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Despite evolutionary musicology’s interdisciplinary nature, and the diverse methods it

employs, the field has nevertheless tended to divide into two main positions. Some

argue that music should be understood as a naturally selected adaptation, while

others claim that music is a product of culture with little or no relevance for the

survival of the species. We review these arguments, suggesting that while interesting

and well-reasoned positions have been offered on both sides of the debate, the

nature-or-culture (or adaptation vs. non-adaptation) assumptions that have traditionally

driven the discussion have resulted in a problematic either/or dichotomy. We then

consider an alternative “biocultural” proposal that appears to offer a way forward. As we

discuss, this approach draws on a range of research in theoretical biology, archeology,

neuroscience, embodied and ecological cognition, and dynamical systems theory (DST),

positing a more integrated model that sees biological and cultural dimensions as aspects

of the same evolving system. Following this, we outline the enactive approach to

cognition, discussing the ways it aligns with the biocultural perspective. Put simply,

the enactive approach posits a deep continuity between mind and life, where cognitive

processes are explored in terms of how self-organizing living systems enact relationships

with the environment that are relevant to their survival and well-being. It highlights the

embodied and ecologically situated nature of living agents, as well as the active role

they play in their own developmental processes. Importantly, the enactive approach sees

cognitive and evolutionary processes as driven by a range of interacting factors, including

the socio-cultural forms of activity that characterize the lives of more complex creatures

such as ourselves. We offer some suggestions for how this approach might enhance

and extend the biocultural model. To conclude we briefly consider the implications of this

approach for practical areas such as music education.
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INTRODUCTION

The debate over the origins and meaning of music for the human
animal is one of the most fascinating areas of inquiry across the
sciences and humanities. Despite the diversity of perspectives
on offer, however, this field has traditionally been guided by
approaches that see adaptation by natural selection as the central
mechanism driving evolutionary processes (Huron, 2001; for a
discussion see Tomlinson, 2015). This extends to the brain, which
is often understood as a computing machine that evolved to
solve the kinds of problems faced by our prehistoric ancestors
in their everyday lives (see Anderson, 2014). Importantly,
this “adaptationist” orientation posits a rather strict separation
between the products of natural selection (i.e., adaptations) and
those of culture. Because of this, evolutionary musicologists have
often been faced with something of a dichotomy: Music tends
to be seen either as a naturally selected adaptation that has
contributed directly to our survival as a species, or as a product
of culture with little or no direct connection to our biological
heritage (see van der Schyff, 2013a; Tomlinson, 2015; Killin,
2016a, 2017). Various arguments have emerged in support of
each position (more on this below; see Pinker, 1997; Huron,
2001; Mithen, 2005; Patel, 2008; Honing et al., 2015). Moreover,
the influence of the computational model of mind has tended
to focus research and theory in music cognition toward a
complex information-processing hierarchy limited to the brain
(Sloboda, 1985; Deutsch, 1999; Huron, 2006; Levitin, 2006). This
is sometimes discussed in terms of discrete cognitive modules
that have been naturally selected to perform specific tasks
related to the survival of the species (Fodor, 1983; Pinker, 1997;
Coltheart, 1999), leading some scholars to postulate 1:1mappings
between anatomical brain regions and musical functions (Peretz
and Coltheart, 2003; cf. Altenmüller, 2001). While this research
has indeed produced a number of important insights, it has
arguably tended to downplay the role of the environmentally
situated body in the development of musicality as a cognitive
domain (see Clarke, 2005; Johnson, 2007).

In recent years, new perspectives have emerged that place
more focus on the embodied, ecological, and dynamical
dimensions of musical cognition (e.g., Borgo, 2005; Clarke, 2005,
2012; Reybrouck, 2005, 2013; Leman, 2007; Jones, 2009; Krueger,
2013; Maes et al., 2014; Moran, 2014; Laroche and Kaddouch,
2015; Godøy et al., 2016; Schiavio and van der Schyff, 2016;
Schiavio et al., 2016; Lesaffre et al., 2017). Recent research has
also tended to weaken the modular hypothesis by emphasizing
the plastic and self-organizing properties of the (musical) brain
(Jäncke et al., 2001; Pantev et al., 2001; Münte et al., 2002;
Lappe et al., 2008; Large et al., 2016). The past two decades have
also seen the development of a “biocultural” hypothesis for the
origins and nature of the musical mind that looks beyond the
traditional nature-culture dichotomy (Cross, 1999, 2003; Killin,
2013, 2016a,b, 2017; van der Schyff, 2013a,b; Tomlinson, 2015).
This approach draws on a range of research in theoretical biology,
neuroscience, embodied and ecological cognition, and dynamical
systems theory (DST), positing a more integrated model that
sees biological and cultural dimensions as aspects of the same
evolving system. Here the origin of music is not understood

within a strict adaptationist framework. Rather, it is explained
as an emergent phenomenon involving cycles of (embodied)
interactivity with the social and material environment.

Our aim in the present article is to contribute to the theoretical
discussion supporting the biocultural hypothesis by considering
it through the lenses of the enactive approach to cognition. This
perspective first emerged in the work of Varela et al. (1991) and
has been developed more recently across a range of contexts
(Thompson, 2007; Stewart et al., 2010; Colombetti, 2014; Di
Paolo et al., 2017). Most centrally, the enactive approach posits a
deep continuity betweenmind and life, where cognitive processes
are explored in terms of how self-organizing living systems
enact relationships with the environment that are relevant to
their survival and well-being. It highlights the embodied and
ecologically situated nature of living agents, as well as the active
role they play in their own developmental processes. Importantly,
the enactive approach sees cognitive and evolutionary processes
as driven by a range of interacting factors, including the socio-
cultural forms of activity that characterize the lives of more
complex creatures such as ourselves (Malafouris, 2008, 2013,
2015). We suggest, therefore, that it may help to extend the
biocultural hypothesis in various ways.

We begin by providing a brief overview of some key
positions in the field of evolutionary musicology, discussing
how many tend to adhere to the “nature-or-culture” dichotomy
mentioned above. We then outline the biocultural hypothesis,
reviewing supporting research and theory in theoretical biology,
neuroscience, and ecological and embodied cognition. Here
we place a special focus on Tomlinson’s (2015) approach as,
for us, it represents the current state of the art in the field.
While we are largely in agreement with his position, we suggest
that future work could benefit from exploring a wider range
of perspectives in embodied-ecological cognition. With this in
mind, we then discuss the enactive approach and consider how
it might enhance the biocultural perspective. More specifically,
we suggest that the enactive view could offer theoretical support
and refinement to Tomlinson’s claim that the origins of the
musical mind should be sought for in the embodied dynamics
of coordinated action that occurred within the developing
socio-material environments of our ancestors—and not first
in terms of cognitive processes involving (quasi-linguistic)
representational mental content. Following this, we consider
how the recently emerged 4E approach—which sees cognition
as embodied, embedded, enactive, and extended—aligns with the
biocultural perspective, offering some tentative possibilities for
how this framework might guide future research associated with
the biocultural approach. To conclude we briefly consider the
implications this perspective may have for thought and action
in practical musical contexts (e.g., music education). Before we
begin, we would also like to note that although the enactive
approach is being explored across several disciplines (see Stewart
et al., 2010), it has only recently been adopted in musical contexts
(Borgo, 2005; Silverman, 2012; Krueger, 2013, 2014; Matyja and
Schiavio, 2013; Elliott and Silverman, 2015; Loaiza, 2016; Schiavio
et al., 2016). Therefore, this article may also contribute to the
development of the enactive perspective for musical research and
theory more generally.
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EVOLUTIONARY MUSICOLOGY AND THE
DICHOTOMY OF ADAPTATION

An important point of discussion in evolutionary musicology
concerns whether musicality can be considered as a bona fide
adaptation, or if it is better understood as a product of culture
(Huron, 2001; Davies, 2012; van der Schyff, 2013a; Lawson,
2014; Honing et al., 2015; Killin, 2016a, 2017). Some researchers
(including Darwin, 1871) have drawn on comparisons with
music-like behavior in other animals, suggesting an adaptive
function for music in mate selection and territorial display
in our prehistoric ancestors (see Miller, 2000). It has been
argued, however, that although music-like behavior in non-
human animals (e.g., bird song) may well be a product of natural
selection, these traits are not homologous with human music
making, but rather are analogous (Pinker, 1997; Hauser and
McDermott, 2003). Because of this, it is claimed that comparative
studies involving more phylogenetically distant species may not
have great relevance for understanding the biological origins
of human musicality (McDermott and Hauser, 2005; but see
Fitch, 2006). Additionally, evidence of “musical” behaviors in
our closest primate relatives is often understood to be sparse.
For some scholars, this suggests there was no properly musical
phenotype prior to modern humans in the hominin line (Huron,
2001; Justus and Hutsler, 2005; Patel, 2008).

Such arguments have been used to support claims that music
should not be conceived of as an adaptation, but rather as
a product of culture (e.g., Sperber, 1996; Pinker, 1997). Here
it is posited that music is dependent on cognitive structures
(e.g., modules) and abilities that evolved to support properly
adaptive functions in our ancestors (e.g., language, auditory scene
analysis, habitat selection, emotion, and motor control—for a
discussion see Trainor, 2015). Perhaps the strongest version
of this approach is found in Pinker (1997), who argues that
music is an “invention” designed to “tickle” these naturally
selected aspects of our cognitive and biological nature. Music
itself, however, has no adaptive meaning: From an evolutionary
point of view, it is the auditory equivalent of “cheesecake”—
a cultural invention that is pleasurable, but biologically useless.
In line with this, it is suggested that music might be a kind of
exaptation—where the original (i.e., adapted) function of a trait
becomes co-opted to serve other purposes1 (Davies, 2012). Thus,
as Sperber (1996) posits, music may be understood as “parasitic
on a cognitive module the proper domain of which pre-existed
music and had nothing to do with it” (p. 142).

1The term “exaptation” refers to changes in the function of a given physiological

or behavioral trait in the process of the biological evolution of an organism. The

classic example is bird feathers, which originally evolved for thermoregulation, but

were later co-opted for mating-territorial display, catching insects, and then flight.

The developmental systems approach discussed below complicates the causal

relation of adaptations and exaptations. Here they stand not in a linear sequence,

but rather in a cyclical relationship, where the new uses of an adaptation associated

with the exaptation may lead to secondary adaptations and so on (see Gould and

Vrba, 1982; Anderson, 2007). Referring to the relationship between adaptations

and exaptations Tomlinson (2015) writes, “the first are not necessarily prior to the

second, since behaviors originating as exaptations might alter selective pressures

in ways leading to new adaptations” (p. 36).

By contrast, other researchers have suggested the existence
of cognitive modules that appear to be specialized for musical
functions. For example, Peretz (1993, 2006, 2012) research in
acquired amusia has led her to (cautiously) posit an innatemusic-
specific module for pitch processing, suggesting that music may
be as “natural” as language (Peretz, 2006). Such claims are
countered by Patel (2008), who argues that evidence indicating
the existence of adapted music specific modules may in fact be
explained by (ontogenetic) developmental processes, whereby
cortical areas become specialized for certain functions through
experience (e.g., via processes of “progressive modularization”;
see Karmiloff-Smith, 1992). However, while Patel (2008, 2010)
maintains that musicality in humans is not a “direct target” of
natural selection, he also acknowledges the profound biological
and social benefits associated with musical activity, claiming
that music is a powerful “transformative technology of the
mind” (Patel, 2008, p. 400–401). Here Patel discusses how
musical experience may lead to long-lasting changes in brain
structure and processing (e.g., though neuroendocrine effects).
Interestingly, he also notes that the phenomenon of infant
babbling, the anatomy of the human vocal tract, and the fixation
of the FOXP2 gene, might be indicative of adaptations that
originally supported both language and vocal music (Patel, 2008,
p. 371–372). However, he suggests that because language appears
to emerge more quickly and uniformly in humans, and because
the lack of musical ability does not appear to entail significant
biological costs, these factors are better understood to support
the adaptive status of language. In brief, he posits that musical
processing is a “by-product” of cognitive mechanisms selected
for language and other forms of complex vocal learning (see also
Patel, 2006, 2010, 2012).

These last claims are questioned by those who argue
that they may reflect a rather narrow perspective on what
musicality entails—e.g., the assumption that musical activity
necessarily requires special forms of training, or that music
is a pleasure product to be consumed at concerts or through
recordings (for discussions see Small, 1999; Cross, 2003, 2010;
van der Schyff, 2013a,b; Honing et al., 2015). With regard to
this point, ethnomusicological and sociological research has
revealed musical activity around the world to be central for
human well-being—it is inextricable from work, play, social life,
religion, ritual, politics, healing, and more (Blacking, 1973, 1995;
Nettl, 1983, 2000; DeNora, 2000). Moreover, in many cultural
environments music is highly improvisational in character, and
the acquisition of musical skills begins in infancy and develops
rapidly, often without the need for formal instruction (Blacking,
1973; Cross, 2003; Solis and Nettl, 2009). It has also been
suggested that because certain physical and cognitive deficits
need not hinder survival and well-being in modern Western
society, certain “musical” impairments may go almost completely
unnoticed (van der Schyff, 2013a). Likewise, music’s relevance for
human survival across evolutionary time has been considered in
terms of its importance for bonding between infants and primary
caregivers, and between members of social groups (Benzon,
2001; Tolbert, 2001; Dissanayake, 2010; Dunbar, 2012). Musical
developmental processes appear to begin very early on in life
(Parncutt, 2006) and researchers have demonstrated the universal
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and seemingly intuitive way caregivers create musical (or music-
like) environments for infants through prosodic speech and
lullabies (Dissanayake, 2000; Trehub, 2003; Falk, 2004). Along
these lines, Trevarthen (2002) has proposed that humans possess
an in-born “communicative musicality” that serves the necessity
for embodied inter-subjectivity in highly social beings such as
ourselves (see also Malloch and Trevarthen, 2010).

In all, it is argued that the wide range of activities associated
with the word “music” may have immediate and far-reaching
implications for survival and socialization for many peoples of
the world, as it may have had for our prehistoric ancestors (see
Blacking, 1973; Mithen, 2005). And indeed, the archeological
record shows evidence of musical activity (i.e., bone flutes) dating
back at least 40,000 years (Higham et al., 2012; Morley, 2013).
Such concerns drive the “musilanguage” theory put forward by
Mithen (2005) and others (Brown, 2000; Lawson, 2014), where
both music and language are understood to have developed
from a “proto-musical ancestor” that evolved due to selective
pressures favoring more complex forms of social behavior—
e.g., enhanced types of communication associated with foraging
and hunting, mate competition, increased periods of child
rearing (soothing at a distance), and more complex forms of
coordinated group activity (Dunbar, 1996, 2003, 2012; Cross,
1999, 2003; Falk, 2000, 2004; Balter, 2004; Bannan, 2012). Here
it is also suggested that musical behavior may have contributed
to the development of shared intentionality and Theory of Mind
(ToM) in modern humans, which in turn permitted the rapid
development of cultural evolution and the emergence of modern
human cognition (Tomasello, 1999; Tomasello et al., 2005).

THE BIOCULTURAL HYPOTHESIS

Thus far, we have offered only a brief outline of some of the main
positions in the discussion over the status of music in human
evolution. We would like to suggest, however, that although
many important and well-reasoned accounts have emerged on
both sides of the debate, the nature-or-culture perspective that
appears to frame this discussion renders both sides somewhat
problematic. On one hand, arguing that music is primarily a
product of culture may tend to downplay its deep significance
for human well-being, as well as the rather rapid and intuitive
ways it develops in many cultural contexts. Indeed, as we have
just considered, these manifold developmental and social factors
are taken to be indicative of the biological relevance of music
for the human animal. On the other hand, arguments for music
as an adaptation (e.g., Mithen, 2005; Lawson, 2014) often tend
to posit a singular adaptive status for what is in fact a complex
phenomenon that spans a wide range of biological, social, and
cultural dimensions (Tomlinson, 2015).

In line with such concerns, other scholars (Cross, 1999, 2001,
2003; Killin, 2013, 2016a; van der Schyff, 2013a,b; Currie and
Killin, 2016) have offered alternative “biocultural” approaches
to the nature and origins of human musicality—where the
question of whether either biology or culture should account for
deeply social and universal human activities that require complex
cognitive functions (e.g., music) is replaced by a perspective

that integrates the two. For example, Cross (1999) suggests that
musicality is an emergent activity—or “cognitive capacity”—that
arises from a more fundamental human proclivity to search for
relevance and meaning in our interactions with the world. It is
claimed that because of its “multiple potential meanings” and
“floating intentionality” music provides a means by which social
activity may be explored in a “risk free” environment, affording
the development of competencies between different domains
of embodied experience and the (co)creation of meaning and
culture (Cross, 1999, 2003). Tomlinson (2015) develops similar
insights, arguing that what we now refer to as “language”
and “music” began with more basic forms of coordinated
socio-cultural activity that incrementally developed into more
sophisticated patterns of thought, activity, and communication
(see also Morley, 2013). Moreover, such activities are understood
to have transformed environmental niches over time (Sterelny,
2014; Killin, 2016a, 2017) and with them the behavioral
possibilities (affordances) of the hominines who inhabited them
through recursive cycles of feedback and feedforward effects.

In all, this orientation suggests a way through the traditional
nature-or-culture dichotomy discussed above. In doing so,
however, it necessarily draws on models of evolution and
cognition that differ from those that have traditionally guided
evolutionary musicology. In line with this, Tomlinson’s (2015)
approach develops Neo-Peircean perspectives in semiotics (e.g.,
Deacon, 1997, 2010, 2012), exploring how embodied and
indexical forms of communication may in fact underpin
our linguistic and musical abilities both in evolutionary and
ontogenetic terms. As we discuss below, this is further supported
by work in theoretical biology associated with developmental
systems theory, studies of musical and social entrainment
(rhythm and mimesis), and insights from ecological psychology
and embodied cognition.

Looking Beyond Adaptation
Tomlinson (2015) argues that although music-as-adaptation
perspectives all reveal important aspects of why music is
meaningful for the human animal, they are also problematic
when they tend to assume a “unilateral explanation for a
manifold phenomenon” (p. 33; see also Killin, 2016a). That
is, because music takes on so many forms, involves such a
wide range of behavior, and serves so many functions, it seems
difficult to specify a single selective environment for it. And
thus, these traits sit “uneasily side by side, their interrelation
left unspecified” (p. 33). To be clear, this does not in any
way negate the claims regarding the social and developmental
meanings of music. These biologically relevant traits do exist,
but they are just too numerous and complex to be properly
described in terms of an adaptation (at least not in the orthodox
sense of the term). Because of this, Tomlinson (2015) claims
that we must be careful about how we frame evolutionary
questions—and especially those regarding complex behaviors
such as music and language—lest we fall into the reductive
theorizing associated with “adaptationist fundamentalism.” He
thus argues that dwelling on the question of the adaptive status of
music has had the effect of “focusing our sights too narrowly on
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the question of natural selection alone—and usually a threadbare
theorizing of it, at that” (p. 34).

With this in mind, the developmental systems approach to
biological evolution posits a useful alternative perspective (see
Oyama et al., 2001). In contrast to the one-directional schema
that characterizes more traditional frameworks (where evolution
is understood to involve adaptation to a given environment),
developmental systems theory presents a more recursive and
relational view, where organism and environment are understood
as mutually influencing aspects of the same integrated system.
Here evolutionary processes do not entail the adaptation of a
species’ phenotype to a fixed terrain, but rather “a dynamic
interaction where other species and the non-living environment
take part” (Tomlinson, 2015, p. 35). In other words, this approach
explores the complex ways genes, organisms, and environmental
factors—including behavior and (socio-cultural) experience—
interact with each other in guiding the formation of phenotypes
and the construction of environmental niches (Moore, 2003;
Jablonka and Lamb, 2005; Richerson and Boyd, 2005; Malafouris,
2008, 2013, 2015; Laland et al., 2010; Sterelny, 2014). As such, it
eschews the classic nature-nurture dichotomy, preferring instead
to examine the interaction between organism and environment
as a recursive or “dialectical” phenomenon (Lewontin et al., 1984;
Pigliucci, 2001), where no single unit or mechanism is sufficient
to explain all processes involved.

Importantly, the organism is understood here to play an
active role in shaping the environment it coevolves with—its
activities feedback into and alter the selective pressures of the
environmental niche. This, in turn, affects the development
of the organism, resulting in a co-evolutionary cycle that
proceeds in an ongoing way. Socio-cultural developments add
additional epicycles involving patterns of behavior that can
sometimes hold stable over long periods of time (see Figure 1).
These are passed on inter- and intra-generationally through
embodied mimetic processes (more on this below; see also
Sterelny, 2012). While such epicycles necessarily emerge from
the coevolution cycle, they may, once established, develop
into self-sustaining patterns of behavior that develop relatively
independently. However, the effects of these cultural epicycles
may feedforward into the broader coevolutionary system
resulting in additional alterations to environmental conditions
and shifts in biological configurations (e.g., gene expression and
morphological changes—see Wrangham, 2009; Laland et al.,
2010; Skinner et al., 2015; Killin, 2016a).

The making and use of tools is offered as a primary example of
what such cultural epicycles might entail (Tomlinson, 2015). The
archeological record contains many examples of bi-face stone
hand axes that were made by our Paleolithic ancestors. These
tools are remarkably consistent in their functional and aesthetic
qualities, implying method and planning in their manufacture
(Wynn, 1996, 2002). However, it is now thought that the
production of these axes entailed a “bottom up” process based on
the morphology and motor-possibilities of the body, unplanned
emotional-mimetic social interaction, and the affordances of the
environment (Gamble, 1999; Davidson, 2002). In other words,
it is argued that the emergence of Paleolithic technologies did
not involve abstract or representational forms of thought (e.g.,

a mental template, or “top down” thinking)—a capacity these
early toolmakers did not possess (but see Killin, 2016b, 2017).
Nor were they the result of genetically determined developmental
programs. Rather, they are thought to have originated, developed,
and stabilized primarily through the dynamic interaction
between living systems and the material environments they
inhabited and shaped (Ingold, 1999). It is suggested that such
self-organizing forms of social-technological behavior provided
the grounding from which more complex cultural activities
like music emerged much later (Tomlinson, 2015). To better
understand how this could be so, we now consider the mimetic
nature of these pre-human social environments, and how this
may give clues to the origins of music in coordinated rhythmic
behavior.

Mimesis, Entrainment, and the Origins of
Music in Rhythm
In social animals, attention tends to be turned “outwards”
toward the world and the activities of others (McGrath and
Kelly, 1986). This entails the capacity to observe, understand,
and emulate the actions of conspecifics. It is suggested that
in our Paleolithic ancestors these mimetic processes allowed
increasingly complex chains of actions to be passed on from
one individual or generation to the next (Leroi-Gourhan,
1964/1993; Gamble, 1999; Ingold, 1999). This involved the
enactment of culturally embedded “action loops” (see Donald,
2001; Tomlinson, 2015) that depended on a basic proclivity for
forms of social entrainment.

The phenomenon of entrainment may be observed in many
ways and over various timescales in both biological and non-
biological contexts (de Landa, 1992; Clayton et al., 2005; Becker,
2011; Knight et al., 2017). Most fundamentally, it is understood
in terms of the tendency for oscillating systems to synchronize
with each other2. Accordingly, biological and social systems
can be conceived of as dynamically interconnected systems of
oscillating components (from metabolic cycles to life cycles,
from single neuron firing to regional patterns of activity in
the brain, from individual organisms to social groups and the
broader biological and cognitive ecology; McGrath and Kelly,
1986; Oyama et al., 2001; Varela et al., 2001; Ward, 2003;
Chemero, 2009). Importantly, the components of such systems
influence each other in a non-linear or recursive way. As such,
organism and environment are not separate domains, but rather
aspects of “one non-decomposable system” that evolves over time
(Chemero, 2009, p. 26). Moreover, the development of coupled
systems is guided by local and global constraints that allow the
system to maintain stability—to be resistant to perturbations,
or to regain stability once a perturbation has occurred. This
is, of course, crucial for living systems, which must maintain
metabolic functioning within certain parameters if they are to
survive.

Such self-organizing processes result in “emergent
properties”—relationships, structures, and patterns of behavior

2A simple example of this is found in the way wall mounted pendulums mutually

constrain one another, resulting in synchronization or “entrainment” over time

(see Clark, 2001).
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FIGURE 1 | Describes the cyclical process of biocultural coevolution (adapted with permission from Tomlinson, 2015, p. 46–47). Note that this depicts the most

general level of description and does not show the more micro-level “cycles within cycles” that occur, for example, within the intra-organism milieu. These include the

patterns of muscular, emotional-affective, neural, and metabolic activity that influence the expression of genes and gene groups over various timescales. This, in turn,

helps to guide developmental processes and behavior that impacts the environmental niche.

that may remain consistent over long temporal periods, or that
may be subject to transformation due to shifts in local and
global constraints of the system. The mathematical techniques
associated with DST have aided researchers in modeling such
phenomena. Here patterns of convergence (stability) in the
state of the system are contrasted with areas exhibiting entropy
(instability; de Landa, 1992). This is often represented as a
topographic “phase-space” that describes the possible states
of a given system over time—periods of convergence in the
trajectories of the system are represented as “basins of attraction”
(Abraham and Shaw, 1985; Chemero, 2009). A “phase transition”
occurs when new patterns of convergence arise (i.e., new attractor
layouts). Researchers associated with developmental systems
theory (above) use DST methods to model the evolutionary
trajectories of coupled organism-environment systems, mapping
dynamic patterns of stability and change as functions of
constraint parameters (see Oyama et al., 2001).

DST is also used to examine how social animals bring
their actions in line with those of other agents—and with
other exogenous factors—by “dynamically attending” to the
environment through sight, sound, movement, and touch
(McGrath and Kelly, 1986; Large and Jones, 1999). This results
in the enactment of coordinated forms of behavior that can
occur both voluntarily and involuntarily. Emotional-affective
aspects may also come into play here. For example, when a
stable pattern is disrupted, entropy emerges in the system and
a negative affect may result. The (living) system then self-
organizes toward regaining stability, resulting in a positive effect.
It is suggested that the action loops associated with Paleolithic

toolmaking emerged from these forms of social entrainment—
where dynamic couplings between various trajectories in the
social environment led to increasingly stable patterns of behavior
(basins of attraction) in the cultural epicycle. This permitted the
mimetic transmission of cultural knowledge without the need for
symbols, referentiality, or representation (see Tomlinson, 2015,
p. 75).

Interestingly, the idea of dynamic attending has been explored
empirically in the context of musical (i.e., metrical, rhythmic)
entrainment (Large and Jones, 1999; Jones, 2009; Large et al.,
2015). Tomlinson (2015) suggests that such dynamical models
may help to reveal the distant origins of musical rhythm in
the mimetic, emotional, and sonic-social environments jointly
enacted by the coordinated (entrained) motor patterns of early
toolmakers. This insight is supported by a range of current
research into the evolution of rhythmic behavior (Fitch, 2012;
Merchant and Bartolo, 2017; Ravignani et al., 2017). Indeed,
evolutionary musicology has often tended to explore the origins
ofmusic in terms of its vocal dimensions (i.e., music as pitch/song
production and its relationship to spoken language), and has
thus had to wrestle with the issues associated with complex vocal
learning, and its apparent absence in other primates. The focus
on rhythm, however, has shown similarities between animal and
human behavior (Fitch, 2010; Patel and Iversen, 2014; Merchant
et al., 2015; Bannan, 2016; Iversen, 2016;Wilson and Cook, 2016).
A large number of papers have also explored the deep relationship
between rhythmic behavior and social cohesion in both human
and non-human subjects (e.g., Large and Gray, 2015; Yu and
Tomonaga, 2015; Tunçgenç and Cohen, 2016; Knight et al.,
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2017). Additionally, recent studies by Ravignani et al. (2016a)
have modeled the cultural evolution of rhythm in the lab. This
research shows how, when presented with random percussive
sounds, participants tend to develop structured and recurrent
rhythms from such information, and that these patterns continue
to develop through subsequent generations of participants who
are asked to imitate the rhythms of previous generations.
Interestingly, the rhythmic patterns that emerged in this study
display six statistical universals found across different musical
cultures and traditions. This aligns with the conception of
cultural transmission based on mimesis and entrainment just
discussed. It also implies that the enactment of musical (or
music-like) behavior may not be traceable solely to the genome,
but rather arises due to a more general propensity to structure
acoustical experience in certain ways (see also Fitch, 2017).

Here it should be noted that the biocultural approach also
develops a theory about the origins of vocal musicality, albeit one
that is deeply connected to the rhythmic factors just described.
This entails the development of a repertoire of “gesture-
calls” similar to those found in modern primates and many
mammalian species (grunts, pants-hoots, growls, howls, barking,
and so on; see Tomlinson, 2015, p. 89–123). These do not involve
the abstract, symbolic-representational, and combinatorial
properties employed by modern languages. Rather, they are
tightly coupled with the same mimetic, emotional, and embodied
forms of communication that characterize pre-human tool-
making. It is suggested that the vocal expressions associated
with these gesture-calls reflected the sonic aspects (rhythmic
and timbral) of these environments, the motor-patterns of
production, as well as the gestural and social rhythms (e.g.,
turn taking, social entrainment) that developed within the
cultural ecology. In line with this, studies show connections
between rhythmic capacities and the development of vocal
forms of communication, including language (Cummins and
Port, 1996; Cummins, 2015; Bekius et al., 2016; Ravignani
et al., 2016b). As an aside, it is also posited that the process
of knapping may have resulted in specific forms of listening
(Morley, 2013, p. 120), and that the resonant and sometimes
tonal qualities of stones and flakes may have afforded music-like
play with sound (Zubrow et al., 2001; Killin, 2016a,b)3. In
brief, these rhythmic forms of behavior may have led to proto-
musical and proto-linguistic forms of communication that arose
simultaneously.

However, as Tomlinson (2015) notes, “half a million years
ago there was no language or musicking” (p. 127). While
many music-relevant anatomical features were in place by this
period, there is no evidence that these hominins possessed
the more complex forms of combinatorial thinking required
for the hierarchical structuring of rhythm, timbre, and pitch
associated with musical activity (i.e., the kind of thinking that
is also needed to build tools specifically intended for musical
use, such as bone flutes). Rather, it is posited that proto-
musical and proto-linguistic communications were initially

3Readers may be interested to consider the studies that examine the “musical”

properties of stone artifacts and acoustical characteristics of Paleolithic

environments (see Blake and Cross, 2008).

limited to deictic co-present interactions (in-the-moment face-
to-face encounters that integrated gesture and a limited number
of vocal utterances) that incrementally developed into more
complex sequences of communicative behavior. Over time, this
led to the enactment of increasingly sophisticated forms of
joint action and social understanding (Dunbar, 1996, 2003;
Knoblich and Sebanz, 2008; Sterelny, 2012). Such developments
in the cultural loop fed forward into the coevolutionary cycle,
allowing the environmental niche to be explored in new
ways, affording previously unrecognized modes of engagement
with it. This, in turn, altered selective pressures, leading to
incremental phase transitions in the dynamics of the system,
where previous constraints were weakened and new behavioral-
cognitive phenotypes became possible. By the Upper Paleolithic
period, the growing influence of the cultural epicycle favored an
enhanced capacity to understand the actions and intentions of
others and the related capacity to think “offline,” “top down,”
or “at a distance” from immediate events (Bickerton, 1990,
2002; Carruthers and Smith, 1996; Tomasello, 1999). These
developments allowed for the marshaling of material and social
resources in new ways, leading to the creation of more complex
artifacts (e.g., musical instruments), as well as more sophisticated
types of cultural activity (e.g., ritual) and communication,
including the hierarchical and combinatorial forms required for
language and music as we know them today4.

Plastic Brains
The biocultural approach sees (musical) cognition as an emergent
property of situated embodied activity within a developing
socio-material environment. Because of this, it requires a rather
different view of cognition than the information-processing
model associated with an adapted (modular) brain (e.g.,
Fodor, 1983, 2001; Tooby and Cosmides, 1989, 1992; Pinker,
1997; Barrett and Kurzban, 2006). Indeed, if evolutionary
processes do not involve adaption to a pre-given environment,
but rather require the active participation of organisms in
shaping the environments they coevolve with—where “selection”
and “adaptation” are now understood in a contingent and
dynamically cyclical context—then it seems reasonable to suggest
that cognitive processes might not depend on genetically
programmed responses or be reducible to a collection of fixed
information-processing mechanisms in the brain. Rather, they
might entail more plastic and perhaps non-representational
characteristics that reflect the dynamic integration of brains,
bodies, objects, and socio-cultural environments (for similar
arguments see Malafouris, 2008, 2013, 2015).

In line with such concerns, scholars are questioning whether
the notion of modularity continues to have much relevance for
understanding the complexities of the human brain (e.g., Uttal,
2001; Doidge, 2007; Anderson, 2014). For example, it is suggested
that brain regions that appear to consistently correlate with
specific processes, such as Broca’s area and syntax, represent vast

4This involves the integration of phonemes and words into grammatical structures

and the development of a generative syntax that provides the “rules” for such

processes—or, likewise the organization of discrete sets of sounds, tones, and

pitches into rhythmic/formal hierarchies that could be consciously repeated or

manipulated (e.g., melodies and drumming patterns).
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areas of the cortex that may in fact develop multiple overlapping
or interlacing networks, the manifold functions of which may
appear evermore fine-grained and plastic as neural imaging
technology becomes more refined (Hagoort, 2005; Poldrack,
2006; Tettamanti and Weniger, 2006; Grahn, 2012). In relation
to this, recent research suggests the existence of “global systems”
that function in a flexible and context-dependent manner (see
Besson and Schön, 2012, p. 289–290). These do not work
independently of any other information available to the brain and
are thus non-modular (i.e., they are not discrete). Additionally,
research into various levels of biological organization is showing
that biological and cognitive processes develop in interaction
with the environment—e.g., that epigenetic factors play a central
role in the expression of genes, and that the formation of neural
connections unfolds as a function of context (Sur and Leamey,
2001; Uttal, 2001; VanOrden et al., 2001; Lickliter andHoneycutt,
2003; Panksepp, 2009). In short, the idea that brain and behavior
are best understood as linear systems decomposable into discrete
modules and corresponding functions is being replaced by more
plastic5 and dynamically interactive perspectives. Such insights
have contributed to the growing view that music cognition is the
result of non-modular cognitive developmental processes that are
driven by amore general attraction to coordinated forms of social
behavior (Trehub, 2000; Trehub and Nakata, 2001-2002; Trehub
and Hannon, 2006; see also Drake et al., 2000).

Because of this, recent decades have seen researchers turn
to “connectionist” models to account for essential cognitive
functions such as (musical) perception and learning (see Desain
and Honing, 1991, 2003; Griffith and Todd, 1999; Clarke, 2005).
Likewise, Tomlinson discusses the connectionist approach as a
way of understanding how the embodied-ecological processes of
mimesis and social entrainment contributed to the development
of music and language. Put simply, the connectionist strategy
does not rely on the idea of fixed modules, but rather on the
fact that when simple devices (such as individual neurons) are
massively interconnected in a distributed way such connections
may change and grow through “experience”—when neurons tend
to become active together, their connections are reinforced and
vice versa (Hebb, 1949). Such connectivity is thought to result in
the emergence of complex sub-systems of activity as well as global
convergences that produce system wide properties. This is often
modeled using DST and can also be understood in terms of the
oscillatory dynamics mentioned above (see Chemero, 2009).

Embodied Minds
While the connectionist approach was initially seen as an
alternative to the computational orientation, more recent
modeling has revealed the ability of complex connectionist
networks to simulate syntactic, representational, and
combinatorial cognitive processes (see Smolensky, 1990; Bechtel,
2008)—i.e., those required by the “adapted brain” hypothesis.

5For studies on music and brain plasticity (see Large and Jones, 1999; Jäncke et al.,

2001; Pantev et al., 2001; Schlaug, 2001; Münte et al., 2002; Gaser and Schlaug,

2003; Lappe et al., 2008). Additionally, clinical studies have demonstrated music’s

deep effects on the body as well as its capacity to transform or reorganize neural

structures (e.g., Bunt, 1994; Standley, 1995; Nayak et al., 2000; Tomaino, 2009;

Jovanov and Maxfield, 2011).

Such developments are attractive for some researchers as
they allow for the assumed computational-representational
nature of cognition to remain while accommodating the
growing evidence around brain plasticity and dynamism
(Chalmers, 1990; Smolensky, 1990; Dennett, 1991; Clark,
1997; on compositionality see van Gelder, 1990). However,
others maintain that because the brain’s connectivity cannot
be separated from its dynamic history of coupling with
the body and the environment, living cognition is not best
understood as strictly limited to in-the-brain computations and
representational content (Varela et al., 1991; Thompson, 2007;
Chemero, 2009; Hutto and Myin, 2012).

To better understand what this means for the biocultural
approach to music’s origins, it may be useful to consider
Tomlinson’s (2015, p. 129–139) reading of Cheney and Seyfarth’s
(2008) research into the social lives of baboons. As Tomlinson
notes, observations of baboon vocal and gestural interactions
lead Cheney and Seyfarth to suggest that the social behavior
of these animals is indicative of an underlying hierarchical
and syntactic-representational cognitive structure—one that is
continuous with the Fodorian notion of “the language of
thought” or “mentalese” (a process of non- or pre-conscious
symbolic manipulation in the brain according to syntactic rules).
This, they suggest, may reveal a deep evolutionary connection
between linguistic processing and social intelligence—where
linguistic-computational processes are thought to underpin
social cognition even if no spoken or symbolic language is present
(as with baboons and our pre-human ancestors; cf. Barrett,
forthcoming). However, Cheney and Seyfarth also hint at another
possibility, where a more plastic and dynamic connectionist
framework comes into play. The idea here is that once a system
learns to organize itself in various ways, the patterns it develops
can be recognized by the system in association with various
things and relationships and thus may be said to “represent”
them6. For this reason, connectionist processes are sometimes
thought to be “sub-symbolic” in that they provide a link between
biological processes at lower levels and representational processes
at higher ones (Varela et al., 1991, p. 100; Smolensky, 1988).
In line with this, Cheney and Seyfarth (2008) suggest that as
animals engage with their environments neural networks could
be reinforced leading to multimodal forms of “distributed neural
representation” (p. 241; see also Barsalou, 2005; Tomlinson, 2015,
p. 133). As Tomlinson (2015) points out, this implies something
less abstract and more concretely embodied and ecological:

[A] quite literal re-representing, a solidifying, affirming, salience-

forming set of neural tautologies. There is no reliance on

abstracted social identities such as those humans conceive, on a

mysterious language of mind that does the representing, or on

baboon comprehension of causality, proposition, and predication.

In their place are the accretion of intrabrain and interbrain

networks and the responses they enable in face of situations

that are both familiar and less so. Networks are, within sheer

biological constraints, products of environmental affordances,

forged through the repeated patterns of an organism’s interaction

with the sociomaterial surroundings. [...] All the intricacy Cheney

6See Toiviainen (2000) for a discussion of this in the context of music AI.
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and Seyfarth find in baboon sociality may well be explained [...]

without recourse to anything like mentalese (p. 135–136; italics

original).

Similarly, when Tomlinson (2015) refers to the mimetic nature of
the developing proto-musical environments, he clarifies that the
action loops associated with this may indeed be representational,
but not in the sense of mental templates or propositions.
Rather, following Donald (2001), Tomlinson comments that
the notion of “representation” employed here may entail little
more “than the rise to salience of an aspect of a hominin’s
environment—in this case an enacted sequence of physical
gestures imprinting itself in neural networks that fire again when
repeated. Or [...] a set of interconnected neural oscillations”
(p. 73–74).

It is suggested that this revised conception of representation
might be more conducive to understanding cognition across
a wider range of developmental and phylogenetic contexts.
The problem with applying the more traditional approach
associated with computational psychology is that it tends
to encourage a kind of “reverse engineering, retrospectively
projecting human capacities onto earlier hominins or onto
nonhuman species understood as proxies for our ancestors”
(Tomlinson, 2015, p. 138). This critique resonates with the
work of Barrett (2011), who discusses our tendency to construct
highly anthropomorphic views of other life forms and how
this can lead to false understandings—not only of their
cognitive capacities, but also of the nature and origins of
human minds. Similarly, it is argued that the traditional
assumption that “cognition” necessarily involves some form of
linguistic competence (syntax, propositional thought, symbolic
representation, and other forms of abstract “mental gymnastics”)
has tended to overshadow the more fundamental embodied and
emotional aspects of living meaning making in human cognition
(Johnson, 2007). This extends to music, which over the past
three decades has been examined with a special emphasis on its
relationship to linguistic capacities in cognitive and evolutionary
contexts (Patel, 2008; Rebuschat et al., 2012; van der Schyff,
2015).

Now, all of this is not meant to imply that research into
the (cognitive and evolutionary) relationship between music
and language should be abandoned. This is an important
area of inquiry and should continue to be investigated.
However, other developmental and socio-cultural factors are
receiving growing attention from researchers. This includes
accounts that explore the dynamic, ecological, and embodied
nature of musical experience (e.g., Large and Jones, 1999;
Reybrouck, 2005; Leman, 2007; Krueger, 2013; van der Schyff,
2015; Godøy et al., 2016). As we began to consider above,
while music and language both involve hierarchical and
combinatorial forms of thought, it may be that both emerge
from more domain general capacities and proclivities related
to the ways embodied-affective relationships are generated
within socio-material environments (Johnson, 2007). For some
scholars, this implies that the symbolic-representational and
propositional forms of cognition associated with language may
be derivative rather than primary (see Hutto and Myin, 2012,
2017). As such, the origins of cognition might not be found

in brain-bound computations and symbolic representations,
but rather in the self-organizing dynamics associated with
biological development itself—in the cycles of action and
perception that are directly linked to an organism’s ongoing
history of embodied engagement with its environment. This
recalls the coevolution cycle discussed above, but it may
also be considered in the context of ontogenesis—e.g., how
infants enact meaningful realities through embodied and
affective interactivity with their socio-material niche (see
Bateson, 1975; Service, 1984; Dissanayake, 2000; Reddy et al.,
2013).

Such insights are not lost on Tomlinson (2015), who
highlights the continuity between the embodied activities of
Paleolithic tool makers and cognition as such—where cognition
might in fact be rooted in interactions with the environment
that over time result in increasingly complex extensions of
individual embodied minds into the broader cognitive ecology
(e.g., via mimesis and social “rhythmic” entrainment). Here
Tomlinson also entertains the possibility that the self-organizing
(or “self-initiating” as he sometimes refers to it) nature of the
activities discussed above might not need to be understood in
representational terms at all. However, he does not go much
further than this general suggestion. This is perhaps somewhat
surprising as he does, here and there, draw on the notion
of “affordances” and the field of ecological psychology it is
associated with—an explicitly non-representational approach to
cognition in its original version (Gibson, 1966, 1979; more on this
shortly).

Once Tomlinson outlines the deeply embodied, ecological,
and socially interactive precursors of musical behavior, he then
turns to explain music cognition using generative (e.g., Lerdahl
and Jackendoff, 1983) and prediction- or anticipation-based
models (e.g., Huron, 2006) that focus on the (internal) processing
of musical stimuli and the behavioral responses they lead to.
These approaches are relevant to the discussion as they focus
on the more abstract and combinatorial ways the modern
human mind processes musical events. We would like to suggest,
however, that future contributions might benefit by exploring
a wider range of perspectives drawn from embodied cognitive
science and related perspectives in music cognition. With this
in mind, we now turn to discuss how insights associated with
the enactive approach to cognition might help to support and
advance many of the claims made by Tomlinson (2015) and the
biocultural approach more generally.

THE ENACTIVE PERSPECTIVE

The enactive approach to cognition was originally introduced
by Varela et al. (1991) as a counter to the then dominant
information-processing model of mind and the adaptationist
approach to biological evolution7. Like the biocultural model, it
develops the insights of developmental systems theory and DST,
and is inspired by the work of Gibson (1966, 1979). Gibson’s
“ecological psychology” asks us to rethink the relationship

7It should be noted enactivism also has an antecedent in work by Bruner (1964)

who coined the term.
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between cognitive systems and their environment. As Chemero
(2009) discusses, this can be understood in terms of three
main tenets. The first posits that perception is direct (i.e., it is
not mediated by representational mental content). The second
argues that perception is not first and foremost for information
gathering, but is for the guidance of action—for actively engaging
with the world. Following from these, the third tenet claims
that perception is of “affordances”—or the possibilities for
action offered by the environment in relation to the corporeal
complexity of the perceiving organism (e.g., a chair affords sitting
for a child or an adult, but not for an infant or a fish; Gibson,
1979).

While sympathetic with the three core tenets of the
Gibsonian approach, some scholars suggest that the conception
of affordances associated with it is problematic when it implies
that they are intrinsic features of the environment (e.g., Varela
et al., 1991, p. 192–219; for a discussion see Chemero, 2009, p.
135–162). This, it is argued, does not give enough attention to
the active role living creatures play in shaping the worlds they
inhabit, leading “to a research strategy in which one attempts to
build an ecological theory of perception entirely from the side
of the environment. Such a research strategy ignores not only
the structural unity of the animal but also the codetermination
of animal and environment” (Varela et al., 1991, p. 204–205).
In brief, the enactivist perspective posits a revised interpretation
of affordances that more clearly integrates corporeal dimensions
and the engaged perceptual activity of cognitive agents (Varela
et al., 1991; see also Nöe, 2006; Chemero, 2009; Barrett, 2011;
Schiavio, 2016). As we discuss next, this approach allows for a
view of cognition that is not wholly driven by the environment—
nor by internal representations—but rather by the embodied
activity of living agents. As such, it may allow us to further
develop the corporeal and ecological concerns that drive the
biocultural model.

Where There Is Life There Is Mind
One of the most central claims of the enactive perspective
concerns the deep continuity between mind and life, where
cognition is understood to originate in the self-organizing
activity of living biological systems (Maturana and Varela,
1980, 1984; Varela et al., 1991; Thompson, 2007; Di Paolo
et al., 2017). Most primarily, this involves the development and
maintenance of a bounded metabolism (Jonas, 1966; Bourgine
and Stewart, 2004; Thompson, 2007), but it also requires the
(meta-metabolic) ability of the organism to move and interact
with the environment in ways that are relevant to its survival (van
Duijn et al., 2006; Egbert et al., 2010; Di Paolo et al., 2017; Barrett,
forthcoming). Furthermore, because such fundamental life-
processes occur under precarious conditions (Kyselo, 2014), they
cannot be fully understood in an indifferent way. Rather, basic
cognitive activity is characterized by a “primordial affectivity”
that motivates relevant action (Colombetti, 2014). By this
view, a living creature “makes sense” of the world through
affectively motivated action-as-perception and, in the process,
constructs a viable niche (Weber and Varela, 2002; Di Paolo,
2005; Reybrouck, 2005, 2013; Colombetti, 2010; Di Paolo et al.,
2017). This involves the enactment of affordances—which are

conceived of as emergent properties associated with the dynamic
(evolutionary and ontogenetic) history of structural coupling
between organisms and their environments8 (Varela, 1988;
Varela et al., 1991; Chemero, 2009; Barrett, 2011; Schiavio,
2016). Importantly, such basic sense-making processes do not
involve the representational recovery of an external reality in
the head (i.e., mental content). Rather, they are rooted in direct
embodied engagement with the environment (Varela et al., 1991;
Thompson, 2007)9.

In brief, the enactive approach explores cognition in terms
of the self-organizing and adaptive sense-making activities
by which organisms enact survival-relevant relationships and
possibilities for action (i.e., affordances) within a contingent
milieu (Thompson, 2007). This constitutes the fundamental
cognitive behavior of living embodied minds. Moreover, this
perspective traces a continuity between the basic affectively
motivated sense-making of simpler organisms and the richer
manifestations of mind found in more complex biological
forms (Di Paolo et al., 2017). In other words, where the
meaningful actions of single-celled and other simple creatures
are associated with factors related to nutrition and reproduction,
more complicated creatures will engage in ever richer forms of
sense making activity and thus exhibit a wider range of cognitive-
emotional behaviors (Froese and Di Paolo, 2011). For social
animals, this may include “participatory” forms of sense-making
that involve the enactment of emotional-affective and empathic
modes of communication between agents and social groups
(mimesis), and that coincide with the development of shared
repertoires of coordinated action (entrainment; see De Jaegher
and Di Paolo, 2007; Di Paolo, 2009). With this in mind, we
suggest that an enactive framework may provide a useful way of
understanding human musical activities as continuous with, but
not reducible to, the fundamental forms of self-organizing and
emotionally driven action-as-perception that characterize living
(participatory) sense-making more generally (van der Schyff,
2015; Loaiza, 2016; Schiavio and De Jaegher, 2017)10. As such,

8The symbiotic and co-emergent relationship between honeybees and flowers is

an excellent example of this. Here autonomous organisms exist as environments to

each other—the development of their phenotypes are inextricably enmeshed over

evolutionary time (Varela et al., 1991; Hutto and Myin, 2012).
9This, of course, is not to say that the brain does not play an important role

cognitive processes. However, from the enactive perspective, cognition is not

limited to the brain—brain, body, and world are different aspects of an integrated

cognitive system that functions in a non-linear way. Barrett (2011, p. 57–93) offers

many examples that show how creatures with simple neural organizations are

nevertheless able to engage in complex intelligent behaviours by using their bodies

and environmental features as part of their cognitive systems (see also Brooks,

1991). In line with this, DST research into forms of problem solving and cognitive

development associated with coordinated bodily activity have revealed that many

of these processes can also be accurately described without necessarily having to

recruit representational content (Thelen and Smith, 1994; Kelso, 1995; Chemero,

2009). Indeed, the DST equations employed to model such phenomena are neutral

regarding representations. It is argued, therefore, that evoking representation may

introduce unnecessary complications (see Chemero, 2009, p. 68–75).
10Among other things, this orientation has begun to offer insights into the

ways the basic goal directed and self-organizing dynamics discussed above

might be extended to living musical situations that are not life threatening in

the literal sense, but that nevertheless require constant care and attention to

maintain. For example, think of a performing string quartet. Each member must

continuously adapt to the evolving musical environment, drawing on different
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it appears to be well positioned to support and extend the
biocultural model.

Enactivism Meets the Biocultural
Perspective
The enactive approach to cognition aligns with the biocultural
model in several ways. Both draw on developmental systems
theory and DST. And both embrace a circular and co-emergent
view of organism and environment, as well as a deeply embodied
perspective on cognition. Because the enactive approach traces
cognition to the fundamental biological concerns shared by all
forms of life, it may also help us avoid the anthropomorphizing
tendencies noted above (e.g., imposing language-like capacities
on non- or pre-human animals; but see De Jesus, 2015, 2016;
Cummins and De Jesus, 2016), and thus better understand how
cognitive capacities rooted in bodily action might ground the
development of music and other cultural activities (Barrett, 2011;
Tomlinson, 2015).

In connection with this, researchers drawing on enactivist
theory are using DST models to examine bio-cognitive processes
in terms of the non-linear couplings that occur between:

(i) the body—the development of muscular linkages and
repertoires of corporeal articulation.

(ii) the brain—the emergence of patterned or recurrent (i.e.,
convergent) trajectories in neural activity.

(iii) the environment—the enactment of stable relationships and
coordinated behavior within the socio-material ecology.

This approach is being explored across a range of areas (see
Fogel and Thelen, 1987; Laible and Thompson, 2000; Hsu and
Fogel, 2003; Camras and Witherington, 2005), including, for
example, emotion research (Lewis and Granic, 2000; Colombetti,
2014), studies of social cognition and inter subjectivity (for
a detailed discussion see Froese, forthcoming), and musical
creativity (Walton et al., 2014, 2015). We suggest that similar
approaches might be employed in conjunction with existing
knowledge of early hominin anatomical and social structure,
evidence from the archeological record, as well as comparative
studies with other species and existing musical activities. This
could also be developed alongside recent studies of how musical
environments and behavior affect the expression of genes and
gene groups, and how this might recursively influence behavioral
and ecological factors (see Bittman et al., 2005, 2013; Schneck and
Berger, 2006; Laland et al., 2010; Kanduri et al., 2015; Skinner
et al., 2015).

Additionally, while recent theory associated with “radical
enactivism” (Hutto and Myin, 2012) argues that so-called “basic
minds” do not themselves possess any form of representational
content, it also suggests that culture and language impose
certain constraints that result in cognitive activities that may

forms of embodied, emotional-affective/cognitive capacities to communicate,

develop shared affordances, and maintain the musical ecology they co-create (this

example is developed in detail by Salice et al., 2017; see also Krueger, 2014; Schiavio

and Høffding, 2015). Similar studies byWalton et al. (2014, 2015) draw on enactive

and dynamical systems theory to better understand the real-time dynamics of

interacting musical agents in creative improvisational contexts.

be understood as content bearing (this echoes the suggestion
introduced above regarding the possible non-primary or
“secondary” status of representational cognition; see Hutto and
Myin, 2017). The explanatory advantages of this approach are
currently a subject of debate. Nevertheless, the insights that
arise from this discussion might shed new light on the cultural
epicycles discussed above. As Tomlinson (2015) points out,
although musical activity is not fundamentally symbolic or
representational itself, it necessarily occurs and develops within
cultural worlds of symbols and language. Put simply, the debate
surrounding radical enactivism could offer new perspectives
on how, over various developmental periods, cultural being
might simultaneously constrain, and be driven by, the non-
symbolic, social-affective, and embodied forms of cognition that
characterize musical activity.

Another important possibility for how the enactive
orientation might contribute to the biocultural approach
involves the recently developed 4E framework, which sees
cognition in terms of four overlapping dimensions—embodied,
embedded, enactive, and extended (Menary, 2010a; Newen et al.,
2017). The embodied dimension explores the central role the
body plays in driving cognitive processes. This is captured,
for example, in the description of the early Paleolithic tool
making societies, where the reciprocal influences of sight,
sound, and coordinated movement lead to the production of
artifacts with specific characteristics. Such forms of embodied
activity also formed the basis from which more complex forms
of thought and communication emerged later. As we also
considered, the biocultural model explores how such embodied
factors arise in specific environments, leading to stable and
recurrent patterns of activity where bodily, neural, and ecological
trajectories converge. This highlights the embedded dimension,
which concerns the ecological and socio-cultural factors that
co-constitute situated cognitive activity. The biocultural model
explores this in terms of the sonic, visual, tactile and emotional-
mimetic nature of the niches enacted by our early ancestors,
as well as the growing influence of the cultural epicycle on
the cognitive ecology. The enactive dimension, as we have
seen, concerns the self-organizing nature of living systems,
and describes the active role organisms play in shaping the
environments they inhabit. Such modes of activity (which
are described as “sense-making”) are explored over a range
of timescales (brief encounters, ontogenesis, evolutionary
development), closely aligning with the coevolutionary feedback
cycle discussed above. As enactivists equate “sense-making”
with “cognition” (Thompson, 2007; De Jaegher, 2013), it may
be argued that mental life cannot be limited to the brains or
bodies of organisms: It extends into the environments in which
cognitive processes play out. In line with this, the extended
dimension explores how many cognitive processes involve
coupling with other agents (mimesis, social entrainment,
participatory sense-making) or with non-biological objects or
cultural artifacts (tools, notebooks, musical instruments; see
Menary, 2010b; Malafouris, 2013, 2015). While Tomlinson
(2015) makes no mention of enactivism or this 4E framework,
he does, as we have seen, discuss how cognitive processes
emerged and developed in our Paleolithic ancestors through
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embodied activity that was situated within a milieu that they
actively shaped. He also argues that such activity necessarily
involved the coordination of multiple agents and the “extension”
of individual minds into the socio-material environment. We
suggest, therefore, that a 4E approach might be useful in terms of
organizing theoretical concepts and for framing and interpreting
relevant empirical research.

The 4E framework is currently being developed by a
handful of scholars in association with musical cognition
(e.g., Krueger, 2014, 2016; Schiavio and Altenmüller, 2015;
van der Schyff, 2017; Linson and Clarke, forthcoming). It is
also explored in biological contexts by Barrett (2011, 2015a,b,
forthcoming) as an alternative to the brain bound (and arguably
anthropomorphizing) approach of traditional computationalism.
Additionally, the 4E approach aligns with, and could be used
to integrate, the corporeal, neural, and environmental levels
of investigation associated with contemporary DST research in
musical contexts. Therefore, it could help model how these
factors contributed to the development of musical behavior in
pre- and early human societies. Likewise, this approach might
also have interesting implications for the laboratory modeling
of cultural rhythmic transmission. As we began to discuss
above, experiments by Ravignani et al. (2016a) examine how
individuals trying to imitate random drumming sequences learn
from each other in independent transmission chains—where
the attempts of one participant become the training set for
the next subject. This research aligns with the biocultural and
enactive perspectives when it suggests that cultural development
is not the product of genetic programming, but is guided by
more general dynamical processes and constraints that allow
for a range of possibilities. A 4E approach might develop
the parameters of such studies to include the manipulation
of social environmental (i.e., embedded + extended) factors—
possibly exploring how groups of participants (rather than
chains of individual drummers) collaboratively make sense of
their sonic environments and develop rhythmic patterns in
real time, and how the shared environments that result are
transmitted and developed (enacted) by the following cohort.
Additionally, it might be interesting to introduce different
instruments and methods of sound making it to the environment
to see how this affects the results. Lastly, a 4E approach could
also include the analysis of video and audio recordings to better
understand the relationship between the (embodied) motor,
sonic, and socio-material factors involved in the enactment
of “rhythmic cultures”11. If it is indeed the case that it is
joint bodily action that drove cognitive and cultural processes
in our ancestors, then it would be interesting to see how
drumming movements shape shared learning environments,
and how they develop into new more structured ones (more
efficient and easier to imitate) as the rhythmic patterns are
transmitted.

11A relevant example of approaches involving the integration of video and audio

documentation, and DST/4E analysis, may be found in the recent work by Walton

et al. (2014, 2015) that examines perceptions of creativity in interacting musical

improvisers (see also Borgo, 2005; Laroche and Kaddouch, 2015). Note that these

studies also include a phenomenological dimension that incorporates first-person

accounts of the participants.

CONCLUSION

We have offered here only a few tentative possibilities for how
the enactive and 4E orientation might extend the biocultural
approach to the origins and nature of human musicality.
We hope that the ideas we have discussed here will inspire
future work that explores this relationship more fully. Along
these lines, readers may be interested to consider recent
work by Malafouris (2008, 2013, 2015), who develops enactive
and 4E principles to better understand how brains, bodies,
and objects interact to form cognitive ecologies. Malafouris
expands the idea of neural plasticity discussed above to
include the domain of objects, tools, and culture. In doing
so he posits a notion of “metaplasticity” that demands an
“historical ontology” of different forms of material engagement
(Malafouris, 2013, 2015). This is considered at the intersection
of neuroscience, archeology, 4E cognition, and approaches to
biological evolution that are closely aligned with developmental
systems theory. In many ways, Malafouris’ perspective sums up
the interests and aspirations of the biocultural approach. He
writes,

I propose to accept the fact that human cognitive and emotional

states literally comprise elements in their surrounding material

environment. Our attention, therefore, should shift from the

distinction of “mind” and “matter” or “in” and “out,” toward

developing common relational ways of thinking about the

complex interactions among brain, body, and world. If we

succeed, traditional ways of doing cognitive science should

change, and the change will stretch far beyond the context of

cognitive archaeology and human evolution (Malafouris, 2015, p.

366).

With this in mind, we would like to close by briefly mentioning
some ontological and ethical implications an enactive-biocultural
model might have for practical areas like music education.
If music is neither a pleasure technology, nor the result
of some strict adaptationist process—but rather a biocultural
phenomenon rooted in the dynamics of joint action—then
the ways we approach it in practice (e.g., music education,
musicology, performance, music therapy, and so on) should
reflect this fundamental existential reality. In other words, this
approach opens a perspective on what it means to be and become
musical that is no longer based in prescriptive developmental
processes, adapted cognitive modules, and correspondence to
pre-given stimuli (e.g., music as the reproduction of a score; see
Small, 1999). Instead, it highlights the plastic, creative, situated,
participatory, improvisational, embodied, empathic, and world-
making nature of human musicality. It may therefore offer
support to a growing number of theorists who argue that
we have tended to rely on disembodied, depersonalized, and
highly “technicist” approaches to musical learning (Regelski,
2002, 2016; Borgo, 2007; Elliott and Silverman, 2015), and
that this orientation has reduced the ontological status of
music students, teachers, listeners, and performers to mere
responders, consumers, and reproducers (van der Schyff et al.,
2016). Although this cannot be explored in detail here, it is
an example of how alternative perspectives on the evolution
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and nature of human (musical) cognition could inspire new
ways of thinking in practical areas. In all, then, we hope that
the biocultural and enactive approaches will continue to be
developed in musical contexts to gain richer understandings
of the origins and meaning of musicality for the human
animal.
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