modulated (see Figure 4B). In particular,
the connection between PPC and SMA is modulated, indicating
that these cortical areas may play important roles in the
late cortical responses to muscle stretch. The PPC is thought
be involved in the multisensory integration and coordinate
transformations from sensory inputs to motor outputs during
feedback-based movement control (Andersen and Buneo, 2002).
The SMA is crucial for linking cognition to motor action
(Nachev et al., 2008). The modulation of PPC-SMA connectivity
indicates a high-level cognitive process for the slow, voluntary
response, which is not shown for the early period. The reduced
connectivity from PPC to SMA likely indicates a negative
feedback in sensorimotor control loop. This negative feedback
may play a role in correcting the motor actions based on
the integrated sensory information. Besides, multiple pathways
ending at the contralateral M1 are modulated in this period,
indicating rich communications between different cortical areas.
The complexity of this network in late period likely delays
the voluntary motor output to facilitate the coordinated (slow)
muscle responses.

CONCLUSION

Muscle stretch modulates different effective cortico-cortical
connections during early (before 100 ms post-perturbation)
and late (after 100 ms) periods of cortical responses. Only a
few effective cortico-cortical connections are modulated in the
early period, while more cortical areas are involved in the late
period with more effective connections modulated. The limited
early cortical network likely allows for a rapid muscle response
without involving high-level cognitive processes. The complexity
of the late network may delay the voluntary motor output from
the cortex, so as to facilitate the coordinated responses in the
“standard” voluntary reaction to muscle stretch.
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