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Learning to Generate Sequences
with Combination of Hebbian and
Non-hebbian Plasticity in Recurrent
Spiking Neural Networks

Priyadarshini Panda* and Kaushik Roy

Nanoelectronics Reserach Laboratory, Purdue Univerisity, School of Electrical and Computer Engineering, West Lafayette, IN,
United States

Synaptic Plasticity, the foundation for learning and memory formation in the human brain,
manifests in various forms. Here, we combine the standard spike timing correlation
based Hebbian plasticity with a non-Hebbian synaptic decay mechanism for training
a recurrent spiking neural model to generate sequences. We show that inclusion of the
adaptive decay of synaptic weights with standard STDP helps learn stable contextual
dependencies between temporal sequences, while reducing the strong attractor states
that emerge in recurrent models due to feedback loops. Furthermore, we show that
the combined learning scheme suppresses the chaotic activity in the recurrent model
substantially, thereby enhancing its’ ability to generate sequences consistently even in
the presence of perturbations.

Keywords: reservoir model, non-Hebbian learning, Hebbian plasticity, sequence generation, attractor dynamics,
eigenvalue spectra

1. INTRODUCTION

Learning to recognize, predict and generate spatio-temporal sequence of spikes is a hallmark of the
nervous system. It is critical to the brain’s ability for anticipating the next ring of a telephone or
next action/movement of an athlete. Several neuroscience works have shown that such abilities can
emerge from dynamically evolving patterns of neural activity generated in a recurrently connected
neocortex (Klampfl and Maass, 2013; Laje and Buonomano, 2013; Zenke et al., 2015). Implementing
a “stable and plastic” recurrent spiking neural network for learning and generating sequences with
long-range structure or context in practical applications (such as text prediction, video description
etc.), however, remains an open problem.

Here, we develop a reservoir spiking neural model with a biologically relevant architecture
and unsupervised plasticity mechanisms that learns to generate sequences with complex
spatio-temporal relations. Generally, reservoir networks, owing to their high level of recurrence,
operate in a dynamic regime wherein stable input driven periodic activity and chaotic activity tend
to coincide (Rajan, 2009; Rajan et al., 2010). We show that the chaotic activity can be reduced by
effective tuning of connections within a reservoir with a multi-time scale learning rule and diverse
plasticity mechanisms. This helps in the robust learning of stable correlated activity that is even
resistant to noise. This further enables the reliable generation of learnt sequences over multiple
trials lending our reservoir model a key feature characteristic of biological systems: the ability to
remember the previous state and return to the sequence being generated in presence of perturbations.
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Recent efforts in building functional spiking neural systems
with Spike Timing Dependent Plasticity (STDP) for self-
learning on practical recognition tasks have been mostly focused
on feed-forward and hierarchical deep/shallow architectures
(Masquelier and Thorpe, 2007; Diehl and Cook, 2015; Esser
et al., 2016; Kheradpisheh et al., 2016; Panda and Roy, 2016)
with minimal recurrent connections (for instance, recurrent
inhibitory connections incorporated with such architectures
for inducing competition and stabilizing neural activity in
an unsupervised learning environment). Another body of
work in the spiking domain encompasses “Reservoir or
Liquid Computing” frameworks that attempt to capture the
anatomy of the neocortex with substantial recurrent connectivity
between groups of excitatory and inhibitory spiking neurons
(Lukosevicius and Jaeger, 2009; Maass, 2010; Srinivasa and Cho,
2014). Jaeger (2001) proposed a similar randomly connected
recurrent model, termed as echo state network, that uses
analog sigmoidal neurons (instead of spiking) as fundamental
computational units. In both liquid or echo state frameworks,
the burden of training the recurrent connections is relaxed
by fixing the connectivity within the reservoir and that from
input to reservoir. Instead, an output layer of readout neurons
is trained (generally in a supervised manner ie., with class
labels) to extract the information from the reservoir (Maass
et al,, 2002; Sussillo and Abbott, 2009). However, the fixed
connectivity severely limits the ability of such frameworks to
do general learning over varied applications. Such networks
perform poorly as the number of possible patterns (or classes)
as well as the temporal correlations (or context) between patterns
increases.

It was shown recently that incorporation of synaptic plasticity
within the reservoir can result in the emergence of long-term
memory (Mongillo et al., 2003; Klampfl and Maass, 2013) that
can help in learning and inferring relationships between inputs
(Miller and Wingfield, 2010; Diehl and Cook, 2016). However,
the main aim of those works were to build neural computing
models that suitably elucidate the activity of the neocortex to
better understand the mammalian brain. On the other hand,
in this work, we take a more practical approach to engineer a
recurrent spiking model capable of character-level recognition
and word prediction. Essentially, given a dictionary of visual
words, our spiking reservoir model learns to recognize each
visual character (or alphabet) as well as the context/relation
between subsequent characters of different words such that it can
consistently generate the entire word. Note, in this work, we use
the term “reservoir” in the context of a recurrent spiking neural
network similar to that of a Liquid State Machine (LSM) (Maass,
2010) with spike-driven dynamics compatible with STDP.

Similar to Klampfl and Maass (2013) and Diehl and Cook
(2016), we modify the synaptic weights of the connections from
input to reservoir as well as the recurrent connections within
the reservoir to develop the character-level language model.
The learning is performed over different time scales. While the
fast input to reservoir learning, operating in millisecond range,
facilitates in recognition of individual characters, the slower
learning of the recurrent connections, operating in the range
of 100 milliseconds, within the reservoir enables the network

to learn the context between the characters such that the learnt
model can generate words by predicting one character at a
time.

In addition, to reduce the strong/dominant attractor states
that emerge from the strong feedback loops in the reservoir,
we introduce a non-Hebbian adaptive weight decay mechanism
in the learning rule. The decay in addition to STDP enables
synaptic depression for hyperactive neurons in the reservoir
that result from strong feedback dynamics instead of contextual
dependencies. We show that the combined effects of Hebbian
and non-Hebbian plasticity mechanisms results in a stable-plastic
recurrent SNN capable of generating sequences reliably. We also
justify the effectiveness of the combined plasticity scheme by
analyzing the eigen value spectra of the synaptic connections
of the reservoir before and after learning. As shown in later
sections, this theoretical analysis provides a key insight about
the inclusion of non-Hebbian decay to reduce chaotic dynamics
within a reservoir.

2. MATERIALS AND METHODS

2.1. Reservoir Model: Framework and

Implementation

2.1.1. Network Architecture

The general architecture we consider is a 2-layered network as
shown in Figure 1A. The topology consists of an input layer
connected to a reservoir of N Leaky-Integrate-and-Fire (LIF)
neurons (Diehl and Cook, 2015), with a connection probability
Py of 30%. The input layer contains the pixel image data
(with one neuron per pixel), corresponding to the visual words
or characters in the dictionary. Of the total N neurons in
the reservoir, 80% are excitatory and 20% are inhibitory, in
accordance with the ratio observed in the mammalian cortex
(Wehr and Zador, 2003). The reservoir is composed of all
possible combinations of recurrent connections, depending upon
the pre- and post-neuron type at each synapse: E—E, E—1, > E,
I—1, where E (I) denote excitatory (inhibitory) neurons. These
recurrent connections are set randomly with a relatively sparse
connection probability of Pgg ry 1x,11. Here, all connections going
to excitatory neurons (i.e., input to reservoir excitatory neurons
and E—E connections within the reservoir) are plastic, while all
other connections maintain their initial random values.

Note that the synaptic weight modification of the plastic
connections shown in Figure 1A helps in learning the rich
temporal information present in the input data and also enables
the understanding of contextual dependencies (for learning a
word from individual characters) that span over multiple time
steps. Another interesting property of our model is that it does
not contain a readout layer that is generally present across all
conventional reservoir spiking models (Legenstein and Maass,
2007; Maass, 2010; Srinivasa and Cho, 2014) for sequence
recognition. The synaptic plasticity from input to reservoir,
specifically, helps in learning the generalized representations of
the input patterns (i.e., images of characters in this case). This
in turn enables us to perform unsupervised inference without a
readout layer of output neurons.
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FIGURE 1 | (A) General topology of Recurrent SNN used for sequence learning and prediction (B) Sample image of dictionary of visual words (C) STDP Potentiation
window for Hebbian Phase learning of In—Exc & E—E reservoir connections over diverse time scales (D) Synaptic changes with the combined Hebbian/non-Hebbian
Plasticity as a function of rate of post-synaptic neuron that prevents strong attractor dynamics by regulating the over-potentiation of synapses. Note, (C,D) are
cartoons (that do not depict empirical data) to show the behavior of STDP based weight change for slow/steep learning in (C) and effect of inclusion of non-Hebbian
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In Figure 1A, the connection probabilities and the
Excitatory(E)/Inhibitory(I) neuron ratio in the reservoir are
chosen such that we have a balanced contribution of E/I synaptic
currents that contribute to the spontaneous activity of the
reservoir (Wehr and Zador, 2003). Generally, the number of E/I
neurons in the reservoir maintain a 4:1 ratio as observed in the
neocortex. Since E>I, inhibitory connections must be larger than
excitatory connections (i.e., Peg < Pgr x Pig). The connection
probabilities are usually set randomly while ensuring that E/I
balance is maintained. However, a simple excitation of the
reservoir with noisy Poisson inputs and observing the trajectory
(or neuronal firing activity from the reservoir) generally helps
to choose a probability range. For such random noisy inputs,
the reservoir will be chaotic and should ideally show irregular
trajectory with varying firing activity for every stimulation.
However, if excitation dominates (Pgg > Pgr x Pig), then,
there will be a mean positive drift of the neuronal membrane
potential toward the threshold, resulting in a fixed trajectory (or
regular firing activity). In contrast, if excitation and inhibition
balance each other, the membrane potential will follow a random
trajectory resulting in a trajectory with Poisson statistics as
expected. This happens when Pgg < Pgr x Prg. While it might
seem that a lot of synaptic fine-tuning is required, on the network
level, such an E/I balance can arise dynamically if two conditions
are met. First, connections must be sparse and random as shown
in Van Vreeswijk and Sompolinsky (1996). Second, connections
for inhibitory must be greater than excitatory. We follow both
these rules in addition to observing the reservoir trajectory
for random noise triggering while initializing our model. Pry
(30%) is set such that a minimal firing rate of 15-20 Hz is
observed from the reservoir for a ~45 Hz input that will allow
significant synaptic learning within the STDP timing window of
simulation.

2.1.2. Synaptic Plasticity and Homeostasis

The synapses connecting the input to excitatory reservoir
neurons (In—Exc) and the E—E connections within the
reservoir are trained using a combination of Hebbian STDP
and non-Hebbian Heterosynaptic plasticity that prevents strong
feedback loops in the recurrent connections. STDP is a widely

used weight update rule to accomplish unsupervised learning in
SNNs. The weights of the synaptic connections are strengthened
or weakened based on the time interval elapsed between pre-
and post-synaptic spikes. We adopt different forms of weight
dependent STDP rule to compute the weight updates. To
implement the non-Hebbian plasticity, we introduce an adaptive
decay mechanism (Chen et al, 2013; Chistiakova et al., 2014;
Panda et al.,, 2017) (that only depends on the state of the post-
synaptic neuron) in the weight update rule.

In addition to synaptic plasticity, we employ a homeostatic
membrane threshold mechanism (Zhang and Linden, 2003),
for the excitatory neurons in the reservoir that regulates the
firing threshold to prevent a neuron from being hyperactive
and dominating the overall response. Specifically, each excitatory
neuron’s membrane threshold is not only determined by vy,
but by vgyesn +6, where 0 is increased each time when the neuron
fires and then decays exponentially (Querlioz et al., 2013). It is
worth mentioning here that the interplay between homeostatic
threshold and combined Hebbian/non-Hebbian plasticity results
in a stable and plastic network with a balance between excitatory
and inhibitory currents at each neuron in the reservoir.

In Klampfl and Maass (2013), Srinivasa and Cho (2014)
and Diehl and Cook (2016), the authors have used inhibitory
STDP to induce homeostasis or balance the activity of the
excitatory neurons by modifying the synaptic weights of
I—>E recurrent connections. This is in stark contrast to
our model where only the E—E connections within the
reservoir are plastic. We note that among all the recurrent
connections, E—E help learn the context between subsequent
patterns while reinforcing patterns with similar statistics.
The remaining connections mainly contribute to fostering
competition (E—I) among different excitatory neurons to
learn different patterns while maintaining a balanced and
asynchronous firing activity (I—I, I—E) in the reservoir.
Since the main aim of our model is to learn the underlying
representations of visual inputs and understand the correlation
between subsequent patterns, we can achieve this simply with
E—E plasticity, while maintaining an optimum fixed and
sparse connectivity across remaining connections as specified in
Figure 1A .
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2.2. Sequence Learning with the Proposed

Reservoir Model

Given a visual word “CAT” composed of individual characters
as shown in Figure 1B, our model processes each character
individually to learn the representations of each character
with Input to Excitatory reservoir (In—Exc) plasticity.
Simultaneously, the plasticity among the E—E connections
within the reservoir should be such that the network learns
that “CAT” is one entity with a sequential correlation (i.e., “C”
is followed by “A” followed by “I”). During testing, when the
model is presented with a test image “C”, the network should
recognize the character and output the next most probable
character from the entity it has learnt previously. In order to
perform such sequence generation, we conduct the learning in
two phases as described below.

2.2.1. Hebbian Phase

In this phase, we modify the synaptic weights of both
In—Exc and E—E connections with different forms of STDP.
For In—Exc plasticity that helps in learning the underlying
representations of the individual images/characters, we perform
the weight updates using the power law weight dependent STDP
rule (Querlioz et al., 2013; Diehl and Cook, 2015), illustrated in
Figure 1C. To improve simulation speed, the weight dynamics
are computed using synaptic traces as proposed in Morrison et al.
(2007). Besides the synaptic weight, each plastic synapse keeps
track of the pre-synaptic (or post-synaptic) trace, xpre (OF Xpost).
Each time, a pre (or post) neuron fires, the corresponding trace
is increased by 1, otherwise xpre (or xpost) decays exponentially.
When a post-synaptic neuron fires a spike, the weight change Aw
is calculated as

AWl Exc = n[(xpre - Oﬁrset)(wmax - W)H)] (1)

where 1 (0.05) is the learning rate, Wy, (1.0) is the maximum
constraint imposed on the synaptic weight, xp, is the pre-
synaptic trace value that exponentially decays with 7y, = 30 ms
and w is the current weight value. The synaptic strength is
increased by w = w + Aw,_ Exc if a pre-neuron subsequently
causes the connected post-neuron to fire which signifies a strong
causal relationship. On the other hand, the synaptic strength
is decreased for larger spike time differences as determined
by the offset. This training enables the excitatory neurons in
the reservoir (connected to the input) to encode a generic
representation of an image pattern in their corresponding
In— Exc weights.

Concurrent to the above training, we simultaneously modify
the E—E connections within the reservoir with steeper STDP
learning as shown in Figure 1C. For the E—E weight updates,
we use a modified version of the exponential weight-dependent
STDP rule (Pfister and Gerstner, 2006; Diehl and Cook, 2015).
The synaptic weight updates based upon the arrival of pre- and
post-synaptic spikes are again calculated using synaptic traces as
follows:

Aw = —n1[xposs W |(when pre-neuron fires) @
Aw = n2[XpostXpre (Wmax — w)")|(when post-neuron fires)

where 71, is the learning rate (0.002, 0.01) and wjy,, value is
0.5. Similar to above learning, the weights are potentiated or
depressed based on the spike timing correlation. However, with
slower learning rate and smaller time constants of decay for
the pre-/post-synaptic traces (Xpre' [Xpost)> Tpre' post = 10,20 ms,
significant synaptic weight updates are carried out for really small
spiking differences between pre- and post- neurons in this case.
This slow learning is desirable as the E—E connections must
encode the correlation between the individual images. Hence,
the E—E connections should get updated only when both the
pre- and post- excitatory neuron in the reservoir have spiked
very closely and over longer periods of time. The synaptic traces
will increase more and cause meaningful weight updates for such
stronger causal relationship. Please note that all the pre- and
post-synaptic traces in the above learning rules are disjoint and
calculated separately. Furthermore, the weight dependence terms
in the above equations prevents abrupt or fast change in weight
values. Note,  value is 0.9 for both Equations 1, 2.

2.2.2. Non-Hebbian Phase
In addition to the exponential STDP learning, the E—E
connections further undergo a decay toward a baseline value
(wop = 0.2) to prevent the reservoir plasticity to cause strong
feedback loops in the network thereby curtailing the emergence
of dominant attractor dynamics. Such strong attractor states
cause the network dynamics to converge to the same state for
different input sequences, drastically degrading the inference
capability of the network. For instance, if the network learns
the words “CAT”, “COT” wherein the recurrent connections are
strongly correlated for excitatory neurons representing “C”, “O”,
and “T” then, the network will only output “O” when presented
with “C” during testing. Ideally, we would like our Reservoir
Model to give all possible sequences or words for a given input.
The decay of E—E synaptic weights is performed at every
simulation time step as

D (B —wo) 3)

dt

where y(t) is the decay rate that is a time dependent quantity
proportional to the squared post-synaptic trace value ((xpost)?
from Equation 2) and the homeostatic membrane threshold value
(Uthresh + 0) at a given time instant. The direction of change
depends on the present value w of the synaptic weight in relation
to the baseline value wy. If the post-synaptic neuron fires more
due to the strong feedback loops, the decay rate proportionately
increases weakening the E—E connections thereby reducing the
influence of very strong attractor states on the network dynamics.

In some situations, dominant attractor states may also
arise due to disproportionate input sequences. For instance,
if the network learns the words “CAT”/“CRAFT”, “CRAFT”
on account of being a longer sequence will induce stronger
correlation between the neurons representing the underlying
characters thereby creating an imbalanced recurrent model.
The homeostatic membrane threshold of an excitatory neuron
is representative of the length of the input pattern. For a
longer sequence, E— E connections are reinforced more with the
exponential rule (Equation 2) such that the neuron learns the
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correlation well. The reinforcement in turns causes the neurons
to spike more thereby increasing their membrane threshold.
Higher membrane threshold correspondingly increases the decay
rate, thus, preventing the length of input sequences from
causing strong attractor states. Please note that this decay
mechanism is non-Hebbian (does not involve pre, post spike
timing correlation) and bears resemblance to the heterosynaptic
plasticity observed in the mammalian brain that prevents
runaway synaptic dynamics and stabilizes the distribution of
synaptic weights (Chen et al., 2013; Chistiakova et al., 2014).

The rate of change of weight with our combined plasticity
scheme is illustrated in Figure 1D. The adaptive decay
mechanism helps in un-learning the weights of neurons
that become hyperactive due to strong feedback loops. For
synaptic weights that are larger than the baseline value wy,
it allows synaptic depression of E—E connections even for
high post-neuronal firing activity that is not possible with
lone exponential STDP learning. In addition to reducing the
strong attractor states, the synaptic decay acts a memory
consolidation mechanism wherein certain connections that are
relevant for the reliable generation of the sequence are selectively
potentiated while depressing recurrent connections that lead
to undesirable correlation. As mentioned earlier, both In—Exc
and E—E connections are updated simultaneously with the
above mentioned rules (Equations 1-3). The In—Exc learning
is done at each time step based upon pre/post firing (order of
ms). In contrast, the Exc—Exc weight updates occur slowly
over multiple time steps due to the slower STDP learning. This
concerted interplay of the multiple plasticity mechanisms (both
Hebbian and non-Hebbian) leads to a stable reservoir that
avoids strong/dominant attractor states and reliably generates all
possible answers for different sequence of words learnt.

In our simulations, each individual character of the word
sequence (that is a 28 x 28 pixel image of “A to Z”) is
presented to the reservoir as Poisson spike trains (with firing
rates proportional to the intensity of the pixels) for 350 ms with
a simulation time step of 0.5ms. For instance, while learning
“CAT”, each individual character (“C”, “A”, and “T”) is shown
individually and sequentially for 350 ms each. Then, before
presenting the next sequence/word (for instance, “COT” or a
different representation of “CAT”), there is a 300 ms phase
without any inputs to allow all variables of all neurons to decay
to their resting values (except the adaptive membrane threshold).
This sequential presentation of the characters (without resetting
the membrane potential of the neurons until the entire sequence
or word is shown) helps the E—E connections to learn the
correlation between them.

Note, the Supplementary Material (at the end of the paper)
contains additional details regarding the neuron/synapse model,
input encoding method and the training/assignment/inference
methodology. Please refer it to get further insights about the
intrinsic parameter values.

3. RESULTS

The proposed reservoir model and learning was implemented in
BRIAN (Goodman and Brette, 2008). We created a dictionary of

visual words (samples shown in Figure 3A) from the handwritten
characters in Char74K dataset (de Campos et al., 2009) that were
used to train and test our reservoir model for sequence learning.

We first show the effectiveness of the combined plasticity
mechanism in reducing the strong/dominant attractor dynamics
that emerge in a recurrent spiking neural network. We simulated
a reservoir model of 400 excitatory, 100 inhibitory LIF neurons
with an input layer composed of 400 Poisson Spike Generators
that gives the input a Gaussian shaped firing rate profile.
In this case, learning the In—Exc and E—E connections as
described earlier (along with non-Hebbian decay) causes the
reservoir neurons’ spiking response (that fired randomly before
training) to match the firing rate profile of the input as shown
in Figure 2A. Correspondingly, the weight matrices for the
In— Exc connections and E— E connections within the reservoir
form a diagonal structure representative of the bell-shaped
Gaussian distribution of the input patterns over the reservoir
neurons, as illustrated in Figure2B. In contrast, the weight
values accumulate in certain regions causing strong attractor
dynamics in the reservoir because of the feedback loops when
the non-Hebbian decay based plasticity is not incorporated in
the E—E synaptic learning as shown in Figure 2B. Such weight
crowding is caused by the Hebbian nature of lone STDP learning.
Since STDP causes reinforcement of correlated activity, the
feedback loops between sub-groups of neurons that are strongly
interconnected due to the recurrent dynamics of the reservoir
will over-potentiate the E—E connections, further causing them
to be overly active. As a result, the weights get crowded instead of
having a homogeneous distribution. Inclusion of non-Hebbian
decay in the learning mechanism helps in decreasing the activity
of such sub-groups of neurons by enabling synaptic depression
even at high post-synaptic firing rates as seen earlier (refer to
Figure 1D).

Now, we discuss the recognition and generation of words
from visual characters. We simulated a reservoir model of 200
neurons (160 excitatory, 40 inhibitory) to recognize a dictionary
of words: “CAT”, “CRAFT”, “COT”. Please note, the words
selected are such that some sequences have more common
underlying characters (such as CAT, COT) than others. To
validate that our model is effective and can generate all possible
learnt sequences consistently without any bias toward a particular
sequence, we use the above selection. For training, we use 200
different representations for each word composed of dissimilar
characters (i.e., total 600 words for training). For testing, we
used 100 distinct representations of each character. Figure 3A
shows the sample training and testing images used. After training,
the In—Exc connections that are essentially responsible for
recognizing the individual characters of the word encode the
generalized representations of the individual characters as shown
in Figure 3B. Individual characters get associated with different
excitatory neurons in the reservoir that fire steadily when
presented with an input similar to the pattern it has learnt.

During testing, when an input pattern is shown, several
excitatory neurons assigned to different characters may
potentially fire. For example, for a test image of “C”, a group of
neurons associated to “D” may also fire. The spiking/firing rates
for different groups will however differ (say spiking rate of “C”
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FIGURE 2 | (A) Response pattern of reservoir neurons for Gaussian Input profile (average: 5 Hz) before and after learning (B) Visualization of the weight matrices
between Input—Exc and E— E reservoir connections learnt with and without non-Hebbian decay.
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FIGURE 3 | (A) Sample training and testing images of visual words (B) Representations encoded by In—Exc connections of 100 excitatory neurons in a 200-neuron
reservoir. The color intensity of the patterns are representative of the value of synaptic weights (after training) with lowest intensity (white) corresponding to a weight
value of “0” and highest intensity (black) corresponding to “1”. (C) Percentage of correct predictions made by the 400-neuron reservoir for different sequences during

testing. The prediction accuracy is averaged across 100 trials of different presentations of the test input characters: “C”, “D”, “P”, “M”, “B”, and “T".

> “D”). However, since we learn the E—E connections in the
reservoir while presenting the individual characters sequentially
(without resetting the membrane potentials) during training, the
average firing rates of the neurons in the reservoir interestingly
follow a particular sequence. For a test image of “C”, the top-2
average spiking activity are observed for neurons associated
with “C”, “A”. Further, the difference between the top-2 spiking
activities is quite low (an average of ~ 3-4). Similarly, based on
the second highest spiking activity, we input the next character
(i.e., “A” in this case) to which the top-2 spiking activity recorded
are for neurons associated with “A”, “T”. Next, when we input
“T”, while the highest spiking activity is observed for “T”, the
second highest activity is quite random (associated with different
neurons for varying test presentations) with an average spiking
difference that is >10. The large spiking difference in the top-2
activity indicates that the last character of the sequence has
been recognized by the reservoir for a given test trial and no
further inputs are then provided to the reservoir. Please note,
similar to training, the membrane potentials of the neurons
in the reservoir are not reset in a test trial until the entire
sequence/word is generated or a large spiking difference in
top-2 activity is observed. We observe such consistent sequential
generation of top-2 spiking activity across all test trials. As the
dictionary contains 3 words starting with “C”, the second highest
spiking activity alters between “R”, “A”, and “O” for different
trials. This difference arises due to the randomness in the Poisson
distribution of inputs. In fact, for 100 trials, when the reservoir
model was presented with test input “C” the network yielded

a correct word from the dictionary 85 times with “CRAFT”,
“CAT”, and “COT” generated 34, 23, 28 times respectively. In
the remaining 15 trials, some garbage words such as “CAFT”,
“CRT” etc. were generated.

Next, we simulated a reservoir model of 400 neurons (320
excitatory, 80 inhibitory) to learn a larger dictionary with:
“CAT”, “COT”, “CRAFT”, “DOG”, “PET”, “MAN”, “BIRD”,
and “TOW”. Figure 3C shows the number of times a correct
sequence is generated by the reservoir across 100 different
presentations of the first character of every word: “C”, “D”,
“M”, “B”, “T”. The average accuracy of the reservoir is 91.2%
wherein the sequence generation was more accurate for “PET”,
“DOG”, and “BIRD” that share less characters with the remaining
words of the dictionary. Minimum accuracy is observed for
“TOW?” since presentation of “I” in most cases yielded a large
difference in the top-2 spiking activity of the neurons. This
can be attributed to the fact that “T” being the last character
for most words limits the neuron learning a “T” to develop
contextual dependencies toward other neurons. Few garbage
words generated by the reservoir include “COW”, “CRAT”,
“DOT”, “BRD”, “PT”, “MAT”, and “BRAT” among others. Of the
garbage words, it is quite remarkable to see that some are actual
English words that the reservoir generates not having seen them
earlier. Another noteworthy observation is that most garbage
words end with “W”, “T”, and “D”, that are essentially the last
characters of the words in the dictionary. Please note that in the
words present in the dictionary, repetition among characters is
not present (for instance, “SEEN” or “RALLY”). In such cases, our
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reservoir model generates “SEN”, “RALY” instead of the correct
words. Since the generation of sequences in our reservoir model
is based on top-2 spiking activity, when “E” is presented to the
reservoir, the top-2 highest spiking activity with minor difference
is observed for neurons associated with “E”, “N”. We cannot
identify such repetition among characters with this scheme.

In order to demonstrate the effectiveness of our combined
learning scheme for generating sequences, we recorded the
average synaptic weights of the E—E connections (that encode
the correlation) learnt among the excitatory neurons associated
with different characters. Figure 4A shows that the average
value of the recurrent connections learnt by the 400-neuron
reservoir model described above, differs across different words
with minimal variation. In fact, for words with similarities (such
as “CAT”, “COT?, and “CRAFT”) the weights have almost similar
values. The slight variation across the weight values is indicative
of the fact that the reservoir model (after learning) has reduced
chaotic activity. Generally, all recurrent networks exhibit some
chaotic activity owing to the feedback connections that, if not
controlled, can cause abrupt changes in neuronal activity leading
to a severe degradation in their inference ability. The reduction
in chaotic states enables our model to produce stable recurrent
activity while generating a particular sequence. This further
establishes the suitability of our combined learning scheme for
reservoir plasticity. Additionally, the strength of the connections
between neurons associated with random sequences (that are not
present in the dictionary) such as “DR”, “POM”, “TMO”, “CG”
etc. are very low (2.46x lesser than the mean of all connections
generating relevant sequences). This result illustrates that the
proposed reservoir model learns stably to form and retrieve
relevant sequences.

To supplement the above result of reduction in chaotic states,
we plot the trajectories (i.e., firing rates of neurons as time
evolves) of 5 excitatory neurons in the 400-neuron reservoir
that encode the characters (“C”, “B”, “P”, and “T”) across 5 test
trials as shown in Figure 4B. It is clearly seen that the activity
of each neuron prediciting a particular word follows a stable
trajectory with slight variation across different trials for different
sequences. When the network is presented with any input (say
“P” corresponding to Unit 5), initially, the trajectories vary across
different trials until they converge around time t = 0 ms, where

the highest spiking activity is observed for the given character
in that particular neuron. Based on the second highest activity,
when the next character is presented to the network, the neuronal
activity of the neuron across different trials varies as expected
(due to the randomness in the input distribution as well as
the chaotic activity). However, the trajectories tend to converge
toward one another with time implying more correlated activity.
In fact, sequences that have less commonality with other words
(“PET” and “BIRD”) have more synchronized trajectories. Thus,
we can infer that the contextual dependencies developed with
the modification of E—E connections has a stabilizing effect on
the chaotic states of the reservoir. While the existence of chaotic
states help a neuron differentiate between sequences that have
more similarities (such as “CAT”, “COT”), it does not have an
overwhelming effect disrupting its inference capability thereby
enabling our model to operate at the edge of chaos.

Suitably learnt reservoir models generally operate with co-
existing chaotic states and stable trajectories as shown above.
However, external noise can induce more chaos in the reservoir
that will overwhelm the stable patterns of activity due to the
inevitable feedback loops among recurrent connections. Here,
we discuss the susceptibility of our reservoir model (and hence
our learning scheme) to external noise. To conduct the noise
analysis, we introduced random Gaussian noise along with the
standard Poisson inputs to the 400-neuron reservoir model
during testing. The injection of noise alters the net post-
synaptic current received by the reservoir neurons (Iposs =
2i[Wilnput; + Norandn(i)], where Ny is defined as the noise
amplitude) thereby affecting the overall firing rate (or trajectory).
In order to prevent the variation in trajectory caused due to the
randomness in the Poisson inputs, we fixed the distribution for
a given input/chararcter across different trials. Figure 5A shows
the trajectories of five different recurrent units for varying levels
of noise (with different Ny) for 10 different test trials. Since the
input distribution is constant, the neuronal trajectory during the
presentation of the first character in each trial (from t = 0 to
t = 350 ms) remains almost equivalent in all cases. As time
evolves, we input the next character predicted by the reservoir
based on the top-2 spiking activity that leads to a different
trajectory for each neuron, representative of the chaotic states. As
Nj increases, we observe a steady increase in the variation of the
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trajectories which in turn degrades the capability of each neuron
to predict correctly. However, only for noise levels with Ny > 0.7,
the reservoir yields diverse trajectories. For moderate noise (with
Nop < 0.5), our model exhibits high robustness with negligible
degradation in prediction capability. In addition to visualizing
the trajectories, we also plotted the Principal Components (PCs)
of the firing activity of the excitatory neurons in the reservoir
against each other, as shown in Figure 5B, for varying levels
of noise. Generally, the first 10 principal components account
for significant portion of variance in the chaotic spontaneous
activity of the reservoir (Rajan, 2009; Rajan et al., 2010). Hence,
we plotted the projection of the activity of the neurons onto PC
vectors 1, 2, 3, and visualized them in a 3D space. It is clearly seen
that the addition of external noise of varying amplitude changes
the trajectory themselves. This shows that the neuronal activity
or trajectories are not simply variable in time due to added noise.
Instead, there is a drastic transformation of the trajectory itself
that probably kicks the reservoir out of a stable state into a chaotic
one limiting its’ prediction capability.

Figure 6A also shows the prediction accuracy of the 400-
neuron reservoir model for varying noise levels. For noise
amplitude of 0.5, the accuracy observed is 90.8% (0.4% lower
than the model without noise). Our model’s insensitivity to
adequate levels of noise further validates the efficacy of the

combined Hebbian/non-Hebbian plasticity learning in reducing
the chaotic states within the reservoir model. The reduction in
chaotic dynamics during the training phase allows the network
to look back in history to formulate the predictions correctly
even in presence of external noise. The accuracy levels, however,
degrade steeply with increasing levels of noise (Ny beyond 0.5) as
the chaotic activity (due to the recurrent feedback loops) starts
overwhelming the locally stable reservoir activity. For a noise
amplitude of 1.0, the accuracy observed is 78.2%.

To further elucidate the effectiveness of Hebbian/non-
Hebbian plasticity in reducing chaos, we probed into random
matrix theory that gives a powerful understanding of the complex
emergent behavior of large networks of neurons, such as the
reservoir, with random recurrent connections. Diagonalization
of the synaptic weight matrix of the reservoir connections yields
equal number of modes as the number of neurons in the
reservoir (Rajan and Abbott, 2006). Each mode can be labeled
by a complex numbered eigenvalue, whose real part corresponds
to the decay rate of an associated mode and imaginary part
is proportional to the frequency of the pattern. Activation of
any one of these complex modes results in a network that
exhibits spontaneous oscillations at the corresponding frequency
(Rajan, 2009). The activation of multiple such modes results
in complex dynamics due to a superposition of individual
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frequencies in a highly nonlinear manner resulting in chaotic
dynamics/persistent reservoir activity as observed earlier in
Figures 4B, 5. We analyzed the EigenValue (EV) spectra of the
synaptic weights of the reservoir before and after learning. The
EV of all the connections (includes E — E,E — I,I —
E,I — 1) in the reservoir initially (drawn from a random
distribution) are distributed uniformly in a circle in the complex
plane in accordance with Girko’s circle law (Girko, 1985). If
the real part of a complex eigenvalue exceeds 1, the activated
mode leads to oscillatory behavior contributing to the overall
chaotic dynamics of the reservoir. From Figure 6B, we observe
that before learning, the eigenvalues of the 400-neuron reservoir
have a larger radius with more values > RealPartl implying
more activated modes characteristic of chaos (Rajan and Abbott,
2006). However, as learning progresses, the EV spectral circle
shrinks to a non-uniform distribution with a high density of
values toward the center and few modes > RealPartl. The dense
center EVs are fixed points that are non-chaotic and persistent.
In fact, the changing shape of EV spectrum with training of
E — E, computationally corresponds to learning. The gradual
movement of EV spectra from chaotic to fixed points establishes
the stabilizing effect of learning the E—E reservoir connections
with our combined plasticity scheme.

4. DISCUSSION

We presented an unsupervised recurrent spiking neural
model learnt with different forms of plasticity for reliable
generation of sequences even in presence of perturbations. We
incorporated a non-Hebbian decay mechanism, inspired from
the Heterosynaptic plasticity observed in mammalian brain,
with standard STDP learning while evolving the recurrent
connections within the reservoir. The combined learning scheme
suppressed the chaotic activity of the network while reducing
the dominant attractor states and substantially enhanced the
inference ability of the reservoir.

Our results indicate that the mutual action of the
Hebbian/non-Hebbian plasticity enables the formation of

locally stable trajectories in the reservoir that works in symphony
with the reduced chaotic states to produce different sequences.
While we demonstrate the efficacy of our model for fairly simple
character-level prediction of visual words, we believe that the
general functional properties of our combined plasticity learning
can be extended to larger recurrent models for more complex
spatio-temporal pattern recognition (such as action recognition,
video analysis etc.). Investigation of the learning rule on other
recurrent architectures is a promising direction of future
research. However, large-scale networks, with a larger number of
recurrent connections, are more vulnerable to chaotic dynamics,
that would require a larger number of training examples for
convergence. This will affect the training complexity of the
reservoir. In such cases, the decay rate as well as the learning rate
(in Hebbian phase learning) has to be varied suitably to avoid
the formation of strong feedback dynamics while maintaining
reasonable training time. Also, the inference ability of the
reservoir is a strong function of the synaptic connecticity (or
size of the reservoir). To avoid escalating the reservoir size
for more complex problems, the learning rules can further be
optimized. For instance, varying the learning rate as training
progresses or a mechanism that adapts the decay rate (in the
non-Hebbian phase) depending upon the extent/intensity of
attractor states formed, might further enhance the inference
ability of a reservoir.

It is worth mentioning that there has been previous effort
on combining different plasticity schemes with reservoir models.
In Lazar et al. (2009), the authors combine STDP, synaptic
scaling of E — E connections and homeostasis to engineer a
plastic reservoir model that performs better than static networks
on simple tasks. While our paper complements Lazar et al.
(2009), the inclusion of non-Hebbian decay gives an entirely
new perspective toward learning in recurrent networks with
reduced chaos and regular trajectories even in presence of
noise. Furthermore, this work deals with more difficult visual
character prediction while entailing a detailed analysis of the
contribution of the Hebbian/non-Hebbian Plasticity scheme for
stable memory states. Finally, we would like to mention the recent
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work Thiele et al. (2017) that deals with reducing the dominant
attractor states developed in a recurrent SNN (different from
our model) by un-learning the strong feedback connections after
training. In contrast, the combined plasticity scheme proposed
in this paper can serve as a general learning methodology
that cohesively reduces the synaptic weights of strong correlations
during training for more robust and noise-resilient recurrent
SNN implementations.
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