
ORIGINAL RESEARCH
published: 29 September 2017
doi: 10.3389/fnins.2017.00536

Frontiers in Neuroscience | www.frontiersin.org 1 September 2017 | Volume 11 | Article 536

Edited by:

V. S. Chandrasekhar Pammi,

Allahabad University, India

Reviewed by:

Arvind Sahay,

Indian Institute of Management

Ahmedabad, India

Britt Anderson,

University of Waterloo, Canada

*Correspondence:

Maria G. Ceravolo

m.g.ceravolo@univpm.it

Cinzia Di Dio

cinzia.didio@unicatt.it

Specialty section:

This article was submitted to

Decision Neuroscience,

a section of the journal

Frontiers in Neuroscience

Received: 26 May 2017

Accepted: 14 September 2017

Published: 29 September 2017

Citation:

Raggetti G, Ceravolo MG, Fattobene L

and Di Dio C (2017) Neural Correlates

of Direct Access Trading in a Real

Stock Market: An fMRI Investigation.

Front. Neurosci. 11:536.

doi: 10.3389/fnins.2017.00536

Neural Correlates of Direct Access
Trading in a Real Stock Market: An
fMRI Investigation

GianMario Raggetti 1, 2, Maria G. Ceravolo 1, 3*, Lucrezia Fattobene 2, 3 and Cinzia Di Dio 4*

1Centre for Health Care Management, School of Medicine, Università Politecnica delle Marche, Ancona, Italy, 2Department

of Management, School of Economics, Università Politecnica delle Marche, Ancona, Italy, 3Department of Experimental and

Clinical Medicine, School of Medicine, Università Politecnica delle Marche, Ancona, Italy, 4Department of Psychology,

Università Cattolica del Sacro Cuore, Milan, Italy

Background: While financial decision making has been barely explored, no study has

previously investigated the neural correlates of individual decisions made by professional

traders involved in real stock market negotiations, using their own financial resources.

Aim: We sought to detect how different brain areas are modulated by factors like age,

expertise, psychological profile (speculative risk seeking or aversion) and, eventually, size

and type (Buy/Sell) of stock negotiations, made through Direct Access Trading (DAT)

platforms.

Subjects and methods: Twenty male traders underwent fMRI while negotiating in the

Italian stock market using their own preferred trading platform.

Results: At least 20 decision events were collected during each fMRI session. Risk

averse traders performed a lower number of financial transactions with respect to risk

seekers, with a lower average economic value, but with a higher rate of filled proposals.

Activations were observed in cortical and subcortical areas traditionally involved in

decision processes, including the ventrolateral and dorsolateral prefrontal cortex (vlPFC,

dlPFC), the posterior parietal cortex (PPC), the nucleus accumbens (NAcc), and dorsal

striatum. Regression analysis indicated an important role of age in modulating activation

of left NAcc, while traders’ expertise was negatively related to activation of vlPFC. High

value transactions were associated with a stronger activation of the right PPC when

subjects’ buy rather than sell. The success of the trading activity, based on a large number

of filled transactions, was related with higher activation of vlPFC and dlPFC. Independent

of chronological and professional age, traders differed in their attitude to DAT, with

distinct brain activity profiles being detectable during fMRI sessions. Those subjects who

described themselves as very self-confident, showed a lower or absent activation of

both the caudate nucleus and the dlPFC, while more reflexive traders showed greater

activation of areas involved in strategic decision making.

Discussion: The neural correlates in DAT are similar to those observed in other

decision making contexts. Trading is handled as a well-learned automatic behavior by

expert traders; for those who mostly rely on heuristics, cognitive effort decreases, and

transaction speed increases, but decision efficiency lowers following a poor involvement

of the dlPFC.
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INTRODUCTION

According to the Efficient Market Theory (EMT), stock market
prices should reflect the influence of all available information
at a given time. The first of the three basic hypotheses of this
theory assumes investors are rational when they use information;
the second assumes that they maximize expected utility and
the third that if some investors behave irrationally, equilibrium
prices deviates, but only in the short-term, because of the offset
effects due to the random actions of other irrational traders
or to the trades of rational “arbitrageurs.” However, systematic
violations from rational behavior and continuous stock market
crashes reveal the poor level of investor’s rationality questioning
the validity of traditional assumptions. In recent decades several
behavioral studies have shown the role played by insights,
heuristics, impulses, and emotions in financial decision making,
focusing, in particular, on the influence of agent’s mood in stock
market prices (Saunders, 1993; Hirshleifer and Shumway, 2003),
of individual biases, such as myopic loss aversion (Benartzi
and Thaler, 1995; Gneezy and Potters, 1997), disposition effect
(Odean, 1998), and overconfidence in both trading activity
(Barber and Odean, 2000; Gervais and Odean, 2001; Grinblatt
and Keloharju, 2009), and managerial choices (Heaton, 2002;
Malmendier and Tate, 2005), and so on. Recent studies have
demonstrated the neural correlates of financial decision making.
Researchers are shedding light on the neural mechanism related
to risk, uncertainty and ambiguity (for a review see: d’Acremont
and Bossaerts, 2008; Mohr et al., 2010; Burke and Tobler,
2011; Bach and Dolan, 2012). to the personal representation of
expected reward (for a review see: Clithero et al., 2008; Schultz,
2008), to market bubbles (De Martino et al., 2013), to the nature
of trader intuition (Bruguier et al., 2010), to lending decisions
(Genevsky and Knutson, 2015), or to the origin of the disposition
effect (Frydman et al., 2014).

Until now, few studies have been focused on the neural aspects
of traders’ behavior in financial decision making. These studies
recorded both brain activity and behavioral data using different
methods but most of them, and surely, those conducted with
fMRI, referred to stock markets simulated in laboratory. The
analyses were made using virtual money and often involved
participants with a much lower level of expertise than actual
practitioners. Arguably, the results obtained are different from
those that could be collected during decisions assumed in a
real scenario, when people use their own (real) money (Smith
and Walker, 1993; Camerer and Hogarth, 1999; Hertwig and
Ortmann, 2001; Harrison and Rutström, 2008; Hensher, 2010;
Vlaev, 2012). Lo and Repin (2002) recorded physiological data
to link emotions and decision making in traders. They found that
deviations of price, spread, and return, and trend reversal of price
and spread, elicited skin conductance responses and abrupted
variations in body temperature, while the volatility in share prices
was related with blood volume pulses; they collected a higher
number of physiological responses among less experienced
traders. Coates and Herbert (2008) analyzed saliva’s sample of 17
traders for 8 days to explore the link between testosterone and
cortisol levels with financial returns and financial uncertainty,
respectively. Their findings revealed the ability of morning

testosterone to predict traders’ profitability while the increase in
cortisol was associated to market volatility and trading results
variability. Coates et al. (2009) analyzed the second-to-fourth
digit length ratio of male traders observing that it predicts
both long-term profitability and years of permanence in the
business. Kuhnen and Knutson (2011) investigated the influence
of affective states on risk preferences and trading decisions,
revealing that negative stimuli, either endogenous or exogenous,
promote risk averse decisions while positive ones induce people
to risk seeking behavior. Frydman et al. (2014) recorded students’
brain activity, through fMRI, during negotiations in a virtual
stock market, confirming the realization utility hypothesis. Lima
Filho et al. (2015), using EEG, highlighted the involvement of
cortical areas and their interconnections during traders’ decision-
making processes: they revealed that purchase and sale orders
trigger different neuronal circuits. Huber et al. (2015) explored
the neural correlates of informational cascade in a hypothetical
decision scenario that included the presence of two fictitious
traders. Results revealed that people tended to overrate private
information as compared with social information and that when
the former is conflicting with the latter, activations of the brain
regions related to risk and uncertainty are detected.

In this study, we aimed at adding value in the literature
by overcoming the limitation of artificial contexts and we
sought to investigate the neural correlates of financial decision
making considering a sample of professional financial traders
who operated in the real Stock Market Exchange, using their
own financial resources, while lying in a fMRI scanner. We
were especially interested in unveiling the relationship between
the activation of brain areas in the time periods preceding any
decision, and the multiple demographical and contextual factors,
supposed to influence decision making; moreover, we wanted to
study such relationship in a scenario as much real as possible, to
enhance motivation and arousal.

METHODS

Participants and Design
Subjects were healthy, right-handed males that operated as
professional traders. In particular, participants were intra-day
traders—who open and close a position in the same trading day—
and scalpers—who hold positions for very short time intervals
and aim at making profit from bid-ask spreads. Participants were
recruited through an advertisement circulated by IW Bank in
Milan. The original sample was composed of 22 subjects; two
of them were not considered in the analysis because of their
poor performance during the trading sessions. Therefore, all
data refer to a final sample of 20 subjects. They were aged 27–
51 years (mean: 40.3 ± 7.8) and declared 5–15 years trading
experience (mean: 9.9 ± 2.3). They agreed to participate in the
study and use their own personal bank-account at IW-Bank
agency in Milan. Subjects suffering from claustrophobia or any
other contraindication to be exposed to magnetic fields were
excluded. A behavioral questionnaire was distributed to traders
1 month after the fMRI session, in order to look for the following
personal and professional aspects:
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a. Relevance of trading activity on the annual overall personal
income;

b. Preferred financial markets and products;
c. Type, volume and frequency of transactions executed in a

usual trading session;
d. Surplus, deficit, or break-even, reached in the last year of

trading activity.
e. Behavioral approach to trading (whether methodical and

respectful of traditional operative rules, OR creative and
influenced by mood)

f. Perceived emotional involvement during the three following
phases: (1) data and information processing, (2) operative
decision, (3) negotiation conclusion

g. Personal vision of the financial market, as a “network
of professional competitors to beat” OR as a “source of
information and data to process for profit.”

We avoided administering the questionnaire in close temporal
contiguity with the fMRI session, as we believed that this
would have influenced either the trading behavior, in case of
questionnaire filled before the experiment, or the answers to the
interview, in the opposite case. The questionnaire is available in
its Italian version upon request to the authors.

All the answers collected offered a psychological description
of the traders’ professional behavior, which was then compared to
the neural activation associated with decision making processes.

All traders except one claimed to have had a profitable trading
activity in the previous year. Twelve subjects declared that trading
was their only job and income source (they normally negotiate in
a continuous and exclusive way), while the others considered it
as a source of income integration.

Each trader selected only one security (they selected STM—
STM Microelectronics, CPR-Campari, 6EZO, ESZO, BP-Banco
Popolare, Minifib, Unicredit, SOPAF, TIS-Tiscali, and E7ZO).
The platforms were QuickTrade (used by 9 traders), EasyTrade
(6 cases), Sphera (2 cases), and RealTick (3 cases).

All subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by the
local Ethics committee of the University of Parma.

Experimental Protocol
In order to implement an ecological reliable investigation
protocol, allowing traders to negotiate in the real market staying
in a fMRI scanner, several technical obstacles needed to be
overcome.

Figure 1 shows the innovative technical solutions adopted.
By wearing visors, connected through optic fiber with his

laptop placed outside the scanner room, each participant could
look at the trading book displayed on the pc screen (Figure 1,
C). Independent of the trading platform, professional traders
rely on different ways of displaying the same basic information
during their activity. These ways consist of figures (often red or
green highlighted, depending on the trend), or of graphs. Graphs
can display lines or box-and-whiskers or histograms. Each trader
usually builds his book of information by adding on the screen
multiple tabular or graphical versions of the same stock price
trends. In order to reduce variability due to book composition, we

agreed with the traders of the team that all the participants would
have faced the same kind of information. Figure 2 displays the
prototype of this book composition. The trader could negotiate
in the market using a special Track-ball (Figure 1, T), connected
with the laptop (Figure 1, T-C) located outside the fMRI room.
The computer input device allowed to control the pointer on the
display screen and to insert the decisions of opening and closing
positions, reducing movements to a minimum level. In this way,
each trader could login to his favorite DAT platform and link the
trading outcome to his own bank account. To reduce the number
of variables, the participants were requested to negotiate only
one financial asset. Every occurred gain, or loss, was recorded
immediately in the personal banking account (Figure 1, A–D)
and shown on the screen. A continuous supervision of the
participant’s activity was ensured by a professional trader, staying
outside the fMRI room (Figure 1, B). The expert in the control
room had the responsibility of controlling the trading activity
of the experimental subject, in order to help us understand
whether the Buy/Sell proposals actually reflected a professional
behavior or just expressed the subjects’ willingness of “playing the
game.” The expert never intervened during the fMRI sessions;
in two cases he alerted us concerning the poor performance
of the experimental subjects, and we excluded them from the
final data analysis. All participants performed the fMRI session
within a 30-day period (mid-November to mid-December) to
minimize the influence played by stock market volatility on
their behavior. A dedicated system allowed recording the traders’
activity synchronously with BOLD signal recording, so as to
characterize decision events (recorded through response on the
trackball) with reference to their financial meaning, as follows:

a. Name of the stock negotiated;
b. Type of financial decision event: (i) Proposal to buy (Ask); (ii)

Proposal to sell (Bid), (iii) Updating of proposals (to buy or to
sell); (iv) Deletion of proposals (to buy or to sell);

c. Value committed in each proposal;
d. Stock market price of shares traded;
e. Quantity of shares traded in each operation;
f. Time (minute and seconds) of any registered decision event;
g. Total value of each transaction executed (filled).

Thanks to the collaboration with the IT Service in Milan, we
managed to record the activity of the experimental subjects at
the same time when the fMRI sessions were carried out and
obtain all information corresponding to the trading events in an
Excel format. These data gave us the opportunity to measure:
the time interval between consecutive operations; the number of
the operations carried out during each trading session and the
relative fraction of each different type of operation; the average
and the total value of the performed transactions.

Each trader underwent one fMRI session lasting 45 min (40
min of functional scanning and five of functional rest for the basal
brain activity recording).

fMRI Data Acquisition
Anatomical T1-weighted and functional T2∗-weighted MR
images were acquired with a 3 Tesla General Electric scanner
equipped with an 8-channel receiver head-coil. Functional
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FIGURE 1 | Technical solutions to collect neural signals in fMRI scanner. The trader in the fMRI scan look at the trading book (C) and market general trends (E) through

the goggles (A). The trackball (T) allows the trader to operate in the scanner and insert his financial decisions, which directly affect his bank account (D). All the

decisions are supervised by an expert (B) located outside the fMRI room. Written consent for the publication of this image was obtained from the subject represented

in (B).

images were acquired using a T2∗-weighted gradient-echo, echo-
planar (EPI) pulse sequence (acceleration factor asset 2, 40
sequential transverse slices covering the whole brain, with a
TR time of 3,000 ms, TE = 30 ms, flip-angle = 90 degrees,
FOV = 205 × 205 mm2, inter-slice gap = 0.5mm, slice
thickness = 3mm, in-plane resolution 2.5 × 2.5 × 2.5 mm3).
At the beginning of the functional run/session a T1-weighted
anatomical scan (acceleration factor arc 2, 156 sagittal slices,
matrix 256× 256, isotropic resolution 1× 1× 1 mm3, TI= 450
ms, TR= 8,100 ms, TE= 3.2 ms, flip angle 12◦) was acquired for
each participant.

Statistical Analysis
Functional magnetic imaging data analysis was performed with
SPM8 (Statistical Parametric Mapping software; The Wellcome
Department of Imaging Neuroscience, London, UK; http://www.
fil.ion.ucl.ac.uk) running on MATLAB R2009b (The Mathworks,
Inc., Natick, MA). The first four volumes of each run were
discarded to allow for T1 equilibration effects. For each
participant, all volumes were spatially realigned to the first
volume of the first session and un-warped to correct for between-
scan motion, and a mean image from the realigned volumes
was created. The mean image was then segmented into gray,
white, and cerebrospinal fluid and spatially normalized to the
Montreal Neurological Institute (MNI) (Evans et al., 1993;
Collins et al., 1994). The derived spatial transformation by T1
normalization was applied to the realigned EPIs volumes, which
after normalization were re-sampled in 2 × 2 × 2 mm3 voxels
using trilinear interpolation in space. All functional volumes were
then spatially smoothed with a 6-mm full-width half-maximum
isotropic Gaussian kernel for the group analysis.

Data were analyzed using a random-effects model (Friston
et al., 1999a,b), implemented in a two-level procedure. In the first
level, single-subject fMRI responses were modeled in a General
Linear Model (GLM) by a design-matrix comprising the onsets
and duration of each epoch as follows:

1. The first regressor, named Response, refers to the traders’
motor response on the trackball in association with their
trading decision as described above. The motor response was
modeled as one single event lasting 0 s.

2. The second regressor, named Process, took into account the
epoch occurring 4 s before the Response, containing the
moments during which the trader elaborated his decision and,
more specifically: the proposal to buy (Ask); Proposal to sell
(Bid), Updating of proposals (to buy or to sell); Deletion of
proposals (to buy or to sell);

3. The third regressor refers to the 5 min resting state (explicit
baseline);

4. The fourth regressor, the “regressor of non-interest,” accounted
for the subject’s brain activity in all the moments excluded
from the three regressors listed above.

In the second level analysis (group-analysis), corresponding
contrast images from the first level for each participant were
entered into a flexible ANOVA with sphericity-correction for
repeated measures (Friston et al., 2002). This model considered
the pattern of activation obtained during the mini-epoch named
Process vs. rest. This model was also used for signal change
extraction at the subject level, as specified in the ROI analysis
below.

Results were thresholded at P < 0.05 family wise error (FWE)
corrected at the cluster or voxel level as appropriate (cluster
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FIGURE 2 | Example of the book of information, composed of both tabular and graphical data. All subjects looked at the chosen stock price and market trends,

displayed through this format.

size estimated with a voxel-level threshold of P-uncorrected =

0.005). The location of foci of activation is presented in the
stereotaxic space of the MNI coordinate system. Activations were
also localized with reference to cytoarchitectonical probabilistic
maps of the human brain, using the SPM-Anatomy toolbox v1.7
(Eickhoff et al., 2005).

ROI Analysis
To explore activations as a function of the demographic and
professional variables associated with our sample subjects, as
well as a function of the traders’ behavior during the online
trading activity, we further plotted the signal change in specific
regions of interest (ROIs). More specifically, 3 ROIs were
defined within the functional maps associated with the main
effects of Process vs. rest. These ROIs reflected the cluster
of activation in the ventrolateral prefrontal cortex (vlPFC; 46
50 12), dorsolateral prefrontal cortex (dlPFC; 38 44 38), and
right inferior parietal lobule (42 –56 46). Additionally, since
the regressor Process contained several operations whose merge
could have overshadowed interesting modulating effects in
emotion-related areas often found in decision making tasks,
we selected post-hoc—based on literature—two regions in this
respect: The nucleus accumbens (NAcc; –12 13 –8; e.g., Sugam

et al., 2014; Zalocusky et al., 2016) and the caudate nucleus (NC;
–10 2 14; for review, see Balleine et al., 2007). Cortical ROIs were
created with a sphere radius of 5mm, which best represented the
extension of activated voxels.

Signal change for each participant was extracted using REX
(http://web.mit.edu/swg/rex).

After creating the ROIs, a univariate analysis was carried out
to compare the changes in BOLD signal within each ROI with
each of the following parameters: age, experience, traders’ profiles
(risk seeker or risk averse), mean economic value of trader’s
transactions; economic value of total transactions, distinguishing
between buy and sell operations, time intervals between two
consecutive decisions, percentage of filled transactions over the
total transaction number. Statistical significance was set at p ≤

0.05.

RESULTS

Behavioral Results Associated with the
Trading Activity
A minimum of 20 decision events for each trader was recorded
(mean = 45.1± 35.9; range = 20–140). The mean value for each
closed (filled) transaction ranged from 185 Euros to 63,000 Euros;
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FIGURE 3 | Activations of right lateral prefrontal cortex (LPFC) and right posterior parietal cortex (PPC) from the contrast Process (4 s prior response) vs. rest.

Group-averaged statistical parametric maps are rendered onto the MNI brain template (PFDRcorr < 0.05).

(mean= 9590.3± 10079.1 Euros). The time interval between two
subsequent decision events ranged from 5 to 200 s (mean = 72.7
± 62.4 s).

Questionnaire
In order to characterize the trading attitude, the answers
collected through the questionnaire underwent factor analysis
and distinguished two subgroups of traders. The risk seekers,
that we called the Bold, were 8/20 cases: they use heuristics, are
driven by intuitions and temporary impulses, declare to like the
thrill associated with operative decisions of opening, or closing,
a personal position. The risk averse, that we called the Wise,
were 12/20 cases: they declared to stick to the rules and to
get the greatest reward from the information processing and
computational phases.

No statistically significant differences were found between the
two profiles (Bold or Wise) with respect to variables such as age,
experience, commitment. On the other hand, theWise performed
fewer financial transactions close to significance (24.8 ± 24.6)
with respect to the Bold (53 ± 45; p = 0.08), with a significantly
lower average economic value (5,091 ± 7,200 Euros vs. 14,750 ±
12,953; p= 0.05), but with a higher rate of filled proposals (40 vs.
27%).

fMRI Results
Comparing the brain activity 4 s immediately preceding the
decisional events with rest (Process), results showed an extended

enhanced activation of the right lateral prefrontal cortex
(maxima: 44 40 36; KE = 589; PFDR−corr = 0.003), and of the
posterior parietal cortex, including the inferior parietal lobule
(BA40; maxima: 42 –56 46; KE = 301; PFDR−corr = 0.048;
Figure 3).

ROI Analysis
ROI analyses were carried out to explore brain activations as
a function of the participants’ demographic and professional
variables, as well as of the traders’ behavior during the online
trading activity.Table 1 reports the descriptive statistics of BOLD
signal changes within each region of interest.

The results of the univariate analysis comparing BOLD
signal changes within the regions of interest (ROIs; see section
Statistical Analysis above) to personal and professional variables
are described in Table 2.

Experience, i.e., professional age, mainly modulated vlPFC
activity (Y = 6.644 −0.435 ∗ X; R2 = 0.239; Figure 4).
Additionally, faster decisional activity, with a high number of
transactions in short time intervals, was associated with greater
activation of the dlPFC (Y = 0.566 +0.015 ∗ X; R2 = 0.387;
Figure 5). The success of the trading activity, based on a large
number of filled transactions was related with higher activation
of both vlPFC and dlPFC.

The total amount of each transaction was related to the
BOLD signal change in the posterior Parietal cortex: high value
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TABLE 1 | Average BOLD signal changes in the regions of interest.

Mean (SD) Range (min-max)

Right vlPFC 2.421 (2.473) –1.22; 6.95

Right dlPFC 2.225 (1.91) –1.04; 5.70

Right parietal area 2.23 (2.10) –1.72; 7.33

Left Nucleus Accumbens 0.54 (1.92) –2.73; 4.99

Left Caudate Nucleus 1.47 (1.51) –1.27; 3.75

transactions were associated with a stronger activation of this
area when subjects’ buy rather than sell. Moreover, an inverse
correlation was found between age and signal changes in left
NAcc (Y= 7.002–0.162 ∗ X; R2 = 0.408; Figure 6).

Finally, the traders’ profile also proved to be an important
factor modulating brain activity. Compared to the Bold, the Wise
subjects showed significantly greater activations of areas involved
in value processing (Left caudate nucleus) and selection of final
decision (Right dlPFC), this finding being independent of age and
professional expertise (Figure 7).

DISCUSSION

This research represents the first attempt, in the current
neuroeconomics literature, to detect the neural aspects of
financial decision making through studying professional traders
involved in real stock market negotiations using their own real
money.

The recurrent and ruinous financial bubbles, monetary crisis
and stock market crashes prove a serious weakness of classic
economic and financial theories and an evident failure of
sophisticated models to describe investors’ expected behavior.
Markowitz’s Modern Portfolio Theory (Markowitz, 1952) posits
that risk can be estimated by the variability of the expected reward
(variance), regardless of the context, while, on the other hand,
reward consists only in stocks’ returns. Reality is more complex.
Risk is a complicated (and variable) mix between the probabilities
of occurrence of a future event and the economic value of the
effect (positive or negative) due to its materialization.

It is difficult to estimate the probabilities and economic values
of a future event. Difficulties increase if we consider emotional
factors, personal risk preferences, attitude to speculative
risk, personal experiences, culture, mental status, and so on
(Schiebener and Brand, 2015). Moreover, reward cannot be
always associated to monetary gains. Classical visions, in fact, fail
to take into account the role played by emotions.

With the present study we introduced an original investigation
protocol aimed at unveiling to what extent individual and
context variables affect decisions of professional traders involved
in real asset negotiations. The novelty of the research mainly
consists in the arrangement of a real market setting; in fact,
differently from current scientific investigations, we exposed our
participants to their usual trading activity, allowing them to
refer to their preferred trading platform, and weight pros and
cons of buying/selling assets using their own bank account. The

decision of pursuing such a complex goal was made in order
to overcome the limitations related to the ecological validity
of results obtained through fMRI protocols so far applied to
the study of financial decisions. In the past, many researchers
have questioned whether economic decision making can truly be
measured and generalized in such a restricted situation as that
tested in the fMRI-scanner, where only “fictive” tasks and not
“real-world” situations can be studied (Ariely and Berns, 2010;
Ayaz et al., 2013).

In this study, we succeeded in connecting the real market to
the fMRI scanner, thus providing the experimental subjects with
stimuli that were similar to those experienced in their routine
activity. We introduced several control measures/strategies in
order to reduce the huge variability expected in such a complex
investigation setting. Namely, the trading book was standardized
in order to reduce variability due to different color, shape and
format of information concerning the asset price; trading was
allowed for one preferred asset per subject, and only on the
Italian market, considering prices’ trend in a limited time period
(for 1 month). Finally, the whole trading activity carried out by
each subject during the fMRI session was recorded and judged
by expert traders in the offline condition, in order to exclude
those subjects who just “played the game,” i.e., pretended to
negotiate while limiting themselves to put forward their offer and
immediately canceling them without really buying or selling any
assets. Moreover, the continuous recording of the real market
trends during the fMRI session allowed us to synchronize the
information flow with the decisional events (as indicated by the
trader’s response on the trackball) and with BOLD signal.

During the time period that we chose to analyse, i.e., 4 s
preceding the decisional event, the participants were expected
to evaluate sensory input (market trend) based on prior
knowledge and experiences made in similar situations, and to
form an anticipation of the potential outcome on the basis of
probabilities of expected outcomes and the magnitude of the
reward in conjunction with previous experiences (Ernst et al.,
2004). Our results showed a strong activation of cortical areas
lateralized to the right hemisphere when comparing BOLD signal
during the decisional phase (4 s prior motor response) with
baseline. Cortical activations involved the posterior parietal area,
including the intraparietal lobule (IPL) and a large part of the
lateral prefrontal cortex (dorsal and ventral). These cortical areas,
playing different roles, are notably recognized in decisionmaking
processes.

Our experiences allow us to determine the predictive value
of our choices. Value representation strongly involves the role
of the orbitofrontal cortex, whereas the translation of value
attribution in a behavioral response pertains to the functional
role of the parietal cortex and, particularly, the intraparietal
lobule (IPL). More specifically, values modulate decisions in
the parietal cortex, which associates sensory information with
motor commands, guiding attention. Sensory-motor processes
and attention therefore, incorporate the value of alternative
interpretations of sensory signals that are used to guide behavior
(see, for example, Cohen and Andersen, 2002; Padoa-Schioppa
and Assad, 2006; Glimcher and Fehr, 2013). IPL, therefore,
associates sensation and potential behavior according to the
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TABLE 2 | Results of univariate analysis highlighting the strength of associations between Bold signal changes within ROIs and some personal and professional variables.

Personal and professional variables BOLD signal changes within the regions of interest

Right vlPFC Right dlPFC Right parietal area Left nucleus accumbens Left caudate nucleus

Age −2.1* −3.2**

Professional age −2.2*

Traders’ profile (Bold vs. Wise) 8.0** 13.8***

Transaction value of Ask proposal 2.1*

Transaction value of Bid proposal −2.6**

Time interval between subsequent decision events 2.2* 2.8**

Percentage of filled proposals 2.1* 2.3*

*p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 4 | Neural efficiency with experience. (A) Activation of right lateral prefrontal cortex (blue) in the contrast Process (4 s prior response) vs. rest. In red is the ROI

built within the ventrolateral prefrontal activation. Group-averaged statistical parametric maps are rendered onto the MNI brain template (PFDRcorr < 0.05). (B) The

graph shows the regression between experience and right vlPFC activation in the pre-decisional phase, representing neural efficiency with trading experience (years).

Each dot represents a subject.

expected value of a series of possible behavioral responses
(Hansen et al., 2012). Additionally, activity in IPL is associated
to the memory of past results. Single neurons response in IPL
to a specific target corresponds to the history of the relative
gains associated with that target. A greater weight is given to the

most recent events (Yang and Shadlen, 2007). Importantly, its
activity is independent of “what” (food, sex, social factors, etc.)
and modality—“how” (visual, tactile, olfactory, etc.; Deaner et al.,
2005; Hayden et al., 2007; Klein et al., 2008). Afferent signals to
IPL have been already converted in a fungible value in other areas
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FIGURE 5 | Decision latency is associated with greater cognitive control. (A) Activation of right lateral prefrontal cortex (blue) in the contrast Process (4 s prior

response) vs. rest. In red is the ROI built within the dorsolateral prefrontal activation. Activations are rendered onto the MNI brain template (PFDRcorr < 0.05). (B) The

graph shows the correlation between right dlPFC activation and decisional latency, representing decision latency in association with greater cognitive control. Each dot

represents a subject.

(e.g., the orbitofrontal cortex; see for example Padoa-Schioppa
and Assad, 2006; Padoa-Schioppa, 2007). This description of the
functional role of IPL in decision making is in line with our
results showing right IPL activation in the period right preceding
the actual decision-related motor response, and namely when
the traders processed their decision. It is not surprising that our
parietal activation was not affected by factors associated with
either the participants’ demographic and professional variables,
or by the traders’ behavioral variable during the online trading
activity (see section Methods above). IPL is deputed to compute
decisions based on expected values built upon experience and to
associate that decision to amotor command, a process that, in our
study, was emphasized by the trader’s ongoing decisional process.

Other studies have reported a similar activity to that observed
in IPL in areas, including the prefrontal cortex, caudate nucleus,

substantia nigra pars reticulata, and superior colliculus. Also in
these area the neural activity appears to be correlated either
to the probability of movement in a given direction or to the
marginal magnitude of the expected reward (Salzman et al.,
2005; Hikosaka et al., 2006). In the present study we observed
a large activation of right lateral prefrontal cortex, which is
generally associated with probability estimation of different
(relative) values assigned to the expected reward for each possible
choice (Platt and Glimcher, 1999; Poldrack et al., 1999; Weickert
et al., 2009; d’Acremont et al., 2013; Bisbing et al., 2015).
The lateral prefrontal area is generally involved in cognitive
control that allows information processing and behavior to vary
adaptively from moment to moment depending on current
goals. To better outline the functional role of the large PFC
activation found in the present study, it was subdivided in two
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FIGURE 6 | Less emotional involvement with age. (A) Region of interest created within left Nucleus Accumbens. Activation in the contrast Process (4 s prior response)

vs. rest. The ROI is rendered onto the MNI brain template. (B) The graph shows the regression between age and left NAcc activation in the pre-decisional phase,

which highlights less emotional involvement with the traders’ chronological age. Each dot represents a subject.

sectors: a dorsal and ventral one. With respect to the dorsal
part of lateral PFC, its primary role is most likely the selection
of information and preparation for motor execution (Pochon
et al., 2001; Passingham and Sakai, 2004; Sakai, 2008), as well
as potentially the monitoring and the early upregulation of
information processing in task-related sensory-motor regions, or
task networks (Kelly and Garavan, 2005; Halsband and Lange,
2006). Shallice (2004) suggested that the right dlPFC is primarily
involved in monitoring if a configured motor plan is executed
in accordance with the task goals (see also Vogt et al., 2007). Its
activation in the present study then plausibly reflects monitoring
of and attention to ongoing operations. The “attentional load”
would then represent the cognitive load associated with each
trader’s decisional process. Additionally, a recent meta-analysis
(Cieslik et al., 2013) has shown that cognitive action control
in the right dlPFC relies on differentiable neural networks
and cognitive functions. In particular, the posterior subregion
shows increased connectivity with bilateral intraparietal sulci,
whereas the anterior subregion shows increased connectivity
with the anterior cingulate cortex. Functional characterization
with quantitative forward and reverse inferences revealed that,
whereas the anterior network is more strongly associated with

attention and action inhibition processes, the posterior network
is more strongly related to action execution and working
memory.

Congruent with this idea, regression analysis carried out
in our study relating BOLD signal in dlPFC with the traders’
response latency, i.e., the interval between subsequent decisional
events, highlighted a positive correlation between signal change
and decision latency. This finding supports the relationship
between decision latency and sustainedmonitoring, which would
then translate into greater cognitive control (Petersen et al., 1998;
Shallice, 2004), which typically reduces with practice (Kelly and
Garavan, 2005; Dayan and Cohen, 2011).

Interestingly, this practice effect was observed in the vlPFC
activation profile. In fact, our regression results showed a negative
correlation between activation of vlPFC and years of trading
experience, which can be easily associated with the concept of
neural efficiency. Neural efficiency, in fact, shows in the decrease,
extent and intensity of activations in cognitive control structures
(see Babiloni et al., 2009, 2010). The ability to apply behavioral
strategies to obtain rewards efficiently and make choices based
on changes in the value of rewards is fundamental to the
adaptive control of behavior, a quality evidently needed by
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FIGURE 7 | Brain activity in the regions of interest as a function of the traders’

profile. *p < 0.01; **p < 0.001.

our expert traders during their online and continuous activity.
Rhesus monkeys with bilateral ablations of the vlPFC on tasks
that required the use of behavioral strategies to optimize the
rate with which rewards were accumulated were specifically
impaired in performing the strategy-based task, but not value-
based decision-making, which—on the other hand—is processed
in the orbitofrontal region (Baxter et al., 2009). This functional
description of vlPFC highlights the role of vlPFC in strategic
planning that, alongside the neural efficiency theory, remains
in line with our results in that traders with longer experience
are possibly equipped with pre-established strategic options and,
hence, with heuristics that allow them to efficiently respond with
a low activation cost (for a detailed meta-analysis of vlPMC, see
Levy and Wagner, 2011).

In this research we did not dissociate the different component
phases of decision-making. Therefore, the observed neural
activity refers both to the selection phase during which
information concerning price trends was assessed and valued,
as well as reward anticipation (Ernst et al., 2004). Consequently,
signal change recorded in the decisional period contained several
operations whose merge could have overshadowed interesting
modulating effects in emotion-related areas often found in
decision-making tasks. In this view, based on literature, two
further regions of interest were created to evaluate the possible
modulating effect of our trader’s profile on emotion-related
structures: the caudate nucleus (for review, see Balleine et al.,
2007)—part of the dorsal striatum—and the nucleus accumbens
(e.g., Sugam et al., 2014; Zalocusky et al., 2016)—part of the
ventral striatum. These areas, alongside the anterior insula,
the anterior cingulate cortex, posterior cingulate cortex, and
orbitofrontal cortex, are part of the choice evaluation network
(Preuschoff et al., 2006). Monetary reward anticipation typically
involves activation of ventral striatum and the most anterior
portion of the orbitofrontal cortex (Knutson et al., 2005;
Sescousse et al., 2013). On the other hand, the dorsal striatum
has long been acknowledged as an integral component of the
reward circuitry responsible for the control ofmotivated behavior
(Delgado et al., 2003). Using event-related fMRI, it was found that
dorsal striatum activity is more robust during the early phases

of learning, i.e., initial stages of trial and error learning, whereas
its signal decreases as learning progresses, suggesting an evolving
adaptation of reward feedback expectancy as the behavior-
outcome contingency becomes more predictable (Delgado et al.,
2005).

Activation of ventral striatum in our study was negatively
associated with the trader’s chronological age, suggesting
less emotional involvement with age. This finding confirms
previous observations. In fact, in 316 healthy adults aged
20–89 years, involved in a judgment task, middle-age
subjects were characterized by decreased modulation to
task-demand in subcortical regions (nucleus caudate, nucleus
accumbens, thalamus), whereas very old individuals showed
reduced modulation to task difficulty in midbrain/brainstem
regions (ventral tegmental, substantia nigra; Kennedy et al.,
2015). Hence, it has been hypothesized that activation to
cognitive demand lowers following a gradient along the
dopaminergic/nigrostriatal system, with an early manifestation
of deficits in subcortical nuclei in middle-age and then to
midbrain/brainstem dopaminergic regions in the very old.

A further interesting result was found when comparing
activation in our ROIs as a function of the participants’
trading activity. In this respect, they were divided into
those who matched what we named a Bold and a Wise
attitude to the trading activity. The Bold—or risk seekers—
declared to like the thrill associated with operative decisions
of opening, or closing, a personal position. The Wise—risk
averse—declared to stick to the rules and to get the greatest
reward from the information processing and computational
phases. Our regression analysis showed a significantly lower
activation of the dorsal striatum for the Bold compared to the
Wise.

According to mainstream theories, risky decision making
assume that the core processes involved in reaching a risky
decision include weighting each payoff or reward magnitude
by its probability and then summing the expected outcomes
(negative or positive; Rao et al., 2012). In the so-called payoff
network, the striatum is the structure most consistently reported
to be involved in the influence of reward magnitude/payoff on
the neural substrate. Although, many neuroimaging studies of
reward processes have focused on ventral striatal activation,
a growing body of literature from animal and human studies
suggests that the dorsal striatum is also involved in motivated
behaviors. While ventral striatum activity is thought to be
associated with the anticipation of larger rewards, the dorsal
striatum is expected to activate when both rewards and
punishments of larger magnitude are anticipated (Knutson et al.,
2001). Since neural activation in the ventromedial caudate
nucleus during anticipation of both gain and loss has been
found to be decreased in patients with pathological gambling,
compared with that in healthy controls (Balodis et al., 2012; Choi
et al., 2012) the observation of a reduced activity in this area
in the self-judged Bold traders, in a real-trading scenario, could
be interpreted as a potential marker of greater susceptibility of
these subjects to an addictive, more than reflexive, behavior. This
interpretation is in line with the idea of a poor engagement of the
dlPFC for cognitive control.
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Notwithstanding the fact that an ecological setting may be
regarded as a limitation of the study, due to the challenge of
facing countless independent variables, when we compared our
data to the existing literature on decision making, we observed
the activation of the same networks expected to be engaged
during speculative risky choices, i.e., a probability and a payoff
network: the former included the right lateral prefrontal cortex
and posterior parietal cortex, while the latter included the left
ventral and dorsal striatum. Moreover, brain activity in these
areas, during the pre-decisional phase, proved to be modulated
by factors like age and experience in agreement with previous
reports, while a greater cognitive control, expressed by the
involvement of the dlPFC, correlated with a longer decision time
and a greater decision efficiency.

Finally, different attitudes to direct access trading, as perceived
and witnessed by the traders involved in our experiment,
correlated with distinct brain activity profiles: in particular, a
lower or absent activation of both the caudate nucleus and the
dlPFC characterized those subjects who described themselves as
very self-confident, managing trading with a certain amount of
recklessness. It is conceivable that these subjects handle trading
as a well-learned automatic behavior, largely relying on heuristics
thus reducing to a minimum their cognitive effort. This approach
does not necessarily turns out into a success: in fact, in the so-
called Bold subjects, an intense decision activity corresponds to
a lower rate of finalized transactions, than that obtained by the
more reflexiveWise traders.

These preliminary results should prompt an update of the
classic economic vision: it is not acceptable to assume that
financial agents are always well informed, not emotionally-
dependent, conscious and rational and able to estimate perfectly
probabilities and economic value of any risk faced. The trader

who can confidentially evaluate risk via statistical models
without any influence of emotion or intuition does not exist.
These neuro-economic findings suggest the need to conduct
other neuroeconomics studies to improve traditional asset
pricing models and investors’ behavior theories, to take into
account the role of emotions and unconscious processes.
Further research developments should investigate which neural
circuits handle financial decision making and which anticipate
the final choice adopted; eventually, real-life scenarios should
become a relevant component of the experimental protocols
adopted.
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