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In this paper, we present a novel methodology to solve the classification problem, based

on sparse (data-driven) regressions, combined with techniques for ensuring stability,

especially useful for high-dimensional datasets and small samples number. The sensitivity

and specificity of the classifiers are assessed by a stable ROC procedure, which uses

a non-parametric algorithm for estimating the area under the ROC curve. This method

allows assessing the performance of the classification by the ROC technique, when more

than two groups are involved in the classification problem, i.e., when the gold standard is

not binary. We apply this methodology to the EEG spectral signatures to find biomarkers

that allow discriminating between (and predicting pertinence to) different subgroups of

children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder.

Children with LD-NOS have notable learning difficulties, which affect education but

are not able to be put into some specific category as reading (Dyslexia), Mathematics

(Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG

patterns that may be related to specific learning disabilities in an individual case. This

could be useful to develop subject-based methods of therapy, based on information

provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups

previously selected by a clustering technique over the scores of cognitive tests. The

classification equation produced stable marginal areas under the ROC of 0.71 for

discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for

Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to

the cognitive scores is also presented.

Keywords: LD-NOS classification, EEG classification, stability based biomarkers, non-parametric ROC, sparse

classifiers, elastic-net

INTRODUCTION

Learning disability (LD), with a prevalence between 2.6 and 3.5%, (14% of all with mental health
problems) in children between 5 and 16 years old (Emerson and Hatton, 2013), is a complex
phenomenon that includesmany facets. Definitions and classifications vary profoundly (Kavale and
Forness, 1995). Usually a child is identified as suffering from LDwhen he/she has poor performance
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in standardized tests for reading, mathematics, and written
expression–adjusted according to the age, schooling, and level
of intelligence of the proband. Specific Learning Disorder
are defined by problems in only one of these three areas:
reading/language (Dyslexia), Mathematics (Dyscalculia), and
Writing (Dysgraphia). On the other hand, there is another
category, Not Otherwise Specified Learning Disability (LD-NOS)
in whichmore than one area is affected (Diagnostic and Statistical
Manual of Mental Disorders, version IV, DSM-IV-TR; American
Psychiatric Association, 2000).

Thus LD-NOS is a broad, catch-all category for children
with notable learning difficulties, which affect education but
do not fall into a specific category. Obtaining a more nuanced
assessment of these children may help to address subject-
tailored therapy methods that better cope with their problems.
However, due to the heterogeneity within and across domains it
is challenging to disentangle the different possible subgroups of
LD-NOS.

To our knowledge, subtyping of LD-NOS children has been
only based on their behavioral and neuropsychological tests.
Recently, Roca-Stappung et al. (2017) used cluster analysis based
on the scores of the Neuropsychological Assessment of Children
test (ENI) to find 3 clearly defined subtypes in a sample of 85 LD-
NOS children. Children in Group 1 showed less severe problems;
those in Group 2 showed an intermediate performance (without
scoring very low in any of the tests); and group 3 had the most
severe problems, significantly worse than the other groups in
almost all tests. Thus, group membership is an ordinal scale
variable that differentiates different levels of neuropsychological
disabilities that may provide a key to the design of more specific
rehabilitation. Nevertheless, further work in this direction might
be substantially improved by the inclusion of neural biomarkers
as a basis of stratification. A natural candidate for this type of
biomarker are those derived from electrophysiology which is a
non-invasive, inexpensive and sensitive technology for assessing
brain dysfunction with relevance to low and middle-income
countries.

The first stage for the identification of a biomarker is to
demonstrate a significant variation of the selected features with
the disease entity. The second is to verify their predictive power
for retrospective studies. Progress for the first stage has been
achieved for electrophysiological biomarkers of LD-NOS in work
that can be summarized as below.

Event-Related Potential parameters have been shown by
several authors to differ significantly between LD-NOS children
and controls and between two subgroups of LD-NOS using this
technique (Silva-Pereyra et al., 2001; Heine et al., 2013; Fernández
et al., 2014; Tang et al., 2014; Žarić et al., 2014; Ma et al., 2016;
Moll et al., 2016). Unfortunately, ERPs requires complicated
experimental conditions and will not be the focus of our
interest.

Quantitative Electroencephalography (qEEG) from the resting
state is, on the contrary, a less difficult to apply method. qEEG
parameters are clearly different between LD-NOS children and
those with good academic achievement (Becker et al., 1987;
Marosi et al., 1992, 1997; Fernández et al., 2002; Žarić et al.,
2017). LD children are characterized by more power in the
Theta band (4–7.5Hz) and less amount of power in the range

of alpha frequencies (8–13.5Hz) (John et al., 1983; Lubar et al.,
1985; Harmony et al., 1990; Marosi et al., 1992; Chabot et al.,
2001; Fernández et al., 2002; Gasser et al., 2003; Fonseca et al.,
2006). Even increases in power in the Delta band have also been
observed in cases with severe difficulties (Harmony et al., 1990).
Furthermore, Jäncke and Alahmadi (2016), showed significant
qEEG differences between children with LD-NOS, those with
learning disabilities with verbal disabilities (LD-Verbal), and
healthy controls. The features were selected by using a group
independent component analysis (gICA) model. Finally, in the
study by Roca-Stappung et al. (2017) mentioned above it was
shown that qEEG parameters differed between subtypes of LD-
NOS.

In this paper, we turn attention to the second stage of qEEG
biomarker identification for LD-NOS subtyping: that of the
selection of a subset of parameters that have high predictive
power. This is an old problem in multivariate statistics: variable
selection for classification. The goal is to extract a small subset of
relevant variables that can jointly classify subjects accurately into
different populations. The solution of this task often becomes
difficult in high dimensional settings, i.e., where there is a big
number of variables involved in the problem and relatively small
size of the sample (Mwangi et al., 2014; Jovic et al., 2015).
Different approaches to variable selection have been used. The
simplest one is to rank variables by means of standard univariate
statistical methods such as the t-test and select those with
significant scores. Its virtue is simplicity, but it entails a high
number of individual tests that then require control of false
positives for multiple comparisons. It also ignores the possibly
important information contained in the correlations between
variables. Multivariate discriminant analysis, on the other hand,
does take advantage of the correlations when selecting variables
for a discriminant function. The main problems with this
approach is that, in high dimensional problems, there is a
lack of stability in the selection of variables: different subset of
biomarkers that exhibit similarly high classification accuracy on
the training set then fail utterly in the test set. It is obvious that
the training phase is capitalizing on chance.

Some methods have been introduced to circumvent the
difficulties that arise for variable selection and classification in
high dimensional settings (Meinshausen and Buhlmann, 2010;
see Hastie et al., 2009; Fan and Lv, 2010 for comprehensive
reviews). We base our own work on that proposed by Wehrens
et al. (2011) who developed a method to achieve stability of
potential biomarkers under perturbations. We further develop
these ideas and apply them to the selection of biomarkers when
there are several groups that are ordered in degree of severity as
is the case for LD-NOS groups described by Roca-Stappung et al.
(2017).

The aims of this paper are therefore two-fold:

• To improve a technique, first introduced by Wehrens et al.
(2011), for the identification of stable classifiers on tests in
high dimensional settings. This method will be extended to the
prediction of disability severity

• To identify, using this technique, a stable low dimensional
classifier, based on a minimal set of qEEG features, that
predicts the degree of severity of LD-NOS.
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SAMPLE AND PROPOSED qEEG FEATURE
SET

Participants
Eighty-five right-handed children (31 female) diagnosed with
LD-NOS participated in the study. The age range was from 8
to 11 years (9.2 ± 0.96). They were tested with different scales:
M.I.N.I.-KID (Sheehan et al., 2010), WISC-IV (Wechsler, 2007),
and the Child Neuropsychological Assessment (ENI; Matute
et al., 2007). They had normal neurologic examinations and
no other psychiatric disorder. Their score at the Full-Scale
Intelligence Quotient (FSIQ) was over 70, to exclude intellectual
disability. The ENI evaluated three cognitive domains: reading,
writing, and arithmetic. All subjects scored low in at least two
of the three domains. A k-means cluster was applied to the ENI
scores, dividing the sample into three groups. The number of
clusters was previously decided by the experimentalists (Roca-
Stappung et al., 2017).

The Ethics Committee of the Neurobiology Institute of the
National Autonomous University of Mexico approved this study,
which followed the Ethical Principles for Medical Research
Involving Human Subjects established by the Declaration of
Helsinki. Informed consent was signed by all children and their
parents.

A detailed description of the experiment has been published
elsewhere (Roca-Stappung et al., 2017).

EEG Recordings
The resting state EEG was obtained during rest, with the eyes
closed, for the 19 leads of the 10–20 system, using the linked ear-
lobes as reference. The data was sampled at 5ms. To construct
the EEG spectrum, for each subject, 24 artifact free segments of
2.56 s length were selected by an experienced neurophysiologist.
This segment length is commonly used both in clinical and
experimental EEG studies since it avoids non-stationarities in the
EEG signal and guarantees an appropriate frequency resolution
of 0.39Hz for the analysis (Niedermeyer et al., 2010), with
an accurate spectral description of the EEG signal, since the
degrees of freedom of this estimate is larger than the number of
electrodes. The EEG segments were re-referenced to the Average
Reference. The data was then transformed to the frequency
domain using the Fast Fourier Transform. The variables for the
model were chosen from the standard high-resolution spectral
model (Pascual-Marqui et al., 1988; Valdes-Sosa et al., 1990; Szava
et al., 1993), which has been demonstrated to have a higher
accuracy than the traditional broadband spectral models (Valdes-
Sosa et al., 1990; Szava et al., 1993) since the summarization
process involved in the calculation of the broad band models is
a weaker approach for describing the EEG, since it can split a
spectral peak between two bands (Szava et al., 1993).The spectra
were calculated from 0.39 to 19.11Hz yielding a parameter
vector of 49 frequencies for each of the 19 leads, for a total of
931 variables. Spectra were rescaled by the Global Scale Factor
(Hernández et al., 1994). An age correction was not applied to the
data, since no significant differences with age were found among
the groups. It must be noted that while the high-resolution
spectral model has a higher dimensionality than the commonly

used broad band estimation, we avoid, the danger of overfitting
with the method described below.

STATISTICAL METHODS

The procedure to select a stable and sparse classifier is based on:

• The use of a sparse classifier based on the L1 penalty
• The evaluation of the performance of the classifier using
Receiver Operator Characteristic (ROC) measures

• The use of resampling techniques to ensure variable selection
that lead to stable classifiers.

We now describe each of these issues in turn.

The Sparse Classifier: Elastic Net
Regression with Prior Screening
We carry out sparse classifier construction, with built-in variable
selection, by estimating a weighted multivariate linear regression
model known as the elastic-net (Zou and Hastie, 2005; Friedman
et al., 2010). The model is described by the Equation (1):

min
β0∈R , β∈R

p

[

1

2N

N
∑

i = 1

(

yi − ϕ0 − xTi ϕ

)2
+ λPγ (ϕ)

]

(1)

HereN is the number of subjects, xi ∈ R
p observations of subject

i, and yi ∈ R is the label group of subject i; ϕ0 ∈ R,ϕ ∈ R
p are

the model parameters; γ is the regularization parameter; p is the
number of variables in the model; and.

Pγ (ϕ) = (1− γ )
1

2
‖ϕ‖2l2 + γ ‖ϕ‖l1 (2)

The penalty Pγ in Equation (2) is known as the elastic-net norm
(Zou and Hastie, 2005). To understand its behavior, note that
the ‖ϕ‖2l2norm induces regressions that behaves well for high
dimensional regressions but that tend to spread out coefficient
weights among highly correlated variables. On the contrary, the
‖ϕ‖l1norm produces the “lasso regression” which is indifferent
to highly-correlated predictors and tries to select only one
thus inducing sparsity. The elastic-net reaches a compromise
between the ridge and the lasso, the relative contributions being
determined by the γ and λ parameters. Since these parameters
are selected by cross-validation, in any specific case, the sparsity
of the solution will be data-driven. The implementation of the
elastic net described by Friedman et al. (2010) and Hastie et al.
(2016), known as GLMNet, is implemented with high algorithmic
efficiency by using cyclical coordinate descent methods. This fast
implementation is essential to be able to carry out the iterative
resampling techniques we use to achieve stability. We should
also mention that GLMNet is able to cope with a wide family
of models that includes not only the least square regression
mentioned above, but also two-class logistic regression, and
multinomial regression problems.

According to our experience, the GLMNet classification
algorithm can deal well with problems with up to 1,000
variables, even when the number of subjects is less than 100.
However, for the goal of dimensionality reduction, we applied
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an additional variable screening technique to eliminate variables
with negligible contribution to the classification problem. This
is the “indfeat” (Weiss and Indurkhya, 1998) “independent
significance features test” (indfeat). For a single variable X, the
“indfeat” index is the absolute value of a t-test for comparing
group means. A feature is retained as a candidate if the
significance value returned by the “indfeat” is larger than 1.0.

Evaluation of the Accuracy of Classifiers
A widely used technique for assessing classifier performance
is that of the receiver operator curve (ROC) methodology.
Let us first consider the two-group classification scenario that
attempts to distinguish between D+, the diseased (i.e., the
positive condition) group ad D− the healthy (i.e., the negative
condition) group. Also suppose that there is a classifier that
produces a continuous index T measured for both groups. The
convention will be that higher values of test result are associated
with greater severity of the disorder. We will classify a subject
as positive if T ≥ t and this defines probabilities known as the
specificity Sp (t) and the sensitivity Se (t)of the classifier:

Sp (t) = P− (T ≤ t) ,

Se (t) = P+ (T ≥ t)

where P− and P+ are, respectively the probability density of
the index in both groups. The ROC curve is the plot of P+
vs. 1 − P−(lack of specificity). A global measure of diagnostic
accuracy is the Area under the ROC curve or (AUC). As can be
easily seen AUC is 0.5 for a classifier that is operating at chance
and is 1 for the perfect classifier. At a greater level of detail, to
determine the threshold for which the detection level is optimal
[the balance between Sp (t) and Se (t)], the Youden index was
defined by Youden (1950) as:

J (t) = Se (t) + Sp(t)− 1

which reaches a maximum value of 1 if the test is perfect and
a minimum of 0 when classification is at chance. An optimal
threshold t∗ can thus be obtained by taking t∗ = argmaxtJ(t)
and the optimal Youden index, which maximizes the overall
effectiveness of a diagnostic test, will be the summary measure
for its discriminatory ability.

We now generalize these concepts to the situation (as dealt
with in this article) in which there are three ordered diagnostic
groups based on the severity of a disorder or disease:

D+ (i.e., the positive condition) group.
D0 the intermediate group (early stage/very mildly diseased).
D− the healthy (i.e., the negative condition) or, alternatively,

the less affected group.
An AUC-like measure for multiple ordered groups was

proposed by Obuchowski (2005). This author defines a non-
parametric test that can estimate the marginal areas under the
ROC between each pair of groups and the global area under the
ROC for all the groups. The algorithm also allows the user to
specify a parameter to penalize the effect of making a mistake in
one specific sample, let us say to penalize the possibility ofmaking

a mistake with the positive class, i.e., the possibility of assigning
an ill subject to the healthy population. The Youden index has
also been generalized to the ordered three group scenario by Luo
and Xiong (2013). Let Pi be the probability of the test in group,
Di, i = +, 0,−. Now two threshold t− and t+, with t− <t+, are
defined. Subjects whose T is below t− are assigned to D− and
those above t+ to D+. The remaining subjects will be classified
into the intermediate group D0.

The probabilities of correctly classifying patients from the
three groups are individually defined as:

Sp (t−) = P− (T ≤ t−) , Specificity

Se (t+) = P+ (T ≥ t+) , Sensitivity

Sm (t−, t+) = P0 (t− ≤ T ≤ t+) , correct D0

The generalized Youden index for three groups is.

J (t−, t+) =
1

2

[

Sp (t−) + Sm (t−, t+) + Se (t+) − 1
]

(3)

J (t−, t+) allows the selection of optimal cutoff points as in the
two-group case.

Procedure for Finding Stable Classifiers
With this framework in place, we now turn to the problem of
finding stable classifiers, that is sets of variables, that have not
been selected by chance. We follow here the central idea of
Wherens, which is based on the idea of perturbations, that is
to carry out variable selection on random subsamples obtained
by resampling methods such as the jack-knife or bootstrap. If
in any iteration some variables are selected by capitalizing on
chance, it is very unlikely that they will be present in many other
iterations of the method. More specifically, in each iteration, only
the top 10% of variables (“top fraction”) is retained. The “top
fraction” can be based either on the absolute values of either the
t-values or the model coefficients. After all iterations, variables
are ranked according to how frequently they were selected. Only
variables that have a frequency of selection above a “consistency
threshold” are retained as useful biomarkers. Wehrens et al.
(2011) used the AUC to pick the “consistency threshold”—which
is recommended to be 50%.

In this paper, we extend the methodology proposed by
Wehrens et al. (2011) in several directions:

• Instead of selecting the “top fraction” of variables to be retained
for each iteration we carry out this selection based on a
doubly sparse procedure: preselection of variables, first by
the indfeat feature selection procedure and then subsequent
further sparsification by means of the elastic net regression.

• The standard AUC estimation procedure is sensitive to small
perturbations in the sample, especially when the number of
variables exceeds the sample size (p>>N) (Pencina et al., 2008;
Gu and Pepe, 2009). To solve this problem, we implement here
a stable estimate based on the empirical statistical distribution
of the ROC areas, by further random samplings of the data.
The value at the 50% of the distribution is adopted as a stable
estimator of the AUC.
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• For the estimation of the ROC curve we use a non-parametric
method (Obuchowski et al., 2001; Obuchowski, 2005, 2006)
valid when the gold standard is not binary, i.e., continuous,
ordinal o nominal scale as in our case. The method allows
assessing the discrimination accuracy by calculating the
marginal area under de ROC between each pair of groups.
The generalization of the ROC to multi-class has received
much attention by researchers in the last decade (Nakas and
Yiannoutsos, 2004).

• Additionally, to give a numerical index of the specificity and
sensitivity of the method, we used the Youden index for the
ordered three-group data described in the previous section.

Summary of the Method for Stable
Classifier
Our procedure for the identification of stable classifiers is shown
in Figure 1 in a schematic form. It consists of two parts:

Biomarker Selection (Left Panel of Figure 1)
1) For several iterations i, the algorithm selects a random

subsample that includes 70% of the original individuals and
70% of the variables.

2) Indfeat screening with a threshold of 1.0 is used to prune the
total variable set.

3) The GLMNet procedure is then applied to obtain a minimal
set of variables for the iteration i. the variables selected at this
iteration are kept for further analysis.

4) After a number of Max_Iterations (1,000 in our case), only the
variables that are selected more than 50% of the times will be
in the final selection.

5) The final classifier is found using GLMNet with the selected
variables.

Note that our algorithm uses two different cross-validation
procedures: the first one is the Leave-One-Out cross-validation
(LOO-CV), included in the selection of the regularization
parameters of the GLMNet algorithm; the second one is the
subsampling of the variables and subjects in the step 2) of the
loop in each iteration. This type of cross-validation is known as
Repeated Random Subsampling or Monte Carlo cross-validation
(RRS-CV) (Dubitzky et al., 2007, Chapter 8), which is more
restrictive than the commonly used leave-one-out technique and
it is one of the strongest cross-validation procedures possible.

ROC Based Biomarkers Stability Assessment (Right

Panel of Figure 1)
6) For a given iteration i, a random a subsample of 70% of the

original individuals the variables are formed.
7) With the remaining 30% of the subjects the Area under the

ROC (AUC) curve is calculated.
8) After a number of Max_Iterations (1,000 in our case), the

distribution of the AUC is found.
9) The AUC at the 50% of the distribution is retained as the

measure of classification accuracy.

FIGURE 1 | Schematic representation of the Robust Sparse classification algorithm with stable ROC assessment. LOO-CV, Leave-One-out cross-validation; RRS-CV,

Repeated Random Subsampling cross-validation.
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Note that also in this phase we use RRS-CV in step 6) during the
construction and validation of the robust ROC curves.

RESULTS

Variable Selection
The methodology described in the previous section was applied
to the 931 variables of the EEG spectra of the 85 LD-NOS
children, divided into the three groups with increasing disability.

As a first step, the “indfeat” index was calculated between
each pair of groups of the sample for all variables in the model.
The variables that did not exceed the significance level of 1.0
for any pair of groups were discarded as candidate predictors.
Because of this procedure, 364 variables were removed. The
“biomarkers selection” step (see Figure 1 left panel) was applied
to the remaining 537 variables, which identified 20 variables that
were selected as biomarkers.

Table 1 shows the results of the classification procedure. The
Table has been sorted by the frequencies in Hz, to facilitate
comparison to the traditional Broad Band definition of EEG
frequencies. Columns 1 and 2 show the Lead and frequency
selected as biomarkers. Column 3 shows the proportion of
times each variable appears over iterations. Column 4 shows the
coefficients ϕ with which each variable was included in the final
classification equation. Finally, Column 5 groups the selections
according to the Broad Band model.

TABLE 1 | Selected biomarkers during the classification step.

Lead Frequency Percent Coeffcients ϕ Broad Band

C4 0.39 86.5 0.12

T6 0.39 58.89 0.12 Delta

T4 1.17 59.46 0.07

P4 3.52 59.55 −0.18
Low Theta

P4 3.91 61.4 −0.3

P3 5.08 69.6 0.23

F8 5.08 57.5 0.16

Fp1 5.08 54.3 0.06

Fp2 5.47 58.6 0.03 High Theta

Fp1 5.47 57.5 0.06

Fp2 5.86 56.5 0.03

Fz 6.64 69.8 0.16

C3 7.81 60.8 −0.11

Alpha
T6 8.59 54.5 −0.11

T6 10.16 56.44 −0.04

C3 10.94 53.7 −0.16

P3 14.06 56.7 0.21

Beta
P3 15.23 62.3 0.34

F3 15.63 57 −0.25

O1 18.36 52 0.27

Columns 1 and 2 contain the Lead name and the selected frequency; Column 3 contains

the percent of times that the variable was identified as a biomarker. In Column 4 the Beta

coefficients for each variable in the classification equation.

Figure 2 summarizes the distribution of the biomarkers both
in topography as well as frequency. The first row of Figure 2
shows the topographical distribution of the ϕ coefficients,
summarized by the traditional broadband frequencies, to
comparisons. Note that due to the sparse nature of the
biomarkers technique, there are not wide areas selected as
biomarkers, as it is commonly seen in classification techniques
based on statistical thresholds. The elastic-net technique used
here tries to avoid selecting variables as biomarkers which
contain approximately equivalent information, which is the case
of adjacent frequencies and electrodes. Note however, that the
biomarkers are not randomly distributed. For example, in Delta
there are three adjacent electrodes in the right hemisphere (C4,
T4, and T6); in High Theta there is a wide frontal area; in Beta the
variables are in the parieto-occipital areas (P3 and O1) and one
in the frontal area (F3) of the left hemisphere. It is also important
to observe the colors in the figure. The colors indicate that the
variables have the same sign in the classification equation (i.e.,
same effect) and the colors are well-organized by brain regions.

Rows 2 to 4 in Figure 2 show the average differences of
the mean values of the spectra of each pair of groups in each
frequency band.

Additionally, to facilitate the analysis of the results, Table 2
shows a summary of the clinical and the electroencephalographic
findings for each group. EEG findings are extracted from the
mean differences between the groups shown in Figure 2 and the
cognitive findings in Roca-Stappung et al. (2017).

Performance of the Classifier
The stable marginal AUC of the ROC for each pair of groups are
shown in Table 3. There is a high discrimination power of the
classification equation for Groups 1 and 3 (0.91). The value of the
marginal AUC for Groups 1 and 2 and for Groups 2 and 3 also
exhibit a good classification accuracy over 0.7.

Figure 3A shows the scores obtained for each subject in each
group evaluated with the classification equation. A boxplot is
included to show themean and quantiles of each group. The third
group is well-separated from the first two groups, explaining the
large AUC shown in Table 3. The right panel of Figure 3, shows
the global ROC curve for the classification equation. Note that the
total area under the ROC curve is 0.92, which is higher than the
area reported in Table 3 (0.89) since it has not been yet submitted
to the stability procedure described in the right panel of Figure 1,
which yields a more conservative estimate. Note also that the
value of the ROC curve at 10% of False Positive is 0.77 and the
value at 20% of False Positive is 0.91, which means that at a low
rate of False Positives the sensitivity of the equation is high, a very
desirable property.

Panel C in Figure 3 shows the results of obtained with the
stability procedure of the ROC, afterMax_iterations= 1,000. The
figures show the empirical distribution of the AUC for the global
area and the pairwise areas after all iterations. In each iteration,
the nominal ROC is obtained by selecting a random subsample
of the original sample. The values for the total AUC as well as for
each pair of groups are stored. At the end, the stable estimation
of the AUCs is selected as the value at the 50th percentiles of the
empirical distributions (see Figure 3C).
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FIGURE 2 | Color-plate with the ϕ coefficients of the classification equation (A) and the differences of the mean EEG spectra between each pair of groups, at the

selected leads by the biomarkers procedure (B). Everything has been summarized by the Broad Bands shown in Table 1. The ϕ coefficients have been normalized to

show only the sign of the coefficient.

Optimal Sensitivity and Specificity of the
Model (Youden Index)
The Youden index described in section Evaluation of the
Accuracy of Classifiers was calculated for the stable classification
equation. Table 4 shows the summary of the data basic statistics
produced by the method. The Youden index for this model was
0.4838. The Confidence Interval (CI) at the 95% of variance was
[0.38 0.59].

The best cut-points found by the Youndex index in this case
are: lower = 3.01, upper = 3.42. These values allow the Youden
index not only to summarize the discriminatory accuracy of
the diagnostic test but also to provide a ready-to-use optimal
cut-point for future diagnosis. Table 5 shows the group correct
classification probabilities, for the selected cut-points.

Comparison of the Results with Those of
Random Samples and Other Classification
Methods
To explore whether results just described (see Table 2) are not
produced by chance (at random), we carried a further 1,000
realizations of our complete classification procedure, reordering
group membership of the random in each iteration. For each
iteration, we calculated the total area under the ROC curve.
The distribution of those ROC values is at the chance level
(mean = 0.497). To statistically assess this result, we took the
distribution of the AUC values and calculated their density
distribution as well as the probability of the density function in
the range 0 to 1. These results are shown in Figure 4. The left
panel in Figure 4 shows the probability function of the AUC.
Note that the probability of obtaining by chance an AUC value
of 0.91 (like ours) is smaller than 0.1e-10, which is in practice an
impossible event. The right panel of Figure 4 shows the density
distribution of the values of the AUC at random level. Note that

TABLE 2 | A comparison between the EEG patterns and the Cognitive findings for

each group.

Group EEG findings Cognitive findings

Group 1 Highest Low-Theta in P4

Highest Alpha in C3

Highest Beta in F3, P3

Highest scores in Reading (Accuracy,

Comprehension, and Speed); Writing

Accuracy and Arithmetic Calculation and

Numeric Management.

Significantly best in Reading and Writing

Accuracy.

Group 2 Highest Alpha in T6 Highest scores in Writing Narrative

Composition; and Arithmetic Counting.

Significantly best in Writing Narrative

Composition.

Group 3 Highest Delta in C4 and T6

Highest High-Theta in Fp1,

Fp2, Fz, P3, and P8

Highest Beta in P3, O1

Poorest scores in all areas, especially in

Arithmetic (Calculation and Numeric

Management); Writing Narrative

Composition; and Reading Accuracy.

TABLE 3 | Marginal and global AUC after the stability based procedure for ROC

estimation.

AUC

Group 1 vs. Group 2 Group 1 vs. Group 3 Group 2 vs. Group 3 Global

0.71 0.91 0.75 0.89

it is centered at 0.5 (random classification), which coincides with
the mean value of the AUC in our random realizations.

Finally, to compare the performance of our method with
other standard methods used in the literature, we used two
classification algorithms included in Matlab R2015a:

a) A multiclass model for the Support Vector Machine (SVM)
algorithm (Allwein et al., 2000; Fürnkranz, 2002; Escalera et al.,
2009) (function named “fitcecoc” in Matlab).
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FIGURE 3 | Performance of the classification method applied to the 85 LD-NOS children (A) is a boxplot of the individual classification according to the groups. As

defined, the boxplot shows the mean, percentiles, and dispersion of the groups. Note that Group 3 is almost perfectly separated from Groups 1 and 2 (B) shows the

ROC curve for the global performance of the algorithm, before applying the ROC stability procedure. The rate of True Positive at a rate of 10 and 20 percents of False

Positive is very high (C) shows the performance of the ROC curve under the stability procedure. Note the stable ROC estimate for the Global classification as well as

the Marginal estimates for each pair of groups.

TABLE 4 | Youden Index.

Group N µ σ

D− (Group1) 24 2.77 0.32

D0 (Group2) 26 3.19 0.38

D+ (Group3) 35 3.68 0.33

Raw Data Summary

b) A regularized linear discriminant analysis (LDA) classifier
(Guo et al., 2007) (function name in Matlab “fitcdiscr” with
Linear discriminant).

For both algorithms several leave-one out repetitions were
carried out by successively leaving one subject out of the

TABLE 5 | Group correct classification probabilities, for the best Youden

cut-points.

Specificity (Sp) Correct classification probability (Sm) Sensitivity (Se)

0.77 0.41 0.79

classification procedure and then evaluating it with the obtained
classification equation as a totally independent testing sample.
We thus obtained an unbiased estimate for the ROC curve. The
resulting area under the ROC curve by the LDA algorithm was
0.58; and the area under the ROC for the SVM procedure was
0.65, both significantly smaller than the 0.91 obtained with our
methodology.
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FIGURE 4 | Distribution of the AUC values obtained by 1000 random realizations of the classification algorithm. Left shows the probability function of the AUC in the

range 0 to 1 and the right shows their density distribution function. Note that the probability of obtaining by chance an AUC value of 0.91 (like ours) is smaller than

0.1e-10, which is in practice an impossible event. Also, the density distribution is centered at 0.5 (random classification), which coincides with the mean value of the

AUC in our random realizations.

DISCUSSION

In this paper we report a method to achieve stable classifiers
for qEEG parameters, with two main objectives, to improve a
technique for the identification of stable classifiers, extending this
to the prediction of disability severity and the identification using
this technique of a minimal set of qEEG features (biomarkers) to
predict the degree of severity of LD-NOS.

A) To improve a technique (Wehrens et al., 2011), for the

identification of stable classifiers on tests in high dimensional

settings.

Our approach is consistent with best practices in
bioinformatics and neuroinformatics where there are many
more variables than subjects. To avoid capitalizing on chance,
the neuroimage community has recommended the use of
resampling techniques as described in the special issue of
Neuroimage “Individual Subject Prediction” (Arbabshirani et al.,
2017; Stephan et al., 2017; Varoquaux et al., 2017). We emphasize
that our method adheres to these procedures using the elastic-net
technique, which includes a regularization parameter to shrink
the number of variables which will participate in the model.
This is a common and effective technique to avoid overfitting
since the model tries to reduce the number of parameters in
a natural data-driven way. Additionally, the estimation of the
regularization parameter (lambda) is performed by means of
cross-validation.

The stability based ROC procedure evidenced high sensibility
of the classification equation to discriminate between the groups,
especially Group 3. This result points to different EEG patterns
for each group, which may be an evidence of the different
neurological origin of the learning disabilities, although all
children have been classified in a very wide unspecific group.
The current classification of LD-NOS may not be appropriate for
the best understanding of the characteristic and needs of these

children. Finding specific EEG alterations in each groupmay lead
to a better classification of the children affected by this disorder,
which may also be useful for the design and development of
subject-tailored rehabilitation methods.

B) To identify, using this technique, a stable low

dimensional classifier, based on a minimal set of qEEG

features (Biomarkers), that predicts the degree of severity of

LD-NOS.

We identified a set of 20 qEEG features (see Table 1) which
allowed the classification of the groups. The Group 3 obtained
the lowest scores in the three cognitive areas (see Table 3);
their scores were extremely low compared to Groups 1 and 2.
Groups 1 and 2 were more balanced; although children of the
Group 1 performed better in most tests, they were especially
good in Reading and Writing accuracy; the Group 2 performed
significantly better in Writing Narrative Composition.

For the description of the classifiers we will use the EEG basic
rhythms and/or band of frequency.

Theta Band
Theta band has been divided into Low and High Theta
for convenience due to the topographical distribution of the
classifiers. In the Low Theta, only the right parietal area (P4)
was selected, and Group 1 had the highest values. In the High
Theta, bilateral frontal areas (Fp1, Fp2, F8, and Fz) and the
left parietal (P3) areas were involved, where Group 3 had the
highest activity. The excess of Theta activity in the EEG at rest
has been consistently reported in LD-NOS children (Mechelse
et al., 1975; Colon et al., 1979; John et al., 1983; Harmony
et al., 1990; Alvarez et al., 1992; Fernández et al., 2002; Jäncke
and Alahmadi, 2016). This seems to be consistent with the
fact that Group 3 obtained the lowest scores and, therefore,
should be more affected. Compared with children with good
academic Achievements, LD-NOS children had evidenced excess
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of Theta activity (from 3.52 to 7.02Hz) (Fernández et al., 2002).
However, some authors who have studied this entity have not
reported excess in Theta activity (Byring et al., 1991; Chabot
et al., 2001; Gasser et al., 2003; Fonseca et al., 2006; Thatcher
et al., unpublished manuscript), although it may be due to the
composition of their samples and to the frequency of different
types of pathological patterns in the extensive group of LD-NOS.

It is also interesting to note the presence of frontal and parietal
electrodes in the classifiers. Even if the electrodes reflected
only electrical activity at the scalp, a common practice is to
match this activity with the corresponding brain structures.
In that case, we can say that frontal and parietal lobules are
involved in the attention processes: (a) the dorsal network of
attention in charge of the spatial orientation, involved frontal
and parietal areas; (b) the ventral network of attention, in
charge of the detection of the environmental stimuli, involved
the temporoparietal joint and the ventral frontal cortex, mainly
in the right hemisphere. This corresponds to the parietal and
frontal cores of the orienting function (Petersen and Posner,
2012). Although LD-NOS children do not satisfy the DSM-
IV criteria for Attention Deficit Disorder and Hyperactivity
(ADDH), they frequently have frommild to moderate attentional
deficits.

The frontal regions also process the executive functions as
inhibition processes, planning, and working memory. Swanson
(1987) proposed that the main deficit of LD children lies in
mechanisms of executive functioning, which also points to
working memory deficits as essential problems in children and
adults with LD (Swanson and Siegel, 2001; Berninger, 2008),
specifically in Baddeley’s proposed phonological loop and central
executive (Fletcher, 1985; Landerl et al., 2009; Maehler and
Schuchardt, 2011; Swanson, 2012; Swanson and Stomel, 2012).

Delta Band
The presence of biomarkers at 0.39Hz is somehow unexpected,
but it was carefully tested. This very slow frequency is usually
associated with ocular movements if it appears at frontal leads,
but in this case, it appeared at the right central-parietal leads.
(Steriade and Timofeev, 2003) hypothesized that frequencies
below 1Hz are not Delta rhythm properly but slow oscillations
which, to some extent, modulates the Delta rhythm.

Alpha Band
The presence of posterior (T6) alpha rhythm has been related
to the maturational process (John et al., 1983; Harmony et al.,
1995; Riviello et al., 2011) and the number of correct answers in
experimental conditions (Klimesch, 1999). The alpha biomarker
in the left central lead (C3) may correspond to the sensorimotor
rhythm (SMR). The reinforcement of SMR has been successfully
used in Neurofeedback in the treatment of epilepsy (Sterman
and Egner, 2006) and attention deficit disorder / hyperactivity
(ADHD; Monastra et al., 2005). Pineda (2005) has found this
activity related to cognitive performance. Group 1 and Group 2
exhibited the highest alpha values, which seems to be consistent
with the hypothesis that they have a more matured brain than the
children in Group 3.

Beta Band
Children of Group 3 have higher Beta power than the other
two groups in frontopolar, anterior temporal and left parietal
electrodes. Several studies have found the existence of one
group of children with the combined type of ADHD which
have an EEG profile characterized by excess of Beta activity
(Chabot et al., 2001; Clarke et al., 2001a,b,c). We already
pointed out that although LD-NOS children of our study might
have attentional problems, they do not meet the criteria to be
diagnosed with ADHD; therefore, it is possible that children
in the Group 3 were distinguished by having more attentional
problems than those of the other two groups, that may explain
the greater difficulties observed in children of the Group 3.
On the other hand, the temporal and left parietal regions
are involved in language and calculation processes, in which
these children have lower performance than other children
with LD.

In our study the selected biomarkers agree with previous
studies distinguishing LD from normal children (Colon et al.,
1979; John et al., 1983; Harmony et al., 1990; Alvarez et al.,
1992; Fernández et al., 2002; Jäncke and Alahmadi, 2016; Žarić
et al., 2017). Most of the biomarkers were found in the Theta
band as in previous studies, and the biomarkers in the Delta and
Alpha bands have also been described to discriminate between
these two groups. However, our new approach found that in
each of the groups classified according to these biomarkers it
is possible to distinguish also different behavioral characteristics
between groups. These results are extremely valuable. Since
the practical point of view, the EEG may guide the type of
rehab-educational therapy, paying special attention to those with
the EEG characteristics of the group 3, since these children
showed the worst performance in the neuropsychological
tests.

In summary, this is the first report using quantitative EEG to
try to obtain subtypes within the group of children with LD-NOS
abnormalities.

This is more relevant because the LD-NOS constitute
a very heterogeneous group. For this reason, to apply a
new procedure of analysis of the EEG to classify according
to their electrophysiological characteristics (that represent
the bases of behavior) is a step forward to understand
their differences to explore specific new therapeutic
procedures.

In the future, research using joint recordings of EEG-fMRI,
in resting state or during task-related paradigms, can be a
more complete validation of the biomarkers already found here,
taking advantage of the MRI spatial resolution. This could
shed more light about the brain structures related to each
subtype.

Note that the “indfeat” procedure is an optional step inside the
classification algorithm to eliminate non-informative variables.
It can be avoided, or it can be performed just once before
the classification. In fact, there exist other algorithms to reduce
dimensionality that might be used instead. We also tested the
algorithm using “indfeat” just once, outside the main loop, and
obtained essentially the same results (not shown but available
upon request to the authors).
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CONCLUSIONS

We have shown that resampling techniques adequately protect
against the curse of dimensionality when constructing classifiers
from high-dimensional, small size samples. We extend the
methodology by Wehrens et al. (2011), for the identification of
stable classifiers for predicting degree of severity.

We apply this methodology to find an optimal predictor of
LD-NOS disability severity based on a reduced set of qEEG
variables that may be of use in real world screening settings.

The selection of a small set of qEEG variables with good
predictive properties is of importance in practice since it would
allow designing stripped-down EEG devices that could be
cost/effective and deployable in all economic settings.
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