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Secondary impairment of blood-brain barrier (BBB) occurs in the remote thalamus
after ischemic stroke. Netrin-1, an axonal guidance molecule, presents bifunctional
effects on blood vessels through receptor-dependent pathways. This study investigates
whether netrin-1 protects BBB against secondary injury. Netrin-1 (600 ng/d for 7
days) was intracerebroventricularly infused 24 h after middle cerebral artery occlusion
(MCAO) in hypertensive rats. Neurological function was assessed 8 and 14 days after
MCAQ, and the permeability of BBB in the ipsilateral thalamus was detected. The
viability of brain microvascular endothelial cells was determined after being disposed
with netrin-1 (50 ng/mL) before oxygen-glucose deprivation (OGD). The role of netrin-
1 was further explored by examining its receptors and their function. We found that
netrin-1 infusion improved neurological function, attenuated secondary impairment of
BBB by up-regulating the levels of tight junction proteins and diminishing extravasation
of albumin, with autophagy activation 14 days after MCAQO. Netrin-1 also enhanced
cell survival and autophagy activity in OGD-treated cells, inhibited by UNC5H2 siRNA
transfection. Furthermore, the beneficial effects of netrin-1 were suppressed by PISK
inhibitors 3-Methyladenine and LY294002. Our results showed that netrin-1 ameliorated
BBB impairment secondary to ischemic stroke by promoting tight junction function
and endothelial survival. PI3K-mediated autophagy activation depending on UNC5H2
receptor could be an underlying mechanism.

Keywords: blood-brain barrier, ischemia, netrin-1, phosphatidylinositol 3 kinase, autophagy, thalamus

INTRODUCTION

Vascular impairment and cellular damage take place not only in primary lesion, but also in
remote loci connected to the cerebral infarction by synapses, which could be responsible for poor
neurological recovery after stroke or injury (Ling et al., 2009; Zhang et al., 2012; Duering et al.,
2015). The thalamus is a representative remote region connected to the ipsilateral somatosensory
area of frontoparietal cortex via thalamocortical and corticothalamic projections in sensing body
position and maintenance of postural reflex. Our previous study in hypertension, a well-known risk
factor of stroke, has revealed vascular impairment in the ipsilateral thalamus at acute stage of focal
cerebral infarction (Li et al., 2011). Therefore, improvement of vascular perfusion in the thalamus
may provide a potential therapy strategy to stroke.
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Angiogenesis, a sprouting process of new capillaries from
preexisting ones to supply cells with oxygen, nutrients or trophic
factors, helps to restore blood flow and eliminate necrotic debris
in ischemic zone, and promote the survival of neurons as a result
(Seevinck et al.,, 2010; Xiong et al., 2010; Liman and Endres,
2012). However, local newly-formed blood vessels with immature
blood-brain barrier (BBB), which are characterized by high
permeability, could also spark off neuronal loss due to the injury
of extravasation of serum macromolecules and inflammatory
factors to brain parenchyma (Abraham et al, 2002; Krueger
et al,, 2015; Prakash and Carmichael, 2015). The underlying
mechanisms need to be clarified.

Accumulated evidence indicates that the crosstalk between
the nervous and vascular systems occurs at molecular level
in both development and response to injury (Weinstein,
2005). In specific, netrin-1, known as a bifunctional molecule,
was originally described to mediate chemoattraction and
chemorepulsion of axonal guidance or migration of neurons
by interacting with its receptors, deleted in colorectal cancer
(DCC) and uncoordinated gene 5H (UNC5H) (Moore et al,
2007; Rajasekharan and Kennedy, 2009). Nevertheless, netrin-
1 also serves as a survival factor, which presents its pro-
angiogenic activity by stimulating the proliferation, migration
and differentiation of endothelial cells (ECs) into new capillary
tubes, and enhancing the response of ECs to vascular endothelial
growth factor (VEGF) (Nguyen and Cai, 2006; Wilson et al., 2006;
Navankasattusas et al., 2008). Further studies found that netrin-
1 enhanced cell migration by activating phosphatidylinositol
3 kinase (PI3K) signal cascades via UNC5B receptor (Tang
et al., 2008; Lv et al., 2015). However, it is unclarified whether
netrin-1 can protect vascular function in remote loci against
secondary injury, and whether PI3K pathway is an unrecognized
mechanism underlying the role of netrin-1.

The present study was taken to observe the temporal process
of BBB impairment secondary to ischemic stroke, and to
investigate whether netrin-1 could protect BBB against secondary
injury in vivo and in vitro. We further explored the possible
involvement of PI3K pathway, which is also a critical regulator
of autophagy.

MATERIALS AND METHODS

Animal Models and Grouping

The experimental protocol conformed to the Animal Welfare
Act Guide for Use and Care of Laboratory Animals, and was
approved by the local ethics committee for animal research,
Sun Yat-sen University, China. All procedures involving animals
were monitored in compliance with the ARRIVE guidelines.

Abbreviations: BBB, blood-brain barrier; DCC, deleted in colorectal
cancer; UNCS5H, uncoordinated gene 5H; ECs, endothelial cells; PI3K,
phosphatidylinositol 3 kinase; MCAO, middle cerebral artery occlusion; 3-MA, 3-
Methyladenine; mNSS, modified neurologic severity score; OGD, oxygen-glucose
deprivation; RBMVECs, rat brain microvascular endothelial cells; siRNA, small
interfering RNA; PI, propidium iodide; RECA-1, rat endothelial cell antigen-1;
vWE von Willebrand factor; VEGE vascular endothelial growth factor; LC3,
microtubule-associated protein light chain 3.

Anesthesia for all surgical procedures was achieved using an
injection of 10% chloral hydrate (3 mL/kg, i.p.).

Renovascular hypertension was firstly induced by bilateral
renal artery clipping in male Sprague-Dawley rats weighing 80—
100 g as described previously (Zeng et al., 1998). Twelve weeks
later, 96 rats with stable hypertension (>180 mmHg) were used
in the study; rats were otherwise healthy and weighed 360-480 g.
Thereafter, right cerebral infarction was established in 72 rats
by electrocoagulation of the distal middle cerebral artery. This
permanent middle cerebral artery occlusion (MCAO) method
in hypertensive rats achieved a high consistency in the location
and size of cerebral infarction, and was extensively used in
the study of secondary injury post stroke (Zhang et al., 2012;
Liao et al., 2013; Chen et al., 2014). There were 24 rats in the
sham MCAO group, in which the right middle cerebral artery
was exposed without any electrocoagulation or transection. To
minimize operation time, tracheal intubation was not performed
and an arterial line was not created. During recovery from
anesthesia, respiratory status was in a smooth condition and body
temperature was maintained at 37°C with a heating pad.

Rats with permanent MCAO were randomly allocated
to receive continuous intracerebroventricular infusions of
50 ug/mL netrin-1 (cat. No. 1109-N1/CF; R&D System;
n = 24), 50 ug/mL netrin-1 plus 200 nmoL PI3K inhibitor
3-Methyladenine (3-MA) (cat. No. M9281; Sigma-Aldrich;
n = 24) or phosphate-buffered saline as vehicle (n = 24) 24h
later. The infusions (12 pl/d over a period of 7 days) were made
using a 1007D Alzet osmotic minipump (Durect, Cupertino, CA,
USA) at the following stereotaxic coordinates: 0.8 mm posterior
to the bregma, 1.4 mm lateral to the bregma on the right side and
3.6 mm below the dura. The in vivo bioactivity of reagents in the
present regimen has been verified by our previous study (Liao
etal., 2013).

Neurological Evaluation

Neurological function was evaluated blindly in each group before
and 1, 8, and 14 days after MCAO with a modified neurologic
severity score (mNSS), which included a combination of motor
and sensory functions, balance, and reflex tests (Chen et al,
2014). The mNSS was recorded from 0 (normal) to 18 (maximal
deficit), with 13-18 as severe injury, 7-12 as moderate injury, and
1-6 as mild injury.

Tissue Preparation
Eight and 14 days after real or sham MCAO, 12 rats from
each group were anesthetized and sacrificed. For H&E staining
and immunofluorescence, the rat brains from six rats were
transcardially perfused and post-fixed with 4% paraformaldehyde
at 4°C for 8 h. Series of adjacent 10 wm coronal frozen sections
were collected at the ipsilateral thalamus level. For western blot,
the rat brains from the other six rats were transcardially perfused
with heparinized saline at 4°C. The ipsilateral thalamus was
quickly obtained and frozen in liquid nitrogen, and then stored
at —80°C.

To observe the microstructure of tight junctions, small
blocks from the ipsilateral thalamus (n = 3) were fixed,
dehydrated, and embedded for transmission electron
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microscopy. Series of adjacent 80nm sections were made
using an Ultracut-E ultramicrotome (Reichert-Jung, Vienna,
Austria), and viewed under a LM-10 electron microscope
(Philips, Amsterdam, Holland) at 1,700 x magnification.
Tight junctions appear as a series of discrete sites of
apparent membrane fusion (kissing points) between
the outer leaflets of the plasma membranes of adjacent
cells.

Cell Culture and Oxygen-Glucose
Deprivation (OGD)

Rat brain microvascular endothelial cells (RBMVECs)
(cat. No. R840-05a; Cell Application) were grown and
maintained in Dulbecco’s modified eagle medium (cat. No.
11885-084; Thermo Fisher Scientific) supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin
in a humidified incubator under 5% CO, at 37°C. Cells
were split at 70-80% confluence before the following
experiments.

OGD is used to mimic ischemic conditions in vitro as
previously described (Park et al., 2005). In brief, RBMVECs were
gently washed twice with glucose-free Dulbecco’s modified eagle
medium (cat. No. 11966-025; Thermo Fisher Scientific), and
placed in a modular chamber with dual flow meter (Billups-
Rothenberg, Del Mar, CA, USA). Cells in the chamber were
flushed with 95%N,/5% CO; gas mixture at a flow rate of 4L/min
for 10min to create hypoxic conditions, and then incubated
at 37°C for 1h. Hypoxic conditions within the chamber were
monitored using a gas analyzer (Coy Laboratory, Grass Lake,
MI, USA). The extent of OGD-induced death of cells was
dependent on the duration of OGD, and OGD for 1h is at a
critical threshold to induce pivotal signaling events for cells in
the current method. Control cells were treated without OGD
condition.

To elucidate the role of netrin-1 on RBMVECs and
possible involvement of PI3K pathway, cells were pre-treated
with 50ng/mL netrin-1 (R&D System), 20 pmol/L PI3K
inhibitor LY294002 (cat. No. L9908; Sigma-Aldrich), netrin-
1 plus LY294002, or only equivalent amount of diluent
solution for 2h before OGD. The used concentrations of

reagents were based on previous studies and were effective
for its physiological function (Park et al., 2004; Wilson et al.,
2006).

UNC5H2 Small Interfering RNA (siRNA)

Transfection

UNC5H2 and scramble siRNA were designed by RiboBio
Corporation  (RiboBio, Guangzhou, China). Sequences
corresponding to the siRNA of rat UNC5H2 were: sense,
5GGAGGUACCCUUGGAUCAUATAT3'; antisense, 5'AUG
AUCCAAGGGUACCUCCATAT3'. UNC5H2 siRNA-lipid or
negative control siRNA-lipid complexes were made by adding
siRNA to Lipofectamine RNAIMAX Reagent (cat. No. 13778;
Thermo Fisher Scientific) diluted in Opti-MEM I reduced Serum
medium (cat. No. 31985070; Thermo Fisher Scientific) to achieve
a final concentration of 100 nmol/L. RBMVECs were incubated

Sham MCAO

FIGURE 2 | Representative images of microvascular structure in the ipsilateral
thalamus. (A) Normal (arrow) and impaired microvascular structure
(extravasation of erythrocyte, arrowheads) were showed by H&E staining. (B)
Normal (arrow) and damaged tight junctions (discontinuous contact,
arrowheads) were showed by transmission electron microscopy.

Sham MCAO

FIGURE 1 | Cortical infarction after MCAOQ. (A) Schematic illustration of cortical infarction (a, blue) and the ipsilateral thalamus (b, red). (B) Normal brain tissue by H&E
staining. (C) Focal infarction (*) was in the neocortex while the ipsilateral thalamus (#) was apparently unaffected 8 days after MCAQO.

2 mm

Real MCAO
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with 250 pL of siRNA-lipid complexes in a 6-well plate for
1 d at 37°C. The efficiency of transfection was validated by
comparing the levels of UNC5H2 mRNA and protein between

1 ()- -&- Sham

-m Vehicle
—a— Netrin-1
-+ Netrin-1+3-MA

%

Z 51

0 4 & ®—
0 day 1 day 7 days 14 days
Time after MCAO

FIGURE 3 | Neurological function assessed by mNSS. The scores were
increased over different time points after MCAQ, but significantly improved
with netrin-1 infusion. The beneficial effect of netrin-1 was inhibited by 3-MA
14 days after MCAO. *P < 0.05, vs. the vehicle group, # P<0.05, vs. the
netrin-1 group, n = 6.

transfected and controlled cells by real-time PCR and western
blot.

Cell Viability Assay

Viable cells were detected by using a cell counting kit-8 (CCK-8,
cat. No. CK04; Dojindo) and an Annexin V-FITC Kit (cat. No.
AD10; Dojindo) following the instructions of manufacturer. For
CCK-8 detection, 100 pl cell suspension ( 10% cells/well) was
dispensed in a 96-well plate and pre-incubated for 24h in a
humidified incubator with 5% CO2 at 37°C. Cells in each well
were mixed with 10 pl CCK-8 solution and incubated for 4h
at 37°C in dark. Cell viability was decided by measuring the
absorbance at 450 nm (ref. 650 nm) under a multi-mode Synergy
HT microplate reader (BioTek, Winooski, VT, USA). The deeper
color the culture medium presented, the more living cells there
were. Blank control was performed by adding equivalent amount
of CCK-8 solution into non-cell well. For Annexin V-FITC
detection, cells were gently digested by 0.25% trypsin without
EDTA and washed twice with 0.01 mol/L PBS, and then 5 x 10°
cells were collected by centrifugation at 1,000 rpm for 5 min. Cells
were resuspended in 500 pl of 1 x Binding Buffer, and incubated
with 5 il of Annexin V-FITC and 5 pl of propidium iodide (PI) at
room temperature for 15 min in dark. The green fluorescence of
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FIGURE 4 | Secondary impairment of BBB in the ipsilateral thalamus. (A) Representative images of occludin (red) and extravasation of albumin (green), and relative
amount of albumin extravasation by immunofluorescence. (B) Western blot analysis of tight junction protein ZO-1 and occludin. Extravasation of albumin and
down-regulation of ZO-1 and occludin after MCAO were improved by netrin-1 infusion. PI3K inhibitor 3-MA prohibited the beneficial effect of netrin-1. *P < 0.05, n = 6.
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Annexin V-FITC binding and the red fluorescence of PI staining
were respectively detected by an EPICS XL-MCL flow cytometry
(Bechman Coulter, Brea, CA, USA). Viable cells were defined as
FITC (=) and PI (=) cells. Control cells were treated with either
Annexin V-FITC or PI staining, or non-staining of both.

Immunofluorescence

In Vivo

A mouse anti-rat endothelial cell antigen-1 (RECA-1) antibody
(1:300; cat. No. NB100-64647; Novus Biologicals) was used
to mark ECs in the ipsilateral thalamus. Sections were first
incubated with RECA-1 antibody at 4°C overnight before
incubated with species-specific Alexa Fluor® 555-conjugated
anti-mouse (cat. No. 4409; CST) for 1 h. Thereafter, sections were
mounted and analyzed under a fluorescence microscope with a
Kontron IBAS 2.5 image system. Double immunofluorescence
was performed in order to evaluate the permeability of BBB.
Sections were first incubated with a mouse anti-albumin antibody
(1:300; cat. No. sc-271605; Santa Cruz Biotechnology), and
then combined with a rabbit anti-occludin antibody (1:100;
cat. No. 71-1500; Invitrogen). Species-specific Alexa Fluor®
488-conjugated anti-mouse secondary antibody (cat. No. 4408;
CST) and Alexa Fluor® 555-conjugated anti-rabbit secondary
antibody (cat. No. 4413; CST) were used as described above.

In Vitro

The endothelial attribute of cells was identified by using a
rabbit anti-von Willebrand factor (vWF) antibody (1:200; cat.
No. sc-14014; Santa Cruz Biotechnology). To detect netrin-1
receptors, RBMVECs were first incubated with a rabbit anti-
DCC antibody (1:500; cat. No. SAB4500625; Sigma-Aldrich) or
UNC5H2 antibody (1:300; cat. No. ab104871; Abcam) at 4°C
overnight before incubated with species-specific Alexa Fluor 488-
conjugated goat anti-rabbit secondary antibody (cat. No. 4412S;
CST) for 1 h. Thereafter, cells were counterstained with Hochest
33258 solution (cat. No. 94403; Sigma-Aldrich), and analyzed as
described above.

Western Blot

Homogenized brain tissue or cultured cells were lysed using
RIPA Buffer (cat. No. 89900; Thermo Fisher Scientific) plus a
10 pl /mL protease inhibitor cocktail (cat. No. 78410; Thermo
Fisher Scientific) on ice for 5 min. The pellet was simultaneously
sonicated for 30s with 50% pulse to increase yields. Then,
the lysate was centrifuged at 14,000g for 15min at 4°C to
obtain the supernatant sample. A standard curve by plotting
an average blank-corrected 562 nm measurement for each BSA
standard vs. its concentration in pl /mL was made using a BCA
protein assay kit (cat. No. 23227; Thermo Fisher Scientific). The
protein concentration of each sample was quantitated using the
standard curve. Equivalent amount of proteins was resolved by
electrophoresis using a sodium dodecyl sulfate-polyacrylamide
gel and transferred to polyvinylidene fluoride membranes. Blots
were incubated with a rabbit anti-vWF antibody (1:200; Santa
Cruz Biotechnology), VEGF antibody (1:200; cat. No. sc-152;
Santa Cruz Biotechnology), beclin-1 antibody (1:1,000; cat.
No. 3495; CST), microtubule-associated protein light chain 3

(LC3) antibody (1:1,000; cat. No. 3868; CST), p62 antibody
(1:1000; cat. No. 5114; CST), ZO-1 antibody (1:100; cat. No.
61-7300; Invitrogen), occludin antibody (1:100; Invitrogen),
DCC antibody (1:1,000; Sigma-Aldrich), or UNC5H2 antibody
(1:800; Abcam) at 4°C overnight. Antibody binding to blots was
visualized on X-ray films using a HRP-linked rabbit IgG detection
kit (1:2,000; cat. No. 7074; CST). The image program of Quantity
One was used to measure the density of bands on western blots
in a blinded manner. Results were expressed as a percentage of
GAPDH to generate relative protein levels.

Statistical Analyses

All data were analyzed with SPSS (Windows version 15.0;
SPSS Inc., Chicago, IL, USA). All analysis was performed in a
blinded manner without knowledge of the treatment assignment.
Numerical data were expressed as the mean =+ standard deviation
while ordinal data as the median with 25 and 75 percentile. A
general linear model with analysis of variance was used to detect
any intergroup differences. A two-tailed P-value of 0.05 or less
was taken to infer statistical significance.

RESULTS

MCAO Resulted in Secondary Impairment
of BBB in the Ipsilateral Thalamus

The infarction was consistently induced after MCAO in
hypertensive rats, located in the ipsilateral primary and
secondary somatosensory cortex sparing the thalamus, and
caudate putamen (Figure1). Nevertheless, extravasation of
erythrocyte by H&E staining and damaged tight junctions
by transmission electron microscopy were exhibited in the
ipsilateral thalamus after MCAO, indicating the secondary
impairment of BBB (Figure 2). There was no observed cerebral
infarction in sham MCAOQ group.

Netrin-1 Improved Neurological Function
after MCAO, Inhibited by PI3K Inhibitor
3-MA

Neurological function evaluated by mNSS was impaired
after MCAO. Netrin-1 infusion improved the neurological
impairment 8 and 14 days after MCAO compared with vehicle
treatment. The difference was statistically significant. The
beneficial effect of netrin-1 was inhibited by 3-MA 14 days after
MCAO (Figure 3).

Netrin-1 Ameliorated Secondary
Impairment of BBB and Augmented Cell

Survival, Prohibited by PI3K Inhibitors

Eight days after MCAO, the down-regulation of tight junction
protein ZO-1 and occludin as well as extravasation of albumin
was detected in the ipsilateral thalamus, both of which lasted
until 14 days. Albumin showed a partial co-localization with
occludin by double immunofluorescence. When compared with
the vehicle group, netrin-1 infusion improved the permeability
of BBB, represented by increased protein levels of ZO-1
and occludin 8 and 14 days after MCAO, and diminished
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extravasation of albumin at 14 days. Meanwhile, in vWE-
stained RBMVECs, with the supplement of netrin-1 (50 ng/mL)
before OGD, cell viability was significantly raised compared
to the OGD control [0.81 £ 0.10 vs. 0.59 £ 0.05 by cell
absorbance; 79.4 vs. 53.8% by the proportion of PI/Annexin
V-FITC (-) cells]. By contrast, the beneficial effects of netrin-
1 on BBB permeability and cell survival were prohibited by
PI3K inhibitors 3-MA and LY294002 14 days after MCAO,
shown by down-regulation of tight junction proteins and
intensified extravasation of albumin, as wells as decreased
cell viability (0.52 £ 0.03 and 48.0%, respectively), suggesting
PI3K pathway was involved in the protective role of netrin-1
(Figures 4, 5).

ECs in the ipsilateral thalamus were evaluated by detection
of RECA-1, vWE and VEGF. The positive area of RECA-1 and
the protein level of VEGF were significantly increased 14 days
after MCAO by immunofluorescence and western blot. Netrin-1
infusion did not make significant difference of RECA-1, vWE, or
VEGEF over different time points compared with the vehicle group
(Figure 6).

Netrin-1 Enhanced Autophagy Activity,
Suppressed by PI3K Inhibitors

The whole autophagy activity in the ipsilateral thalamus was
reduced 14 days after MCAO by western blot, represented by
reduced protein levels of LC3B, beclin-1, and p62. Netrin-1
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infusion significantly increased the levels of LC3B and beclin-1,  autophagy activity participated in the protective role of netrin-1
and decreased p62 14 days after MCAO compared with the  (Figure 7).

vehicle group, indicating the activation of autophagy. Similarly, . R

the supplement of netrin-1 (50ng/mL) also significantly The Effects of Netrin-1 on Cell Viability and
increased autophagy activity in OGD-treated cells. By contrast, Autophagy were Dependent on Its UNC5H2
the netrin-1-activated autophagy was suppressed by PI3K Receptor

inhibitors 3-MA and 1Y294002, shown by diminished TUNCS5H2 receptor, not DCC receptor, was distinctly expressed
LC3B and augmented p62, implying that PI3K-mediated on RBMVECs. OGD for 1h significantly up-regulated the
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protein level of UNC5H2 receptor compared with the normal
control. UNC5H2 siRNA transfection efficiently knocked down
the level of UNC5H2, but did not change cell viability
or autophagy activity after OGD. In the meantime, after
UNC5H2 siRNA transfection, cell viability and autophagy
activity induced by netrin-1 were significantly suppressed,
implying that the beneficial effects of netrin-1 required UNC5H2
receptor (Figure 8).

DISCUSSION

Secondary vascular and neuronal injury in the remote thalamus,
which is not supplied by MCA, displays a time profile different
from that in the primary infarction lesion (Zhang et al., 2012).
In the present study with MCAO in renovascular hypertensive
rats, the immunoreactivity of RECA-1 and the protein level of
VEGF were increased in the ipsilateral thalamus 14 days after
MCADOQ, inferring an enhancement of angiogenesis. Nevertheless,
the protein level of vWE, a marker mainly expressed in mature
ECs, remained unchanged. It can be deduced that the function
of new-formed vessels was still imperfect. Indeed, we found
that the function of BBB in the vessels was impaired after
MCAQO, represented by increased extravasation of albumin and
damaged tight junctions. In the meantime, down-regulation of
tight junction protein ZO-1 and occludin was also observed.
Thus, secondary impairment of BBB in the ipsilateral thalamus
could be disadvantage to neurological recovery post stroke.

Axon guidance cue netrin-1 has been shown as a survival
factor for ECs through receptor-dependent pathways. In adult
brain, focal newly-formed blood vessels facilitated by netrin-1
overexpression contained an intact EC monolayer surrounded
by multiple cell layers (Fan et al., 2008). Netrin-1 also increased
peri-infarct vessel density after ischemic insult and maintained
vascular integrity against inflammatory injury (Sun et al., 2011;
Podjaski et al., 2015). Nevertheless, in some cases, netrin-1 was
found to block angiogenesis through its receptor of UNC5B (Lu
et al., 2004; Larrivee et al., 2007). The dual function of netrin-
1 has been attributed to its concentrations used and the specific
type of receptors involved in different experimental conditions
(Yang et al., 2007; Castets and Mehlen, 2010).

With exogenous netrin-1 protein continuously infused to the
ventricle for 7 days after MCAO, we found the expression of
ECs in the ipsilateral thalamus remained unchanged compared
to the vehicle control, but neurological function was improved.
Simultaneously, extravasation of albumin was decreased while
the protein levels of ZO-1 and occludin were increased, implying
that netrin-1 improved neurological function through the
preservation of BBB but not angiogenesis after MCAO. We
further performed in vitro culture of RBMVECs, and found that
OGD-inhibited cell viability was enhanced after being treated
with netrin-1 (50 ng/mL). Meanwhile, the expression of netrin-1
receptor UNC5H2, rather than DCC, was obviously elevated
after OGD. After UNC5H2 siRNA transfection, the protective
effect of netrin-1 on cell viability was significantly decreased
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compared with the control. Taken together, the data showed
that the beneficial role of netrin-1 on BBB was achieved by up-
regulating the levels of tight junction proteins and supporting
endothelial survival, possibly through UNC5H2 receptor.

The underlying mechanism of netrin-1 on BBB maintenance
is not clear. Studies in Caenorhabditis elegans found that
autophagy-related kinase UNC-51 and its binding partner UNC-
14 regulated the subcellular localization of netrin receptor UNC-
5, and guided axon growth in C. elegans (Ogura and Goshima,
2006; Ogura et al., 2010). UNC5H2 also could trigger cell
death through the activation of the serine-threonine protein
kinase DAPk, which is also a critical regulator of autophagy
(Guenebeaud et al., 2010; Levin-Salomon et al., 2014). These
studies inferred a potential connection between autophagy and
netrin-1/UNC5.

Autophagy is a key cellular process that preserves endothelial
function (Mizushima and Komatsu, 2011; Rubinsztein et al.,
2012). Impaired autophagy could affect the functionality of
the vessel wall and initialize many vascular diseases. On the
other hand, autophagy activation was proposed as a protective
mechanism to recycle nutrients and to generate energy for
maintenance of cell viability in unfavorable conditions (Meng
et al,, 2010; Zhang et al., 2010; Xie et al., 2011; Chen et al., 2013).
In the present study, netrin-1 infusion enhanced autophagy
activity in the ipsilateral thalamus 14 days after MCAO,
in accordance with the improvement of BBB permeability.
Furthermore, PI3K inhibitor 3-MA inhibited not only autophagy
activity, but also the protective role of netrin-1 on BBB in the
ipsilateral thalamus after MCAO. In vitro, netrin-1 enhanced
autophagy activity and cell viability compared with the OGD-
control. Nevertheless, the activated autophagy and cell viability
were diminished when simultaneously mixed with the other PI3K
inhibitor LY294002. After UNC5H2 siRNA transfection, both
netrin-1-activated autophagy and cell survival were inhibited.
Altogether, the data inferred that PI3K-mediated autophagy
activity depending on UNC5H2 receptor could be involved in
both the improvement of BBB function and the survival of ECs.

There were several limitations in our study. First, the
ideal in vitro model of secondary injury has not been well
established yet due to the unclarified mechanisms in remote
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