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Brain-Computer Interfaces (BCIs) decode brain activity with the aim to establish

a direct communication channel with an external device. Albeit they have been

hailed to (re-)establish communication in persons suffering from severe motor- and/or

communication disabilities, only recently BCI applications have been challenging other

assistive technologies. Owing to their considerably increased performance and the

advent of affordable technological solutions, BCI technology is expected to trigger a

paradigm shift not only in assistive technology but also in the way we will interface

with technology. However, the flipside of the quest for accuracy and speed is most

evident in EEG-based visual BCI where it has led to a gamut of increasingly complex

classifiers, tailored to the needs of specific stimulation paradigms and use contexts.

In this contribution, we argue that spatiotemporal beamforming can serve several

synchronous visual BCI paradigms. We demonstrate this for three popular visual

paradigms even without attempting to optimizing their electrode sets. For each selectable

target, a spatiotemporal beamformer is applied to assess whether the corresponding

signal-of-interest is present in the preprocessed multichannel EEG signals. The target

with the highest beamformer output is then selected by the decoder (maximum selection).

In addition to this simple selection rule, we also investigated whether interactions

between beamformer outputs could be employed to increase accuracy by combining

the outputs for all targets into a feature vector and applying three common classification

algorithms. The results show that the accuracy of spatiotemporal beamforming with

maximum selection is at par with that of the classification algorithms and interactions

between beamformer outputs do not further improve that accuracy.

Keywords: event-related potential, steady-state visual evoked potential, code-modulated visual evoked potential,

BCI, P300, spatiotemporal filter

1. INTRODUCTION

In a Brain-Computer Interface (BCI), signals are recorded from the brain with the aim to enable
users to interact with an external device, without the need for muscular, vocal or other means of
communication (Vidal, 1973). Typically, the subject is presented with a number of targets, each one
representing a specific action (e.g., a letter in a spelling interface, a movement of a prosthetic limb
or a wheelchair, etc.) that can be selected either by redirecting gaze or attention to the intended
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target (Figure 1) or by performing amental action (e.g., imagined
movement; Pfurtscheller and Neuper, 2001). Among the most
performant BCI paradigms, in terms of accuracy and speed, are
the ones where targets are visually stimulated and the user directs
his/her gaze to target to be selected (for review, see Bin et al.,
2009; Nicolas-Alonso and Gomez-Gil, 2012). Each stimulation
paradigm elicits specific brain potentials, which are recorded
from the scalp using electroencephalography (EEG) (Lotte et al.,
2007), from the cortical surface using electrocorticography
(ECoG) (Schalk and Leuthardt, 2011) or from implants such
as microelectrode arrays and depth electrodes (Maynard et al.,
1997; Kennedy et al., 2004). For each paradigm, analysis- and
decoding techniques have been proposed tailored to maximize
target prediction speed and accuracy.

One popular paradigm is based on the P300 event-related
potential (ERP), an EEG component recorded over the centro-
parietal region that exhibits a positive deflection in amplitude,
peaking around 300 ms (whence its name), in sync with the
onset of an infrequent stimulus (called oddball) to which the
subject pays attention. In a P300-based BCI, the targets are
overlaid with the oddball stimulus in a non-overlapping fashion
(serial stimulation). The P300 can be elicited in response to
a variety of sensory stimuli, including visual- (Farwell and
Donchin, 1988; Sellers and Donchin, 2006; Manyakov et al.,
2010a), auditory- (Sellers and Donchin, 2006; Furdea et al.,
2009; Schreuder et al., 2010), and tactile stimuli (Brouwer and
Van Erp, 2010). EEG recordings are typically cut into epochs, in
sync with possible oddball events. However, in order to address
the relatively low signal-to-noise ratio (SNR), several oddball
events need to be generated and epochs averaged before P300
responses can be detected in them, resulting in a reduction

FIGURE 1 | Graphical representation of a visual BCI. The subject gazes at the target on a display (“interface”), to which the desired action is associated, while his/her

brain activity is being recorded. Each target is stimulated visually, in a specific manner, which leaves a trace in the recorded brain activity. From the preprocessed

recordings, signal features are extracted and the classification algorithm predicts the intended target, after which the display is updated accordingly (visual feedback)

and the corresponding action performed.

in communication speed. P300-based BCIs have been most
extensively studied, resulting in a wide range of techniques for
EEG feature extraction and classification (Lotte et al., 2007).
The most simple ones consider template matching in which
a (spatio)temporal template is first learned from P300-labeled
responses and then used to identify the intended target as the
one with the highest correlation coefficient (Krusienski et al.,
2006) or consider peak picking in which the target having the
largest difference between the lowest amplitude prior to and
the highest amplitude in the P300 time window is selected as
winner (Farwell and Donchin, 1988). The Linear Discriminant
Analysis (LDA) (Jin et al., 2013) and its variants, including
Fisher LDA (Krusienski et al., 2006; Manyakov et al., 2011b),
Bayesian LDA (Hoffmann et al., 2008; Manyakov et al., 2011b)
and Stepwise LDA (Farwell and Donchin, 1988; Krusienski
et al., 2006; Manyakov et al., 2011b), have been applied to pre-
processed epochs or after feature extraction by Common Spatio-
Temporal Pattern (Krusienski et al., 2007), xDAWN (Rivet et al.,
2009) and linear predictive coding (Momennezhad et al., 2014).
More complex methods include multilayer feed-forward neural
networks (Gulcar et al., 1998; Manyakov et al., 2011b), Nuclear
Norm on tensor representation (Hunyadi et al., 2013), Bayesian
statistical classifiers (Pires et al., 2008), ensemble methods with
SVMs and a genetic algorithm (Ghoggali et al., 2013), and a fuzzy
fusion of the outcome of template matching and peak picking
(Salimi Khorshidi et al., 2007; Salimi-Khorshidi et al., 2008).
As far as we are aware, state-of-the-art P300 classification for
BCI is achieved by the linear Support Vector Machine (SVM)
(Krusienski et al., 2006; Combaz et al., 2009, 2013; Manyakov
et al., 2011b) as it outperforms its non-linear (Krusienski
et al., 2006; Manyakov et al., 2011b) counterparts. The recently
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introduced spatiotemporal beamforming filter has been shown
to be at par with an optimized linear SVM for P300 detection
(Wittevrongel and Van Hulle, 2016a).

Unlike the P300 paradigm, which is inherently serial in nature,
the SSVEP paradigm encodes the targets using periodically
and simultaneously flickering stimuli, and in which each target
adopts a unique frequency (Regan, 1979; Middendorf et al.,
2000), unique phase (Lee et al., 2010; Lopez-Gordo et al., 2010;
Manyakov et al., 2012) or unique frequency-phase combination
(Jia et al., 2011). EEG signals are recorded over the occipital
cortex and are expected to carry the same signal characteristics
as the target being gazed at. Hence, SSVEP decoding methods
are traditional relying on frequency domain methods such as
the Fourier transform (Gao et al., 2003) and the Continuous
Wavelet Transform (Zhang et al., 2010). Other frequency-
detection algorithms include the Minimum Energy Combination
(Friman et al., 2007; Chumerin et al., 2013; Combaz et al.,
2013), the Multivariate Synchronization Index (MSI) (Zhang
et al., 2014a, 2017) and time-domain analysis (Luo and Sullivan,
2010; Manyakov et al., 2010b). Among the machine learning
algorithms that have been used for SSVEP target identification
are Bayesian LDA (Cecotti, 2010), SVM (Singla and Haseena,
2014), k-Nearest Neighbor (kNN) (Kwak et al., 2015), and several
neural network architectures (Manyakov et al., 2011a, 2013;
Singla and Haseena, 2014; Kwak et al., 2017). However, the most
accurate SSVEP decoding methods are based on the Canonical
Correlation Analysis (CCA) (Lin et al., 2007), and its numerous
extensions (Pan et al., 2011; Zhang et al., 2011; Chen et al., 2014,
2015; Nakanishi et al., 2014; Zhang et al., 2014b; Vu et al., 2016),
and spatiotemporal beamforming (Wittevrongel and Van Hulle,
2016b,c).

Whereas the P300 paradigm encodes targets in terms of
ERP responses and SSVEP in terms of frequency and/or
phase combinations, the code-modulated VEP (cVEP) paradigm
encodes the targets using lagged versions of a binary coding
sequence. While record-breaking communication speed was
achieved when it was introduced, it has been considerably less
studied (Gao et al., 2014), and fewer decoding algorithms have
been proposed for this paradigm. Originally, template matching
(Bin et al., 2009) was used to identify the gazed target from
averaged epochs, but also the CCA algorithm has been applied
(Bin et al., 2011; Aminaka et al., 2015a; Wei et al., 2016) as
well as SVMs (Aminaka et al., 2015b,c) and spatiotemporal
beamforming (Wittevrongel et al., 2017). The latter two have
shown state-of-the-art performance with shorter stimulation
times.

Importantly, what the majority of the reported decoding
algorithms have in common is that they have been construed
to maximize performance of a given paradigm, even when used
in a particular context. We argue that one of these algorithms,
the spatiotemporal beamformer, can achieve state-of-the-art
performance in all three paradigms. The beamformer is a filter
that estimates the contribution of an a-priori defined activation
pattern (i.e., a template, a signal-of-interest) into new data. It
can appear as a spatial, temporal or spatiotemporal filter. Unlike
in our previous work (Wittevrongel and Van Hulle, 2016a,b;
Wittevrongel et al., 2017), which was aimed at investigating

the beamformer in the context of a specific paradigm, the
first goal of this manuscript is to describe a generalized and
unified approach to spatiotemporal beamforming for decoding
synchronous EEG responses by demonstrating its versatility in
the context of synchronous visual BCI. Secondly, in addition to
a simple maximum-beamformer output classification, we also
investigate whether interactions between beamformer outputs
can increase decoder accuracies. We end by indicating future
directions for spatiotemporal beamforming in BCI.

2. METHODS

2.1. Data Acquisition and Processing
The data used in this study has been collected in previous offline
BCI studies. For more details about the experimental setting,
interface and recordings, we refer the reader to the corresponding
publications. All three studies were carried out in accordance
with the recommendations and approval of the ethics committee
of our university hospital UZ Leuven with written informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki.

Data for the P300 paradigm was collected using an interface
consisting of 9 targets (Wittevrongel and Van Hulle, 2016a). In
each trial, subjects were asked to direct their gaze to a cued target
and continue to focus as all targets were individually highlighted
15 times for 100ms (with 100ms inter-stimulus interval) in
pseudorandom order. In response to the cued target, when
highlighted, a P300 response will be elicited. All targets were used
as cue 4 times, leading to a total of 36 trials, each consisting of 15
“P300 epochs” (i.e., where the cued target was highlighted) and
120 epochs where another target was highlighted. Data from 21
subjects was collected using an ActiveTwo system (BioSemi, The
Netherlands) with 32 active Ag/AgCl electrodes (and 4 additional
electrodes around the eyes) at a sampling rate of 2,048Hz. The
raw data was offline referenced from the Common-Mode Sense
(CMS) reference to average of the mastoid signals, corrected for
eye artifacts using the RAAA-method (Croft and Barry, 2000),
filtered between 0.5 and 15 Hz and cut in 0.6-s epochs time-
locked to the onset of the stimulation. Each epoch was baselined
by subtracting the average of the 100 ms pre-onset activity and
downsampled to 64Hz.

SSVEP data was obtained from an interface consisting of 4
targets, each adopting an unique frequency-phase combination
of 12 or 15 Hz and 0 or π radians (Wittevrongel and Van Hulle,
2016b). During a trial, subject were asked to direct their
gaze to a cued target and continue to focus when all targets
were simultaneously flickering at their unique frequency-phase
combinations for 5 s. All targets were cued 15 times, leading
to a total of 60 5-s trials. Data from 20 subjects was recorded
using an ActiveTwo system (BioSemi, The Netherlands) with 32
active Ag/AgCl electrodes (and 4 additional electrodes around
the eyes) at a sampling rate of 2048Hz. The raw data was offline
referenced from the CMS reference to the average of the mastoid
signals, corrected for eye artifacts using the RAAA-method (Croft
and Barry, 2000), filtered between 4 and 20Hz, cut in 5-s trials
time-locked to the onset of the flickering, and downsampled
to 512Hz.
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For the cVEP study, a 32-target interface was used
(Wittevrongel et al., 2017). Targets were encoded using lagged
versions of a binary m-sequence of length 63, presented at a
stimulation rate of 120Hz (1 m-sequence = 0.525 s). Each trial
started with a cue, to which the subjects need to direct their gaze
and to continue focusing while all targets were simultaneously
presented with their unique lagged m-sequences. The sequences
were repeated 10 times. Each target was cued 5 times, leading to
a total of 160 trials. Data from 17 subjects was recorded using
a Neuroscan SynampsRT device (Compumedics, Australia) with
32 active Ag/AgCl electrodes at a sampling rate of 1,000Hz with
ground and reference electrodes at FPz and AFz, respectively.
The data was offline referenced to the average of the mastoid
signals, filtered between 4 and 31Hz, cut into trials that are time-
locked to the onset of the stimulation, and finally downsampled
to 120Hz. Since no ocular electrodes were included in the
recording, the data was not corrected for eye artifacts.

2.2. Spatiotemporal Beamforming
The beamforming principle was originally introduced as a spatial
filter for radar, sonar and seismic data analysis (Van Veen and
Buckley, 1988), but has also been employed in EEG analysis to
isolate the signal originating from a predefined brain location
(Van Veen et al., 1997), for ERP analysis (Treder et al., 2016),
and to build a BCI application based on imagined movement
detection (Grosse-Wentrup et al., 2009).

van Vliet et al. (2015) introduced a spatiotemporal extension
to beamforming for single-trial N400 ERP detection in the
context of processing semantic stimuli. To calculate the
spatiotemporal filter, a spatiotemporal activation pattern A ∈

R
m×n needs to be defined, where m represents the number of

channels (here, EEG electrodes) and n the number of samples.
This activation pattern represents the signal-of-interest (or
template) and can be obtained a-priori (van Vliet et al., 2015)
or based on actual training data (Wittevrongel and Van Hulle,
2016a,b; Wittevrongel et al., 2017). The resulting beamformer
w ∈ R

1×mn is a multivariate filter that optimally isolates
the targeted response from noise and possible other unrelated
activity, by taking into account the information contained in the
covariance matrix 6 ∈ R

(mn)×(mn) estimated from the available
(training) data.

The original formulation of the Linearly Constrained
Minimum Variance (LCMV) spatial beamformer wsp ∈ R

m×1

minimizes the variance of the beamformer output w
⊺

spS:

argmin
wsp

w
⊺

spS(w
⊺

spS)
⊺
⇒ argmin

wsp

w
⊺

sp6spwsp, (1)

where 6sp ∈ R
m×m is the spatial covariance matrix of an EEG

trial S ∈ R
m×n. By adding the linear constraint:

a
⊺

spwsp = 1, (2)

where asp ∈ R
m×1 is the spatial activation pattern, trivial

solutions of (1) are avoided, and signals that are similar to asp will
be mapped to a value close to 1, allowing for an easy measure of

similarity. The solution of (1) under constraint (2) can be found
using the method of Lagrange multipliers (Van Veen et al., 1997):

wsp =
6

−1
sp asp

a
⊺

sp6
−1
sp asp

. (3)

The spatial beamformer can be expanded to a spatiotemporal
variant as follows. Let S ∈ R

m×n×r be r trials, X ∈ R
r×(mn) a

matrix where each row l is obtained by concatenating the rows of
a corresponding trial S[∗, ∗, l] with l ∈ [1..r], 6 ∈ R

(mn)×(mn) the
covariance matrix of X⊺, and a⊺

∈ R
1×(mn) a vector containing

the concatenated rows of the spatiotemporal activation pattern
A. The spatiotemporal LCMV beamformer w ∈ R

(mn)×1 with
the linear constraint a⊺w = 1 can now be calculated as:

w =
6

−1a

a⊺6
−1a

, (4)

and applied to the data as a simple weighted sum:

y = sw, (5)

where s ∈ R
1×(mn) indicates the concatenated rows of a segment

S and y represents the contribution of the activation pattern A

in S.

2.3. Beamformer Construction and Feature
Extraction
As the activation pattern captures the signal-of-interest, each
paradigm (P300, SSVEP, cVEP) will have unique activation
patterns, and since EEG responsesmight different across subjects,
beamformers should be constructed for each subject individually
(Wittevrongel and VanHulle, 2016a). In the next few sections, we
will describe for each paradigm how one or more beamformers
(BF) are constructed and used to extract feature vectors. A visual
depiction of this process is given in Figure 2.

2.3.1. P300

For a P300-based BCI the activation pattern A represents the
P300 ERP. One trial T in the P300 paradigm consists of
k stimulations (i.e., highlights) of all targets. To obtain the
activation pattern A, all training trials are first cut into time-
locked epochs S from 0 to 600 ms post-stimulus onset and
their baseline subtracted. The activation pattern A can then be
obtained as the difference between the average (St) of the P300
epochs (i.e., when the target being gazed at is highlighted) and the
average (Snt) of the non-P300 epochs. The covariance matrix 6

is calculated from S (using the concatenation approach described
above), and a single beamformer w constructed.

To obtain the feature vector for a trial T, the trial is first
cut into time-locked epochs and all epochs corresponding to the
same target are averaged. Each averaged epoch Si ∈ R

m×n is
then filtered by the beamformer w to obtain an value yi, which
represents the P300 contribution for target i.

2.3.2. SSVEP

Targets in the SSVEP paradigm are encoded with unique
frequency-phase combinations, and one trial T consists of
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FIGURE 2 | Graphical representation of feature extraction and beamformer construction for three paradigms.

Frontiers in Neuroscience | www.frontiersin.org 5 November 2017 | Volume 11 | Article 630

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wittevrongel and Van Hulle Unified Approach to Visual BCI

k seconds of SSVEP stimulation, during which all targets
are simultaneously flickering at their assigned frequency-phase
combinations. Unlike for the P300 case, each target elicits a
specific frequency and phase response, and it is therefore not
possible to define a single activation pattern to discriminate
targets, but rather multiple activation patterns, each one tailored
to one target, are needed. To capture the frequency-phase
response to target i, a time-domain analysis (Luo and Sullivan,
2010; Manyakov et al., 2010b) is adopted: each training trial T is
cut into consecutive, non-overlapping segments Si with a length
n equal to a single period of stimulus frequency fi. The activation
pattern Ai for target i is then given by averaging the segments
(Si ⊂ Si) extracted from the trials during which target i was cued.
The covariance matrix6 was calculated from Si and beamformer
wi from Equation (4).

The feature vector for a trial T contains the beamformer
outputs yi for each target i. To obtain yi, the trial is cut into
segments of length one period of frequency fi, the segments are
averaged and filtered using the corresponding beamformer wi.

To improve classification accuracy, the first 120 ms of each
trial were removed prior to cutting the segments, as the SSVEP
response is not stable during this time. (Nakanishi et al., 2014;
Wittevrongel and Van Hulle, 2016b).

2.3.3. cVEP

In the cVEP paradigm, targets were encoded using lagged
versions of a binary m-sequence, which was repeated k times over
the course of one trial T. Similar to the SSVEP paradigm, each
target elicited a unique response and several activation patterns
(one for each target) were defined. Each training trial T was cut
into a maximal number of 0.525-s consecutive, non-overlapping
segments S. Note that the 0.525 s corresponds to the time needed
to display one full m-sequence. The activation pattern Ai for
target i was then obtained as the average of the segments Si ⊂ S

in response to target i. As for SSVEP, the covariance matrix6 was
calculated from S, and beamformer wi from Equation (4).

The feature vector for a trial is constructed by cutting the trial
into segments (using the same method as above), averaging the
segments (S) and independently applying the beamformer wi to
obtain the corresponding yi for each target i.

2.4. Target Identification
Based on the feature vector, a prediction for the intended target
was made. We compared several prediction strategies. As the
feature vectors contain estimates of the degree to which the
activation pattern of each target is present in the trial, the most
naive prediction is to select the target with the highest score
(i.e., prediction = max(yi)). However, as alternatives, we also
applied three common classifiers (Nearest Neighbor (NN), LDA
and SVM) to the features vectors. These classifiers can take
into account possible interactions between beamformer outputs
of different targets (i.e., features in the feature vector). The
feature vectors of the training trials were used to train these
classifiers. The complete procedure is depicted in Figure 3. The
three classifiers were implemented by using the corresponding
built-in functions in Matlab (2015) (fitcdiscr, fitcknn, fitcecoc).

2.5. Performance Estimation
Classification accuracy was estimated using cross-validation (4-
fold for the P300 data and 5-fold for SSVEP and cVEP data), for
increasing signal lengths (i.e., stimulus repetitions for P300 and
cVEP and stimulation length for SSVEP).

For all paradigms, the same electrode set was included in the
analysis, consisting of Fz, Cz, Pz, Oz, O1, O2, PO3, PO4, P3,
and P4. The locations of the included electrodes (Figure 4) cover
the scalp areas where routinely P300 (centro-parietal), SSVEP
(occipital) and cVEP (parieto-occipital) responses are detected.
Note that we do not attempt to optimize the electrode sets of the
paradigms, but rather consider the same assembly for all three
paradigms, which adds to the genericness of our approach.

2.6. Statistics
Since the distributions do not consistently follow a Gaussian
distribution, we adopted the non-parametric (two-tailed)
Wilcoxon signed rank test. We used this test to compare the
accuracies of the different classifiers. The significance threshold
was set to 0.0083 (= 0.05

6 ) after applying the Bonferroni correction
for multiple comparisons.

2.7. Data Availability
All data and analysis scripts are available at: https://kuleuven.box.
com/v/SpatiotemporalBeamforming.

3. RESULTS

Figure 5A shows the classification accuracies of the four
classifiers for the P300 paradigm with increasing stimulus
repetitions (1 repetition = 1.8 s). For all stimulus repetitions
in the P300 case, there is no significant difference between
maximal beamformer output prediction and NN- or SVM-
based classification. LDA-based prediction consistently has the
lowest median accuracy and is significantly different up to 5
(compared to SVM, p < 0.003) and 10 (compared to max
and NN, p < 0.008) stimulus repetitions. All four prediction
approaches require at least two stimulus repetitions to surpass
the 70% accuracy threshold (median accuracy of 86.1% for
maximum-, 83.3% for kNN- and SVM- and 75.0% for LDA-
based prediction) deemed necessary for establishing reliable
communication (Kübler et al., 2004; Kübler and Birbaumer, 2008;
Brunner et al., 2011; Combaz et al., 2013).

With the SSVEP paradigm (Figure 5B), the target
identification accuracies of the four classification approaches are
not significantly different for any of the stimulation lengths. The
accuracies of all classifiers increase considerably up until 1.12 s
stimulation, after which the maximal median accuracy of 100%
is reached (for maximum-, kNN- and SVM-based prediction)
and remains consistent for longer stimulation lengths. Note that
the interquartile ranges (as well as the number of outliers) are
considerably smaller compared to the P300 paradigm, indicating
a higher consistency across subjects, which may be due to the fact
that SSVEP is an automatic visual (sensory) response while P300
is a cognitive potential and thus more influenced by ongoing
mental activity (e.g., attention).
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FIGURE 3 | Overview of training and classification procedure. Elements indicated in lighter color are not used in maximum-based target prediction.

FIGURE 4 | Scalp locations of electrodes used in the EEG analysis of the

three paradigms.

Similar to the P300-case, for the cVEP paradigm (Figure 5C),
LDA-based prediction consistently exhibits the lowest median
accuracy for all signal lengths. While the maximal-based
prediction is significantly different from NN for a stimulation
length of 1.05 s (p = 0.006, two-tailed Wilcoxon signed rank

test) and from SVM for 1.625 s stimulation (p = 0.002, two-
tailed Wilcoxon signed rank test), maximal-, NN- and SVM-
based predictions are not significantly different for any other
stimulation lengths. Two repetitions of the m-sequence (i.e.,
stimulation length of 1.05 s) are necessary for the median to
surpass the 70% accuracy threshold (median accuracy of 81.3%
for maximum-, 81.9% for kNN-, 80.6% SVM-, and 73.7% for
LDA-based prediction). For all classifiers, the accuracies steadily
increase with increasing stimulation length.

4. DISCUSSION

In this manuscript, we described a transparent and unified
decoding approach to synchronous visual BCI, and showed its
feasibility for three popular paradigms: P300, SSVEP, and cVEP.
The feature vector of a trial was determined as the output of
spatiotemporal beamformer(s), and we compared four methods
for predicting the intended target.

The accuracies obtained by the NN- and SVM-based
predictions are, with two exceptions for the cVEP paradigm,
not significantly different from maximum-based prediction. The
additional information given by the interaction between the
beamformer outputs is not beneficial for target identification,
and is even detrimental when adopting an LDA-based classifier.
Furthermore, maximum-based prediction has a computational
advantage as no feature extraction and classifier training is
required after building the spatiotemporal beamformer(s) (see
Figure 3).

For all three tested paradigms, an identical electrode set
was included in the analysis to demonstrate the versatility and
robustness of the spatiotemporal beamforming approach. As the
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FIGURE 5 | Accuracy of target identification for the (A) P300, (B) SSVEP, and

(C) cVEP paradigms with increasing stimulation lengths, and with target

prediction based on the maximal beamformer (BF + max) output, as well as

the prediction based on the k-Nearest Neighbor (kNN), Linear Discriminant

Analysis (LDA) and Support Vector Machine (SVM) algorithms, using the

beamformer outputs of all targets as feature vector. The results show that

classification algorithms do not outperform maximum-based prediction,

indicating that interactions between beamformer outputs do not increase

target prediction accuracy. The black horizontal lines indicate significant

differences based on the paired two-tailed Wilcoxon signed rank test with

Bonferroni correction. Accuracies of all subjects are summarized using

(Continued)

FIGURE 5 | Continued

boxplots: the thick horizontal line indicates the median accuracy, the box

stretches from the 1st to the 3rd quartile, the lines extending from the box

indicate the minimum and maximum value within 1.5 times the interquartile

range from the 1st and 3rd quartile, respectively, and the dots represent

outliers.

aim of this study was to describe a unified methodology for
synchronous BCI, the accuracies reported in this manuscript
are likely not optimal and could be improved by optimizing
the electrode set (Lal et al., 2004; Schröder et al., 2005; Lv and
Liu, 2008; Arvaneh et al., 2011; Barachant and Bonnet, 2011;
Wittevrongel et al., 2017) or the filtering range (Song and Epps,
2007; Manyakov et al., 2010a) for each subject individually.
In our previous work (Wittevrongel and Van Hulle, 2016a,b;
Wittevrongel et al., 2017), we have shown that the accuracies
obtained by the spatiotemporal beamforming approach are at
par of even outperform the state-of-the-art classifiers of the
respective paradigms, and that training beamformers is often
faster than alternative classification methods such as SVM,
which would allow experimenters to explore the aforementioned
optimizations within a reasonable amount of time.

Both spatial and spatiotemporal filtering serve to improve
the SNR, which allows for more accurate ERP analysis
or classification performance. While the LCMV beamformer
approach with a data-driven activation pattern has also been
applied to spatial filtering (Treder et al., 2016), the spatiotemporal
filter used in this study has the advantage to jointly model
both the spatial and temporal characteristics of the signal-of-
interest. For the P300 ERP, for example, it has been shown
that target prediction is more accurate when the early visual
ERP components (e.g., N200 elicited over the occipital cortex)
are included in the analysis (Bianchi et al., 2010; Kaufmann
et al., 2011a), and many studies have therefore investigated
stimulation paradigms that elicit additional ERP components
(Kaufmann et al., 2011b; Jin et al., 2012, 2015). A spatial filter
tuned to the centro-parietal P300 component would filter out
these additional components, causing a reduction in prediction
accuracy.

In recent years, various complex algorithms have been
proposed that often rely on (multiple) extensions of an existing
algorithm and that are tailored to a specific paradigm (e.g., the
extensions for MSI Zhang et al., 2017 and CCA Lin et al., 2007;
Pan et al., 2011; Zhang et al., 2011; Chen et al., 2014, 2015;
Nakanishi et al., 2014; Zhang et al., 2014b; Vu et al., 2016 for
SSVEP detection). Other proposed approaches apply a black-
box classification algorithm (SVM, Neural Networks), where the
experimenter does not have control over the pattern on which
target discrimination is based. However, in the context of BCI,
this pattern is in most cases well known, and in previous work we
have shown that for example the pattern learned by a state-of-the-
art black-box SVM in the context of a P300-BCI is very similar
to the activation pattern obtained by simple averaging such as
in the spatiotemporal beamformer approach (Wittevrongel and
Van Hulle, 2016a). Unlike these algorithms, the beamforming
approach described in this manuscript is less complex (as desired,
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cfr. Occam’s razor), fully transparent and applicable to various
synchronous stimulation paradigms.

In future work, we will further develop the spatiotemporal
beamformer. At this point, the main bottleneck is to estimate
the high-dimensional covariance matrix, which, to be accurate,
requires a significant amount of training data (cfr. the curse
of dimensionality Pruzek, 1994; Schoukens and Pintelon, 2014).
Compared to the spatial beamformer, the covariance matrices
in the spatiotemporal variant consider the complete temporal
dimension of the signal-of-interest for each evaluated channel
(hence its dimension of (mn) × (mn), with m the number of
channel and n the number of (time) samples). For the 10 channels
selected in our study, the covariance matrices had the following
dimensions: 380 (= 10 channels × 38 samples) for P300; 420
or 340 (depending on the frequency) for SSVEP; and 630 for
cVEP. Furthermore, since our approach requires spatiotemporal
samples, training data is considerably harder to obtain. For
a spatial beamformer, one typically can collect hundreds of
samples in one second, while for the spatiotemporal variant the
number of samples that can be collected per second depends
on the temporal characteristics of the signal-of-interest. In our
study, the P300 epochs were 0.6 s long (albeit that they are
partially overlapping), SSVEP segments required 1/12 or 1/15 s
of stimulation (depending on the frequency), and one signal-of-
interest in the cVEP paradigm was 0.525 seconds long, leading
to a mere 3 (= 0.6 s with 0.2 s stimulus onset asynchrony), 12 or
15, and 1.9 samples extracted from the first second of stimulation
for P300, SSVEP, and cVEP, respectively. In addition to reducing
the number of channels included, alternative methods for the
estimation of the covariance matrix can be considered. In this
and previous studies, we estimated a pooled covariance matrix
by including non-targeted segments for the covariance matrix
estimation, which is often used in cases when the amount of
samples is smaller than the dimensions of the covariance matrix
(e.g., facial recognition, Edwards et al., 1998, BCI, Vidaurre
and Blankertz, 2010). However, several methods for covariance
matrix estimation with a small number of samples have been
described (e.g., shrinkage, Ledoit and Wolf, 2004, regularization,
Friedman, 1989, among others) and can be assessed in terms of
improving the estimation of the covariance matrix.

At this time, we applied the beamformer for synchronous
signals, but it can likely be extended for asynchronous detection
of spatiotemporal signals of interest. As the beamformer

outputs can be interpreted, the spatiotemporal beamformer
in combination with a sliding window could be used as
transformation of multi-electrode EEG to a single-trace estimate
of the contribution of a spatiotemporal template in ongoing EEG
recordings. An important aspect of this development will be to
limit to amount of false positive detections.

5. CONCLUSION

In this study, we described spatiotemporal beamforming as a
unified approach for target identification in BCI applications that
rely on EEG responses synchronized to the stimulation onset.
We have shown the versatility of our approach by applying it to
three popular visual stimulation paradigms (P300, SSVEP, and
cVEP), and demonstrated its robustness since high accuracies
were reached with an identical (thus, non-optimized) electrode
set for all paradigms. Unlike other classification algorithms,
the spatiotemporal beamformer is fairly straightforward and
fully transparent as the experimenter has full control over the
activation pattern used for target discrimination. Finally, we
showed that selecting the target with the highest beamformer
output suffices to achieve a competitive accuracy, and that
by accounting for possible interactions between beamformer
outputs, accuracy does not further improve.
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