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Diffusion magnetic resonance imaging (dMRI) allows to reconstruct the main pathways

of axons within the white matter of the brain as a set of polylines, called streamlines.

The set of streamlines of the whole brain is called the tractogram. Organizing

tractograms into anatomically meaningful structures, called tracts, is known as the

tract segmentation problem, with important applications to neurosurgical planning

and tractometry. Automatic tract segmentation techniques can be unsupervised or

supervised. A common criticism of unsupervised methods, like clustering, is that there

is no guarantee to obtain anatomically meaningful tracts. In this work, we focus on

supervised tract segmentation, which is driven by prior knowledge from anatomical

atlases or from examples, i.e., segmented tracts from different subjects. We present

a supervised tract segmentation method that segments a given tract of interest in

the tractogram of a new subject using multiple examples as prior information. Our

proposed tract segmentation method is based on the idea of streamline correspondence

i.e., on finding corresponding streamlines across different tractograms. In the literature,

streamline correspondence has been addressed with the nearest neighbor (NN) strategy.

Differently, here we formulate the problem of streamline correspondence as a linear

assignment problem (LAP), which is a cornerstone of combinatorial optimization. With

respect to the NN, the LAP introduces a constraint of one-to-one correspondence

between streamlines, that forces the correspondences to follow the local anatomical

differences between the example and the target tract, neglected by the NN. In the

proposed solution, we combined the Jonker-Volgenant algorithm (LAPJV) for solving the

LAP together with an efficient way of computing the nearest neighbors of a streamline,

which massively reduces the total amount of computations needed to segment a tract.

Moreover, we propose a ranking strategy to merge correspondences coming from

different examples. We validate the proposed method on tractograms generated from

the human connectome project (HCP) dataset and compare the segmentations with the

NNmethod and the ROI-based method. The results show that LAP-based segmentation

is vastly more accurate than ROI-based segmentation and substantially more accurate

than the NN strategy. We provide a Free/OpenSource implementation of the proposed

method.

Keywords: diffusion magnetic resonance imaging (dMRI), bundle/tract, tract segmentation, tractogram, nearest

neighbor (NN), combinatorial optimization problem, linear assignment problem (LAP)
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1. INTRODUCTION

The white matter of the brain mainly contains neuronal axons
which are responsible for transferring signal between the regions
of the gray matter (Douglas Fields, 2008). Diffusion magnetic
resonance imaging (dMRI) (Basser et al., 1994) is the brain
imaging technique for identifying the main pathways of large
assemblies of axons and, in some cases, pathologies of the
white matter (Douglas Fields, 2008). DMRI data quantify the
local orientation of the axons of the white matter in vivo, at
the voxel-level. From these local orientations, approximate 3D
pathways can be reconstructed, using tractography algorithms.
The resulting 3D polylines are called streamlines and the set of
whole streamlines is called the tractogram, which usually contains
a number of streamlines in the order of 105–106.

In neurological studies and neurosurgical planning, it is
often important to identify the group of streamlines belonging
to the same anatomical region, called tract or bundle,
e.g., the corticospinal tract. The problem of grouping or
organizing streamlines of the whole tractogram into anatomically
meaningful tracts is known as the tractogram segmentation
problem (O’Donnell and Westin, 2007). Moreover, extracting
a specific tract of interest from the whole brain is known as
the tract segmentation problem (Clayden et al., 2007). Once the
segmentation is done, the statistical analysis over the tract(s)
is used in multiple applications, for example, to study gender
differences (Ingalhalikar et al., 2014), to observe the changes in
age (Salat et al., 2005) and to correlate it with diseases (Bozzali
et al., 2002; Park et al., 2004). This kind of studies require
the analysis of groups of subjects. Therefore, automatic tract
segmentation, conducted in a comparative manner over groups
of subjects, is crucial in order to accomplish this goal. One
main step of such task is to study how much corresponding are
homologous anatomical structures across the subjects.

Several manual and automatic tract segmentation methods
have been developed over the years. The manual approach, also
known as virtual dissection (Catani et al., 2002; Mori et al.,
2005; Wakana et al., 2007), extracts the desired tract using
cortical regions of interest (ROIs) defined by neuroanatomical
knowledge, by an expert. Suchmethod is time consuming and it is
limited to manual selection of ROIs. A different approach is the
one of automatic tract segmentation, which can be divided into
three different groups: ROI-based, also known as parcellation-
based, unsupervised and supervised.

Automatic ROI-based tract segmentation is based on cortical
parcellation. It requires that linear or non-linear registration is
performed in advance, with respect to an anatomical atlas (Zhang
et al., 2010; Aarnink et al., 2014). It has to be noted that the
registration to the atlas can cause loss of information present
in the diffusion images (Tunç et al., 2014). However, automatic
ROI-based methods are known to provide remarkable results
(Zhang et al., 2010) so, sometimes, they are used as ground
truth to extensively validate the result of other segmentation
methods. Among the parcellation-based automatic segmentation
methods (Siless et al., 2016), the Tract Querier, based on the white
matter query language (WMQL) (Wassermann et al., 2013, 2016),
is one of the most adopted.

The unsupervised approach, usually called fiber clustering, is
one of the most widely used tractogram segmentation technique
in the literature (Shimony et al., 2002; Garyfallidis et al., 2012;
Tunç et al., 2014; Reichenbach et al., 2015). The purpose
of clustering is to group the streamlines according to their
mutual geometrical similarity (or distance). Clustering methods
mostly address single tractograms and not the joint analysis of
multiple subjects (O’Donnell et al., 2013). A common criticism
of clustering methods is that there is no guarantee to obtain
anatomically meaningful tracts (Toga, 2015). For this reason,
some authors propose to incorporate prior knowledge in the
process, e.g., anatomical information from atlases or expert
labeling on previous data.

Supervised segmentation is an approach based on prior
knowledge. Prior knowledge can come from expert labeling of
an anatomical atlas, see (Maddah et al., 2005), or from labeling
clusters of streamlines from multiple subjects, in a process of
atlas creation, see (O’Donnell and Westin, 2007; Guevara et al.,
2012, 2017; Vercruysse et al., 2014; Yoo et al., 2015; Labra et al.,
2017), or labeling clusters of streamlines from single subject in
order to obtain segmented tract of interest (Garyfallidis et al.,
in press). In the former category, also known as example-based
tract segmentation, once the atlas is available, the segmentation
of the tract of interest in a new subject can be carried out.
Existing example-basedmethods have some limitations, themain
ones being the high computational cost (O’Donnell and Westin,
2007; Vercruysse et al., 2014), the dependency of the number of
subjects to construct the atlas in case of multiple atlas (Guevara
et al., 2012) and the dependency on the definition of threshold
values (Yoo et al., 2015; Labra et al., 2017).

In supervised segmentation, besides atlases, other kinds of
prior information can be used as prior knowledge, such asmodels
or features of tracts/bundles. In this case, we call the task model-
based supervised tract segmentation. Various parametric models
of tracts have been proposed in the literature, e.g., the beta
mixture model of similarity cosines (Clayden et al., 2007), the
gamma mixture model of the distance (Maddah et al., 2008), the
Gaussian process of tract probability map (Wassermann et al.,
2010), the hierarchical Dirichlet process mixture model (Wang
et al., 2011). Notice that models are built to describe
tracts/bundles and not the whole tractogram.

In this work we propose an example-based tract segmentation,
which segment a single specific tract from the whole tractogram
of a new subject, using the prior information of the previous
segmentations of the same tract/bundle from the tractogram
of other subjects. The proposed method comprises two main
steps: in the first step, for each streamline of an example tract,
we find the corresponding streamline in the new tractogram.
This step is related to our recent work in Sharmin et al. (2016),
where we showed that streamline correspondence can be a
powerful principle to transfer the anatomical information of a
given bundle from one subject to another one. In the second
step, we combine the correspondences found from all examples,
i.e., from all other subjects, into one desired segmented tract
within the new tractogram, using a ranking scheme. This second
step accounts for the variability across the examples/subjects and
the anatomical bias of the specificity of each subject. In the
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literature, given a set of streamlines of one subject, the problem
of finding the corresponding streamlines in the tractogram of
another subject has been addressed with a nearest neighbor
strategy (Yoo et al., 2015; Labra et al., 2017; Garyfallidis et al., in
press). There, after co-registering the two tractograms, for each
streamline of the example subject, the corresponding streamline
in the new tractogram has been proposed to be the geometrically
nearest one. In this work, we compare the nearest neighbor
strategy to that of finding corresponding streamlines as a Linear
Assignment Problem (LAP, see Burkard et al., 2009), that we
introduced in Sharmin et al. (2016). The LAP is a combinatorial
optimization problem that finds corresponding objects between
two sets imposing a one-to-one constraint, while minimizing the
sum of the distances.

Finding corresponding streamlines through a LAP is different
from using the nearest neighbor strategy. The main reason
is that the nearest neighbor algorithm is greedy, i.e., it
optimizes the selection of the correspondence individually for
each streamline. Differently, the LAP jointly optimizes the
correspondence of all streamlines, because of the one-to-one
constraint. Intuitively, the benefit of this joint optimization
can be seen in Figure 1, discussed below. In practical cases, it
is common to observe some systematic displacement between
homologous anatomical structures across subjects, even after
an initial registration, because of the inherent variability of
the local white matter anatomy across the population. In such
cases, the nearest neighbor strategy is expected to provide poor
correspondences: each streamline will be put in correspondence
with its closest one in the other tractogram, without considering
such systematic displacements. Differently, the one-to-one
constraint of LAP will force the correspondence to follow
such systematic displacements. We show a paradigmatic toy
example of this difference in Figure 1. There, two sets of five
simulated streamlines are depicted in blue and red before the
initial alignment, see Figure 1A. Figure 1B illustrates the two
sets of streamlines after linear registration. In Figures 1C,D we
show the streamline correspondence between blue streamlines
and red streamlines, through the nearest neighbor and the
LAP strategies, respectively. There black arrows show the
corresponding streamlines across the two sets. In Figure 1C, the
nearest neighbor misses the two red streamlines on the right
side. Differently, in Figure 1D, LAP correctly matches all the
streamlines of the blue an red sets.

In this work, in addition to the main contribution of
extending the correspondence-based segmentation of Sharmin
et al. (2016) to the case of multiple tracts/bundles used as
examples, we provide a substantial improvement in the speed
of the computations, reducing the time required to segment,
from hours to minutes. The newly adopted Jonker-Volgenant
algorithm for LAP (LAPJV), see Bijsterbosch and Volgenant,
2010, for the rectangular LAP (RLAP), together with the use
of an efficient way to compute the nearest neighbors of given
streamlines, result in a 50x speed up of the computations with
respect to what we presented in Sharmin et al. (2016). This
improvement makes it possible to apply the proposed method
in practical cases. Moreover, the efficient nearest neighbors
computation can be used to vastly improve the speed of the

FIGURE 1 | Simplified sketch of streamline correspondence showing the

difference between nearest neighbor vs. the proposed linear assignment

problem (LAP). In blue and red we show two sets of 5 homologous streamlines

each, before registration (A), after initial registration (B), with arrows showing

the correspondence from the blue streamlines to red ones with nearest

neighbor (NN) (C) and with streamline correspondence with LAP (D). NN (C)

misses the two streamlines on the right side, while LAP (D) does not.

method proposed in Yoo et al. (2015), similarly to Labra et al.
(2017).

Together with the comparison against the nearest neighbors
strategy, in this work, we compare the proposed method against
the automatic ROI-based segmentation (Zhang et al., 2010),
because it is the most adopted one. We conducted experiments
on the dMRI data of multiple subjects from the Human
Connectome Project (HCP, see Glasser et al., 2013; Sotiropoulos
et al., 2013; Van Essen et al., 2013) dataset. We observed that
the proposed LAP strategy, together with the proposed ranking
scheme, are able to segment the bundles much more accurately
than the ROI-based segmentation (Zhang et al., 2010) and the
nearest neighbors strategy of Yoo et al. (2015). In the remaining
part of the article, we first review the literature related to the
different scientific areas touched by this work, see section 2.
Then we introduce the necessary methodological ingredients,
together with the detailed description of the proposed method,
in section 3. The experiments are reported in section 5, followed
by their discussion in section 6. We conclude this work by
mentioning multiple future activities that arise from what we
present.

2. RELATED WORKS

2.1. Supervised Tract Segmentation
Here we review the literature on supervised tractogram
segmentation and on the linear assignment problem. In order
to organize the body of work in this field, we articulate
the discussion on supervised tract segmentation along these
five topics: alignment, embedding space, similarity/distance,
correspondence techniques, and refinement step.

2.1.1. Alignment
In supervised tract segmentation, tractograms are initially
aligned to an atlas. Both voxel-based and streamline-based
atlases have been used in literature, e.g., white matter ROI-
based anatomical atlas (Maddah et al., 2005), high dimensional
atlas (O’Donnell and Westin, 2007; Vercruysse et al., 2014),
example-based single atlas (Guevara et al., 2012; Labra et al.,
2017), example-based multi-atlas (Yoo et al., 2015). To the best of
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our knowledge, the specific step of alignment has been conducted
with standard methods: in most of the cases with voxel-based
linear registration (O’Donnell and Westin, 2007; Guevara et al.,
2012; Yoo et al., 2015) and in the others with nonlinear voxel-
based registration (Vercruysse et al., 2014).

2.1.2. Embedding Space
Streamlines are complex geometrical objects with a different
number of points one from another. They are unfit to be
directly given as input to many efficient data analysis algorithms
which, instead, require vectors all with the same number of
dimensions. Tractograms are large collections of streamlines,
from hundreds of thousands to millions of streamlines, and
their analysis is often limited by the required computational
cost. A common preprocessing step before using algorithms like
clustering, or nearest neighbor, is to transform streamlines into
vectors, a process called Euclidean embedding. Different authors
opted for different embedding approaches, like the spectral
embedding (O’Donnell and Westin, 2007), the re-sampling
of all streamlines to the same number of points (Guevara
et al., 2012; Yoo et al., 2015; Labra et al., 2017), the use
of B-splines with re-sampling (Maddah et al., 2005) and
the dissimilarity representation (Olivetti and Avesani, 2011).
Re-sampling all streamlines to a fixed number of points is
the most common approach to obtain the embedding. In
principle, up-sampling/down-sampling to a particular number
of points may cause the loss of information. On the other
hand, spectral embedding has high computation cost. The
dissimilarity representation has shown remarkable results in
terms of machine learning applications (Olivetti et al., 2013)
and exploration of tractograms (Porro-Muñoz et al., 2015), at a
moderate computational cost.

2.1.3. Streamline Distance
In order to find corresponding streamlines from one tractogram
to another one, the definition of the streamline distance plays a
crucial role. Most commonly, the corresponding streamline in
the new tractogram is defined as the closest one, for the given
streamline distance function. Similarly, when doing clustering
for tract segmentation, the streamline distance function is
a fundamental building block. Different streamline distance
functions have been used in the supervised tract segmentation
literature, e.g., minimum closest point (MCP) (O’Donnell
and Westin, 2007), symmetric minimum average distance
(MAM) (Olivetti and Avesani, 2011), minimum average flip
distance (MDF) (Yoo et al., 2015; Garyfallidis et al., in press),
Hausdorff distance (Maddah et al., 2005), normalized Euclidean
distances (Labra et al., 2017), Mahalanobis distance (Yoo et al.,
2015).

2.1.4. Correspondence Technique
One crucial aspect of supervised tract segmentation is the
mechanism to find the corresponding streamline between the
tractograms of different subjects, in order to transfer anatomical
knowledge. A common approach for addressing such problem
is to use the nearest neighbor strategy, i.e., finding the nearest
streamline or centroid in the atlas and labeling the streamlines

of the new subject based on that. In O’Donnell and Westin
(2007) and O’Donnell et al. (2017), a high dimensional atlas was
reconstructed from multiple tractograms. Then the new subject
was aligned with the atlas and the closest cluster centroids from
atlas were computed to assign the anatomical label. In Guevara
et al. (2012), nearest centroids of the new subject were computed
from a single atlas from multiple subjects, with the normalized
Euclidean distance. Recently, a faster implementation has been
proposed in Labra et al. (2017). There, they proposed to label each
single streamline instead of cluster centroids and to accelerate the
computation time by filtering the streamlines in advance, using
properties of the normalized Euclidean distance. A limitation is
that an appropriate threshold has to be defined for each tract
to be segmented. Similarly, in Yoo et al. (2015), the nearest
neighbor strategy is used to find corresponding streamlines
between those of the tractogram of a new subject, with those
of multiple example-subjects (12, in their experiments). Again,
two thresholds, i.e., a distance threshold and a voting threshold,
are required to be set in order to obtain the segmentation. The
proposed implementation requires a GPU.

A different approach based on graph matching, instead of the
nearest neighbor, was proposed by us for tractogram alignment,
see Olivetti et al. (2016). Such idea could be extended to the tract
segmentation problem.

2.1.5. Refinement
After segmentation, in order to improve the accuracy of the
segmented tract, some authors propose a refinement step, for
example, to identify and remove outliers. In Mayer et al. (2011), a
tree-based refinement step was introduced. Initially, they padded
the segmented tract with the nearest neighbors and then used
a probabilistic boosting tree classifier to identify the outliers.
Another approach to increase the accuracy of the segmented
tract is majority voting (Rohlfing et al., 2004; Jin et al., 2012;
Vercruysse et al., 2014; Yoo et al., 2015). The main concept of
the majority voting is to reach the agreement on the segmented
streamlines (or voxel) coming from different examples, usually
removing the infrequent ones.

The accuracy of the outcome after the step of refinement is
closely related to the number of examples. This relation has been
investigated in the vast literature of multi-atlas segmentation
(MAS). The intuitive idea is that the behavior of the segmentation
error is connected to the size of the atlas dataset. A first attempt to
characterize such a relationship, with a first principle approach,
was proposed by Awate and Whitaker (2014). In their proposal
the size of the atlases is predicted against the segmentation error
by formulating the multi-atlas segmentation as a nonparametric
regression problem. More recently, Zhuang and Shen (2016)
combined the idea of multi-atlas with multi-modality and multi-
scale patch for heart segmentation. For a comprehensive survey
of multi-atlas segmentation in the broader field of medical
imaging, see Iglesias and Sabuncu (2015).

2.2. Linear Assignment Problem Solutions
The linear assignment problem (LAP) computes the optimal
one-to-one assignment between the N elements of two sets of
objects, minimizing the total cost. The LAP takes as input the
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cost matrix that describes the cost of assigning each object of
the first set to each object of the second set. Various algorithms
for solving the LAP in polynomial time has been proposed in
literature. A comprehensive review of all the proposed algorithms
can be found in Burkard et al. (2009) and Burkard and Cela
(1999). An extensive computational comparison among eight
well known algorithms is in Dell’Amico and Toth (2000).
The algorithms are: Hungarian, signature, auction, pseudoflow,
interior point method, Jonker-Volgenant (LAPJV). According
that survey and to Serratosa (2015), the Hungarian (Kuhn,
1955) algorithm and Jonker-Volgenant algorithm (LAPJV, Jonker
and Volgenant, 1987) are the most efficient ones, with time
complexity O(N3). Nevertheless, in practice, LAPJV is much
faster than the Hungarian algorithm, as reported in Serratosa
(2015) and Dell’Amico and Toth (2000). This occurs because,
despite the same time complexity class, i.e.,O(N3), the respective
constants of the 3rd order polynomials describing the exact
running time of each algorithm are much different, giving
large advantage to LAPJV. We have directly observed this
behavior in our experiments with LAPJV, compared to those with
the Hungarian algorithm that we published in Sharmin et al.
(2016).

According to Dell’Amico and Toth (2000) and Burkard
et al. (2009), LAPJV is faster than other algorithms in multiple
applications, see also Bijsterbosch and Volgenant (2010).
Moreover, in many practical applications, the two sets of objects1

on which to compute the LAP have different sizes, i.e., the related
cost matrix is rectangular. In Bijsterbosch and Volgenant (2010),
the rectangular version of LAPJV was proposed with a more
efficient and robust solution than the original one in Jonker
and Volgenant (1987). In this work, we adopted the rectangular
version of LAPJV because of its efficiency and because we need
to compute the correspondence between an example tract and
the target tractogram which, clearly, have different number of
streamlines.

3. METHODS

In this section, we first introduce basic definitions, terminology
and some basic computational tools used in the proposed
method. Afterwards, we provide all details of the proposed tract
segmentation method. The proposed method provides automatic
segmentation of a tract/bundle of interest from a set of examples
from different subjects. The proposed method comprises two
main steps: in the first, a preliminary segmentation of the
tract is obtained from each example. This step is accomplished
by casting the segmentation problem as a rectangular linear
assignment problem (LAP), which we implement with the
rectangular version of Jonker-Volgenant algorithm (LAPJV). The
second step merges the segmentations coming from different
examples, with a ranking scheme. In this way, it is possible
to obtain the final segmentation of the tract of interest that
comprises the anatomical information coming from the different
examples/subjects.

1Two sets of streamlines, in our case.

3.1. Basic Definitions and Tools
Here we provide basic definitions and the description of
some computational tools used in the proposed method,
namely: (i) a distance function between streamlines, (ii) the
dissimilarity representation, that we use as Euclidean embedding
for streamlines and (iii) the k-d tree data structure, for fast nearest
neighbor queries. We also formally define the linear assignment
problem.

A streamline s is a polyline in 3D space, i.e., s =

{x1, x2, . . . xns}, where xi ∈ R
3. Let T = {s1, s2, . . . , sM} be the

whole brain tractogram, represented as a set ofM streamlines2. A
tract, also called bundle, is denoted as t ⊂ T. Note that, in this
work, tract will be referred as a set of streamlines with particular
anatomical meaning, e.g., the cortico-spinal tract (CST).

3.1.1. Streamline Distance
In the literature, multiple inter-streamline distance functions
have been proposed (Garyfallidis et al., 2012). In this work,
we adopt the most common one, i.e., the symmetric minimum
average mean distance (MAM) (Garyfallidis et al., 2012). Given
two streamlines sa and sb:

dMAM(sa, sb) =
1

2
(D(sa, sb)+ D(sb, sa)) (1)

where D(sa, sb) = 1
|sa|

∑|sa|
i=1 d(x

a
i , sb) and d(xai , sb) =

minj=1,...,|sb| ||x
a
i − x′j||2.

3.1.2. Dissimilarity Representation
The dissimilarity representation (DR) is a Euclidean embedding
technique to represent generic objects in a vector space (Pekalska
and Duin, 2005) when a distance between the objects is available.
In this work, we use the DR to represent the streamlines in
vector space3, as proposed in Olivetti et al. (2012). The DR
is defined by the distance function between streamlines and
by defining a (usually small) subset of the tractogram, called
the prototypes. Given the distance and the prototypes, each
streamline is then represented as the vector of the distances from
the prototypes. Given a tractogram T and the set of prototypes
5 = {s∗1 , s

∗
2 . . . , s∗p}, the dissimilarity representation of s ∈ T is

the p-dimensional vector:

x5(s) = [d(s, s∗1), d(s, s
∗
2), . . . , d(s, s

∗
p)]. (2)

As shown in Olivetti et al. (2012) and Porro-Muñoz et al.
(2015), the DR of streamlines is very accurate with a few tens of
prototypes selected by means of the Subset Farthest First (SFF)
algorithm, which requires just a few seconds of computation.

3.1.3. K-d (k-dimensional) Tree
A k-dimensional tree (k-d tree, see Bentley, 1975) is a space
partitioning data structure to efficiently store and retrieve
vectorial data in k-dimensional space. The k-d tree provides fast
nearest neighbor queries on large datasets. In this work, we use

2Usually,M ≈ 105–106.
3Notice that a streamline is not a vector but a sequence of points in 3D space and

that different streamlines are sequences of different length, in general.
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the k-d tree on the vectorial representation of streamlines, in
order to quickly find the neighboring streamlines of a given
streamline s. The computational time complexity of building a
k-d tree is O

(

M logM
)

and the nearest neighbor query has time
complexity O

(

logM
)

, where M is the number of streamlines of
the tractogram. For example, a modern desktop computer can
retrieve the 10 neighboring streamlines of a given streamline
from a whole tractogram in just a few milliseconds4.

3.1.4. Linear Assignment Problem
The Linear Assignment Problem (LAP) is a fundamental
combinatorial optimization problem. Given two sets of objects
A = {a1, . . . , aM} and B = {b1, . . . , bM} and the cost matrix C =

{cij}ij ∈ R
M×M that provides the cost cij of assigning/matching

ai to bj, the LAP aims to find the one-to-one correspondence
between the two sets that has the minimum total cost. In our
context, we use the LAP to find the correspondence between two
sets of streamlines, as we recently proposed in Sharmin et al.
(2016). In our case, the cost to minimize is the distance between
the streamlines, i.e., ci,j = d(sAi , s

B
j ). A one-to-one assignment can

be represented with a binary matrix P = {pij}ij, where pij = 1 if ai
corresponds to bj and zero otherwise. The one-to-one constraint
makes P a permutation matrix, i.e., only one element in each row
and column is 1. Then, the LAP is defined as

P∗ = argmin
P∈P

M
∑

i,j=1

Cijpij. (3)

where P∗ is the optimal assignment and P is the space of all
possible assignments. When the size of the two sets differs,
i.e., |A| 6= |B|, the problem is called rectangular linear
assignment problem (RLAP) (Bijsterbosch and Volgenant, 2010),
a generalization of the LAP. Further information is provided
below, in section 3.2.1.

3.2. Proposed Tract Segmentation
Framework
In this work, we propose an example-based supervised tract
segmentation approach. Given an anatomical tract of interest,
e.g., the corticospinal tract (CST), and a set of examples of that
tract, segmented from multiple subjects, our aim is to exploit
the information from those examples in order to automatically
segment the tract of interest in a new subject. The tract
segmentationmethod that we propose consists of twomain steps,
illustrated in Figure 2. In the first step, each example tract is used
to obtain a candidate segmentation in the new tractogram, see
Figure 3. In the second step, the candidates generated from each
example are merged together and then filtered, in order to obtain
the final segmentation of the desired tract, taking into account
the variability of the examples across subjects. In the following,
we describe the details of the two main steps in section 3.2.1 and
section 3.2.2, respectively.

4We measured the timing using the k-d tree implementation

sklearn.neighbors.KDTree provided by the Python package Scikit-learn,

see http://scikit-learn.org, and the tractograms in our experiments represented as

vectors through the DR.

3.2.1. Step 1: Tract Segmentation from a Single

Example
In this part, we describe the details of how to compute the
corresponding streamlines of a single example tract, using the
either a fast nearest neighbor algorithm or the linear assignment
problem. Given one example of the tract of interest, tA =

{sA1 , . . . , s
A
k
}, e.g., the segmented CST from subject A, the first step

of the proposed method is able to extract the set of streamlines
of subject B corresponding to tA, that we call tA→B ⊂ TB.
The extracted tract, tA 7→B, is an approximation of the actual
tract/bundle of interest in subject B, i.e., tB. The procedure is
based on the concept of streamline correspondence, i.e., on
finding which streamline in the new tractogram corresponds to
a given streamline in the example tract.

Correspondence as nearest neighbor
As explained in section 2, the literature reports that the most
common strategy to obtain corresponding streamlines across
two subjects is based on the idea of Nearest Neighbor (NN).
Assuming that the set of streamlines of two subjects are registered
in a common space, usually by means of an affine transformation,
the streamline of the subject B corresponding to a given sAi of
subject A, is defined as the closest (nearest) one

sBA,i = argmin
sB∈TB

d(sB, sAi ) (4)

In principle, the task of retrieving neighboring streamlines has
high computational cost. The straightforward solution entails
computing the distance from the given streamline to all other
streamlines in the new/target tractogram and then getting the
one with minimum distance. The approaches currently adopted
in the literature are more efficient and based on several pre-
processing steps, that may involve clustering, the definition of
thresholds and the use of fast graphics processing units (GPUs),
see Yoo et al. (2015) and Labra et al. (2017). In this work, we
claim that segmentation based on nearest neighbor is fairly sub-
optimal and can be improved with the idea of linear assignment
(see below). Nevertheless, in this work we also propose the
following procedure to greatly simplify such computation of
nearest neighbors, both in terms of logical steps and time:

1. Compute a vectorial representation, e.g., the dissimilarity
representation (DR), of the streamlines of TB and of tA

5.
2. Build a k-d tree from the vectors of TB.
3. For each streamline in tA, in vector form, perform a nearest

neighbor query on the k-d tree and obtain the closest
streamline.

Correspondence as (rectangular) linear assignment problem
The segmentation method that we propose in this work is
based on the (rectangular) linear assignment problem (LAP).
We observed that finding corresponding streamlines with the
nearest neighbor strategy is suboptimal. A typical problem with
the nearest neighbor is that homologous anatomical structures
of two different subjects may have a systematic displacement

5The DR of tA is obtained using the prototypes of TB.
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FIGURE 2 | Proposed tract segmentation framework.

FIGURE 3 | Tract segmentation from a single example.

even after the initial affine registration. In those cases, the nearest
neighbor strategy would be too greedy and would fail to retrieve
the correct corresponding streamlines because of the systematic
displacement, selecting instead the closest ones, see Figure 1.
For this reason, we claim that introducing the further constraint
of one-to-one correspondence between streamlines forces the
correspondence to follow the local displacements that may
occur.

Given the tract/bundle tA = {sA1 , . . . , s
A
k
} of subject A and

the tractogram TB = {sB1 , . . . , s
B
M} of subject B, where k ≪ M,

and a distance function d() between streamlines, we denote as
C = [cij]i=1...k,j=1...M , the k × M distance matrix between each

streamline of tA and each of TB, i.e., cij = d(sAi , s
B
j ). Then,

we define the corresponding streamlines of tA in TB as those
found by the solution of the corresponding rectangular linear
assignment problem (RLAP):

P∗ = argmin
P∈P

k
∑

i=1

M
∑

j=1

cijpij (5)

where [pij]ij = P ∈ P is a partial permutation matrix, i.e.,

P = [pij]ij ∈ {0, 1}k×M and
∑k

j=1 pij = 1 but
∑M

i=1 pij ≤

1, because the tract has less streamlines then the tractogram.
P∗ is the optimal assignment, i.e., the one with lowest overall
cost. Once P∗ is obtained, the segmented tract in TB is defined
as the set streamlines in TB corresponding to tA according
to P∗.

Solution of the linear assignment problem
Finding the optimal solution of the LAP or RLAP is usually
computationally very expensive. As mentioned before, we
adopted the rectangular LAPJV that we do not describe here
because its description is fairly technical. We refer the interested
reader to Bijsterbosch and Volgenant (2010) and Jonker and
Volgenant (1987) for a comprehensive description, as to section 2
for a concise analysis of the literature on this topic. Anyway, a
key element of the scalability of our solution, is a further step
that we introduce before starting the RLAP: the sparsification
of the cost matrix C. In our experiments, we noticed that

Frontiers in Neuroscience | www.frontiersin.org 7 February 2018 | Volume 11 | Article 754

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Sharmin et al. Tract Segmentation as LAP

only a small part of the whole C is actually used in LAPJV.
Specifically, for each streamline in tA only the distance from the
neighboring streamlines in TB play a role in the computation. For
this reason, by leveraging the DR and the k-d tree introduced
above, we efficiently computed just a small subset of C instead
of the whole matrix, saving a substantial amount of time
and memory both in building C and in executing LAPJV.
In section 5, we show the details of this step and the gain
obtained.

3.2.2. Step 2: Tract Correspondence from Multiple

Examples
In this part we describe how to combine multiple solutins of tract
correspondence from one example tract into a single segmented
tract on the target tractogram. The quality of the segmented
tract/bundle obtained from a single example, as described in
section 3.2.1, is limited by inherent differences in the whitematter
anatomy between subject A and B. In order to reduce the bias
of segmenting from a single specific example, here we describe
a procedure to segment the desired tract/bundle from multiple
examples, each from a different subject. In this way we try to
exploit the anatomical variability in the sample of subject as if we
had a model of the tract. The proposed procedure is based on first
computing the correspondence between each example and the
new tractogram, as detailed in section 3.2.1, and then on ranking
all the corresponding streamlines based on how frequently they
were selected by the segmentation induced by each example.
In the following, we describe the details of the proposed
procedure.

Refinement step: ranking schema
Given a tract/bundle of interest t, e.g., the CST, the set of
N examples segmentations of that tract from N different
subjects is denoted as {tA1 , . . . , tAN }. For each example tract
tAi , a corresponding tract tAi→B ⊂ TB can be obtained
following the RLAP procedure explained in section 3.2.1, or other
strategies like the nearest neighbor. The resulting (approximate)
segmentations for tB are then {tA1→B, . . . , tAN→B}. Our aim
is to find an improved approximation of tB, that we call t̂B,
leveraging all of them. The proposed procedure to obtain t̂B is
the following:

1. Compute the union of the obtained segmentations:
t(A1,...,AN )→B =

⋃N
i=1 tAi→B, which we expect to be a

superset of tB.
2. Score each streamline in t(A1 ,...,AN )→B ⊂ TB by counting

how many time the streamline appears in {tA1 , . . . , tAN }.
In this way, being selected multiple times as potential
streamline of tB is considered evidence of being a reliable
streamline. We further introduce other criteria in order
to break ties in the ranking between streamlines selected
the same number of times. Our proposed second criterion
comes from the selection cost of the streamlines, i.e., the
distance of the streamline during the time of selection.
Lower cost means a more reliable matching. Once all scores
are obtained, we ranked the streamlines according to their
score.

3. We define the number of streamlines of t̂B as the median
number of streamlines of the example tracts: k̂ = |t̂B| =

median(tA1→B, . . . , tAN→B).

4. t̂B is the set of k̂ top scoring streamlines.

4. MATERIALS

In this section, we describe the datasets used to conduct the
experiments, as well as the procedure to obtain to ground
truth of the segmentations, i.e., through the white matter query
language (WMQL). A total amount of 300 segmented tracts will
be considered in our experiments.

4.1. Datasets
Thirty healthy subjects from the Human Connectome Project
(HCP) (Sotiropoulos et al., 2013) public datasets were selected
at random and their MRI data retrieved. The diffusion MRI
dataset from HCP consists of 3 × 90 gradient directions at
b-values of 1,000, 2,000, and 3,000 s/mm2, with 18 non-
diffusion weighted images, with voxel size of 1.25 mm. The
fiber orientation distribution (FOD) function at each voxel
was computed using the constrained spherical deconvolution
algorithm (CSD) (Tournier et al., 2007) with a single shell
(b = 1,000). The tractograms were obtained with the Euler
Delta Crossing (EuDX) algorithm, see (Garyfallidis et al.,
2014), implemented in DiPy6, with 106 seeds. The number of
streamlines of the resulting tractograms is approximately 100–
140 thousands.

4.2. Tractogram Segmentation with WMQL
The TractQuerier, based on the White Matter Query Language
(WMQL) (Wassermann et al., 2013, 2016), is a parcellation-
based Open Source tool7 to segment the whole brain tractogram.
Using the parcellation from FreeSurfer and a database of ROIs,
defined by the anatomical information of the tract, the WMQL
extracts the anatomically meaningful tracts with a rule-based
approach. Here, WMQL is applied over thirty subjects from the
HCP dataset to produce a set of tracts, specifically: corticospinal
tract (CST), cingulum (CG), arcuate fasciculus (AF), inferior
longitudinal fasciculus (ILF), Uncinate Fascicle(UF), inferior
fronto-occipital fasciculus (IFOF), 1, 2, and 3 left-right superior
longitudinal fasciculus (SLF1,2,3), and finally, corpus callosum
(CC) with seven parts (CC1-7). Among all the tracts, we selected
those showing more consistency across subjects, resulting in a set
of ten different tracts: left and right corticospinal tract (CST), left
and right cingulum (CG), left and right inferior fronto-occipital
fasciculus (IFOF), left and right Uncinate Fascicle (UF) and
left and right inferior longitudinal fasciculus (ILF). These tracts
will be used as exampled tracts, as well as for the quantitative
comparison of the tract segmentation methods. Note that no
further manual filtering is performed on the segmented tracts.
In Table 1, we report the mean and standard deviation of the
number of streamlines and of voxels over 30 subjects for the ten
selected tracts.

6http://nipy.org/dipy.
7 https://github.com/demianw/tract_querier.
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TABLE 1 | Data description.

Tract name No. of streamline No. of voxels

CST.Left 39 ± 39 957 ± 625

CST.Right 23 ± 34 644 ± 544

CG.Left 1,141 ± 168 9,039 ± 1,172

CG.Right 982 ± 159 8,200 ± 1,087

IFOF.Left 173 ± 94 3,713 ± 1,295

IFOF.Right 123 ± 76 2,796 ± 1,212

ILF.Left 96 ± 71 1,771 ± 610

ILF.Right 54 ± 59 2,035 ± 566

UF.Left 143 ± 76 1,794 ± 844

UF.Right 185 ± 66 1,140 ± 819

For each tract, the table reports the mean and standard deviation of the number of

streamlines and of voxels over 30 subjects.

5. EXPERIMENTS

In this section, we present all the components for the quantitative
validation of our proposed supervised tract segmentationmethod
based on LAP. Experiments were performed on 30 subjects
from the Human Connectome Project (HCP) dMRI dataset,
as described in section 4. The tractograms of all subjects were
aligned to the MNI152 template with the voxel-based linear
registration tool FLIRT/FSL8. After alignment, the WMQL
was applied over thirty subjects to segment the whole brain
tractogram and obtain 10 different tracts: left-right corticospinal
tract (CST), left-right cingulum (CG), left-right inferior fronto-
occipital fasciculus (IFOF), left-right Uncinate Fascicle (UF) and
left-right inferior longitudinal fasciculus (ILF). We divided the
set of subjects into two groups, i.e., the example group and the
test group, each of 15 subjects. The tracts from the example group
were used as prior information to guide the segmentation in the
tractogram of new subjects. The tracts from the test group were
used to quantify the quality of the obtained segmentation.

We compared our proposed LAP-based supervised tract
segmentation method against the automatic ROI-based
segmentation, see Zhang et al. (2010), and the example-based
multi-atlas approach with nearest neighbor strategy (hereafter
denoted as NN_MULTI_ATLAS) of Yoo et al. (2015). The
experiments are divided in two parts. In the first part, we
segmented tracts with the three methods, i.e., ROI-based,
NN_MULTI_ATLAS, LAP-based and measured the degree
of voxel overlap with the ground truth, see Figure 4. In the
second part, we performed a more in-depth analysis between
the nearest neighbor strategy and the proposed LAP-based
segmentation, ruling out confounds such as the different
refinement strategy, the different embedding and different
streamline distance function. In order to do that, we first show
that the NN_MULTI_ATLAS method and our efficient nearest
neighbor implementation (hereafter denoted as NN_DR_MAM,
see section 3.2.1) provide very similar results, see Figure 7,
despite the differences in the refinement step, embedding

8http://fsl.fmrib.ox.ac.uk/.

and streamline distance function. Then, we show the results
of a ROC/AUC analysis comparing NN_DR_MAM and the
proposed LAP-based segmentation, illustrating the advantage of
LAP over nearest neighbor, see Figure 8, Table 2. Moreover, we
provide additional results that enrich our work, such as visual
examples of segmented tracts by the different methods, see
Figures 5, 6, or the role of the number of examples for the quality
of segmentation, see Figure 9. In the following, we provide all
the necessary details and descriptions of the results and how we
obtained them.

5.1. Performance Analysis
To quantitatively evaluate the proposed LAP-based supervised
segmentation, we adopted two different evaluation metrics: (i)
the dice similarity coefficient (DSC) (Dice, 1945) and (ii) the
Receiver Operating Characteristic (ROC) curve (Brown and
Davis, 2006) analysis. In the following, we will discuss these
metrics in details.

5.1.1. Dice Similarity Coefficient (DSC)
The common practice to evaluate tract segmentation methods
is to compute the overlap, in terms of voxels, between the
segmented tract and the ground truth tract (Jin et al., 2014). The
degree of voxel overlap can be measured through the common
dice similarity coefficient (DSC). In order to compute the DSC,
we converted the segmented tract and the ground truth tract into
the binary mask where 1 indicates that a voxel is crossed by a
streamline of the tract and 0 otherwise. Given the segmented
tract, t̂, and the ground truth tract t

DSC =
2× (|v(t̂) ∩ v(t)|)

|v(t̂)| + |v(t)|
(6)

where v(t) is the set of voxels crossed by the streamlines of t and
|v(t)| is the number of voxels of v(t). The DSC varies between 0
to 1 and higher values indicate better overlap.

5.1.2. Receiver Operating Characteristic (ROC) Curve
The analysis of the ROC curve is a standard measure for
performance in the field of the medical image segmentation
techniques (Southall et al., 2000). It considers all possible
degrees of sensitivity/specificity of the segmentation method
under evaluation. We adopted such analysis to compare the
performance of our proposed LAP-based segmentation method
with respect to the nearest neighbor method.

The ROC curve plots the sensitivity, i.e., the true positive rate
(TPR), against the specificity, i.e., false positive rate (FPR) of the
segmentation method at different thresholds. Here, the threshold
refers to the number of streamlines to consider as segmented tract
after ranking the streamlines that we obtain in the refinement
step, where we combine the segmentations obtained from each
single example in a single ranking, see section 3.2.2. In the
proposed LAP-based method, we set such threshold as the
median number of streamlines across the example tracts. In order
to compute the ROC curve, here we span through all possible
thresholds in the ranking. The TPR and FPR are computed
by comparing the streamlines above threshold (positives) and
below threshold (negatives) with the ground truth, combining
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FIGURE 4 | Summary of the results: average voxel overlap between segmented tracts and ground truth tracts for the ROI-based, NN_MULTI_ATLAS, and the

proposed LAP. The bar graph shows the degree of overlap, in terms of dice similarity coefficient (DSC), for each tract averaged over 15 subjects.

TABLE 2 | Summary of the results: The average area under the Receiver

operating characteristic (ROC) analysis between segmented tracts and ground

truth tracts for the NN_DR_MAM and the proposed LAP.

Method

Tract NN_DR_MAM LAP

CG.Left 0.81 0.90

CG.Right 0.81 0.88

IFOF.Left 0.70 0.86

IFOF.Right 0.68 0.80

UF.Left 0.69 0.84

UF.Right 0.70 0.83

CST.Left 0.63 0.79

CST.Right 0.66 0.75

ILF.Left 0.71 0.88

ILF.Right 0.67 0.84

The table reports the area under curve (AUC) scores for each tract averaged over 15

subjects. For each tract the voxel information has considered for the ROC curve analysis

and For each subject same threshold has chosen.

four numbers: the true positives (TP), i.e., the number of voxels
of positives that are also in the ground truth tract, the false
positives (FP), i.e., the number of voxels of the positives not in the
ground truth, the true negatives (TN), i.e., the number of voxels
of negatives not in the ground truth and the false negatives (FN),
i.e., the number of voxels of negatives also in the ground truth.
Hence, the TPR and FPR are formulated as follows:

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

High values of TPR and (1-FPR) means good segmentation.
Additionally, the ROC curve can be summarized in a single scalar
value: theArea under ROC curve (AUC) score, where higher AUC
indicates better segmentation.

5.2. ROI-Based Tract Segmentation
For each test subject, the 10 tracts of interest were segmented
based on their related pair of cortical ROIs, obtained from the
atlas in MNI space available at http://lbam.med.jhmi.edu/cmrm/
Data_Yajing/fiberMenu.htm, see Zhang et al. (2010). For each
subject and tract, given their two ROIs, the segmented/estimated
tract was obtained by keeping the streamlines of the tractogram
that intersected them. The quality of the segmented tract, with
respect to the ground truth, is reported in Figure 4, as DSC,
see the red bars. The segmentation of a single tract took,
approximately, a few seconds of computation on a modern
desktop computer.

5.3. Tract Segmentation with Nearest
Neighbor (NN_MULTI_ATLAS Method)
Following the NN_MULTI_ATLAS method of Yoo et al. (2015),
we segmented each of the 10 tracts of interest for each subject of
the test set using the example tracts from the 15 example subjects.
First, all streamlines of all tractograms, from the example set
and test set, were re-sampled to 32 points. Then, given an
example tract of interest from the example set and the tractogram
of a test subject, we computed the nearest streamlines of that
example in the test tractogram, using the Mahalanobis distance.
As in Yoo et al. (2015), the nearest neighbor computation was
carried out with the trivial algorithm, i.e., by first computing
all possible pairwise distances between the streamlines of the
example tract and the test tractogram and then by keeping the
one at minimum distance. We repeated such procedure for all
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FIGURE 5 | In each row, in column (A), we show the tract obtained with LAP-based segmentation (LAP) with highest DSC score among all test subjects, together

with the related ground truth (GT). In column (B), we show the one with lowest DSC score, together with the ground truth. The streamline of salmon color are TP, the

ones in green are FP and the ones in yellow are FN. The tracts are: CST (left, right), CG (left, right) and UF (left).
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FIGURE 6 | In each row, in column (A), we show the tract obtained with LAP-based segmentation (LAP) with highest DSC score among all test subjects, together

with the related ground truth (GT). In column (B), we show the one with lowest DSC score, together with the ground truth. The streamline of salmon color are TP, the

ones in green are FP and the ones in yellow are FN. The tracts are: and UF (right), IFOF (left, right) and ILF (left, right).
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15 examples of the example set and pooled all the obtained
segmented streamlines. Following Yoo et al. (2015), we excluded
all streamlines distant more than 200 units (in Mahalanobis
distance) from their corresponding example streamline and then
ranked the remaining ones according to the number of times they
were selected by different examples. As in Yoo et al. (2015), we
defined the resulting segmented tract as the set of streamlines that
were selected by at least half of the examples. The quality of the
segmented tract, with respect to the ground truth, is reported in
Figure 4, as DSC, see the blue bars.

The segmentation of a single tract took, approximately, from
half an hour to more than two hours, depending on the size of the
tracts. The segmentations were conducted on a modern desktop
computer, specifically with an Intel Xeon processor, 16 Gb of
RAM, 8 cores. The segmentations were computed in parallel,
one example per core. Our implementation was in Python code,
using the Free/OpenSource libraries NumPy, SciPy and DiPy9.
The core part of the computation, i.e., the computation of all
pairwise Mahalanobis distances, was implemented in C language,
using scipy.spatial.cdist(). We could not use the GPU
implementation of NN_MULTI_ATLAS mentioned in Yoo et al.
(2015), because not provided by the authors.

5.4. Tract Segmentation with LAP
As mentioned in section 3, our proposed LAP-based supervised
tract segmentation method consists of two parts: (i) Tract
correspondence from a single example, through LAPJV and (ii)
merging of the correspondences frommultiple examples through
ranking. Here we discuss the choice of the parameters in each
part.

As described in section 3.2.1, tract correspondence from a
single example was obtained by solving the LAP between the
streamline of the example and those of the target tractogram,
with the rectangular LAPJV. Due to the computational cost of the
algorithm, we could not directly apply it to the full cost matrix,
computed between the streamlines of the example tract and the
whole set of streamlines of the target tractogram. For this reason,
the LAPJV algorithm was applied to a reduced cost matrix. The
reduced cost matrix was computed by considering only a subset
of the streamlines of the target tractogram TB, specifically the
union of all 500 nearest neighbors of the streamlines in the
example tract tA, i ∈ {1, . . . ,N}. We expect such union set to be a
superset of the ground truth tract tB andwemotivate the choice of
500 neighbors below, see section 3.2.1 and Figure 10. In this way,
instead of computing a cost matrix of size (approximately) 102 ×
105 and solve the corresponding LAP, we reduced the problem to
a cost matrix of size approximately 102×103. In order to compute
such superset, we used the dissimilarity representation (DR)
and a kd-tree. According to Olivetti et al. (2012), 40 prototypes
were selected from the whole brain tractogram, TB, using the
SFF heuristic and the MAM distance function. With them, we
computed the DR, i.e., a 40-dimensional vectorial representation,
of each streamline in TB. Afterwards, we put such vectors in
a kd-tree, using the implementation provided by scikit-learn10.

9http://nipy.org/dipy.
10http://scikit-learn.org.

In the same way, all streamlines in the example tract tA were
represented as vectors using the previous prototypes. For each of
those vectors, we computed 500 nearest neighbors from the kd-
tree of TB and defined the superset of the ground truth tB as their
union. Then, in order to compute the reduced cost matrix, the
MAM distance between the each streamline in the example tract
tA and those in the union set, were computed. Finally, the LAPJV
algorithm was applied to the constructed cost matrix, in order to
obtain the corresponding streamline from a single example (tA).

Afterwards, we proceeded to the second step, considering
multiple examples, i.e., the same anatomical tract from the 15
example subjects. We repeated the segmentation procedure as
above for each of the 15 examples, obtaining 15 segmented tracts.
After computing the union of those 15 sets of streamlines, we
ranked the streamlines according to the frequency in which they
appeared in the segmentations, as described in section 3.2.2. The
resulting segmentation of tract of ground truth tract tB, that we
referred to as t̂B, was obtained by taking the firstm streamlines in
the ranking, wherem is themedian number of streamlines among
the example tracts11.

We qualitatively evaluated our proposed segmentation
method first with the DSC and then with the ROC curve analysis
(see later). We measured the degree of overlap between the
tract segmented by the LAP, t̂B and the ground truth tract, tg ,
through the DSC, at the voxel-level. We computed the average
and standard deviation of themeanDSC values for each ten tracts
from the 15 subjects of the test group. The results are reported in
Figure 4.

We implemented the proposed LAP-based approach with a
combination of Python and Cython12 code, leveraging Numpy,
SciPy, scikit-learn (for k-d tree) and Pymatgen (for LAPJV).
We developed a parallel version of the proposed method in
order to compute the segmentation of multiple subjects at the
same time, across the available cores of the CPU. On average,
on a modern desktop computer13, for each subject, the DR
took approximately 30 seconds of computation time, whereas
the k-d tree construction needed 20 seconds, for the whole
brain tractogram. The correspondence with LAPJV required 10–
30 seconds per tract, depending on the number of streamlines
of the tract. In total, the segmentation of one tract from 15
examples required less than two minutes of computation. The
software implementation of the proposed method is available
under a Free/OpenSource license from here: https://github.com/
FBK-NILab/LAP_tract_segmentation.

We further validated our proposed segmentation technique in
a visual way. Figures 5, 6 presents tracts as segmented by our
proposed segmentation method (LAP) and the corresponding
ground truth (GT). For all the tracts considered in this
experiments, we report the segmentations with highest DSC
(first column) and lowest DSC (third column), together with
the respective ground truths (second and fourth column). In the
figure, for LAP, we indicate the correctly segmented streamlines

11In case of ROC/AUC computation, such number varied, in order to explore

sensitivity and specificity of the method.
12http://cython.org/.
138 cores CPU, Intel Xeon 3.50 GHz, 16 Gb RAM.
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(TP) in salmon color and the incorrect ones (FP) in green. For
GT, we indicate again the TP of LAP in salmon color and the
missed streamlines (FN) in yellow color.

5.5. LAP vs. NN: ROC/AUC Analysis
We further investigated the differences between the proposed
method, based on the LAP, and the one of Yoo et al. (2015) based
on the nearest neighbor (NN) strategy. Here, our main aim is
to make the most direct comparison between the two different
principles used to find corresponding streamlines: LAP using a
joint minimization of distances over all streamlines (imposed
by the one-to-one constraint) and NN using instead a greedy
distance minimization of each streamline, individually.

We noticed that the NN_MULTI_ATLASmethod of Yoo et al.
(2015) differs from the proposed one on multiple aspects: the
embedding procedure (re-sampling to 32 points vs. dissimilarity
representation), the streamline distance function (Mahalanobis
vs. MAM), the refinement step (majority-vote ranking with two
thresholds vs. nesting of two rankings and median threshold,
see section 3.2.2) and the minimization function (NN vs. LAP).
Since we are interested only in the last one of such differences,
we wanted to avoid the effects of the other differences which
could be confounds affecting the result. For this reason, we
created a different NN implementation, based on the DR, k-d
tree, MAM distance and the proposed refinement step, that we
called NN_DR_MAM, and used instead of NN_MULTI_ATLAS.
In section 3, we have already shown that with these new elements
we can retrieve the nearest neighbor streamlines in a very short
time (milliseconds), making this alternative implementation of
NN very convenient from the computational point of view
with respect to the one of Yoo et al. (2015). Despite all the
differences introduced in our implementation of NN, we verified
that the quality of segmentation of NN_DR_MAM did not
substantially differ from NN_MULTI_ATLAS. In Figure 7, we
report the DSC values obtained with the two implementations
over all 150 segmented tracts. The interpolating line, obtained
with a robust linear regression algorithm14, has a slope of 0.89,
showing that NN_DR_MAM is equal or marginally superior to
NN_MULTI_ATLAS.

In Table 2 we report the summary of the results of the
ROC/AUC analysis of NN_DR_MAM vs. LAP, where the
threshold changed during the sensitivity/specificity analysis was
the number of streamline considered starting from the top of the
ranking. In Figure 8, we report the detailed ROC curves for each
tract, macro-averaged over the 15 test subjects.

5.6. LAP Segmentation: Number of
Examples and of Neighbors
In this last part of the experiments, we investigated the effect of
two important parameters on the proposed LAP segmentation:
(i) the number of example tracts, i.e., 15 examples, and (ii) the
number of nearest neighbors when building the superset for
massively reducing the computational cost of LAP.

In Figure 9, we plotted the quality of the segmentation in
terms of ROC/AUC score for each tract, averaged over all test

14The Huber regression algorithm.

FIGURE 7 | Comparison of the results between NN_DR_MAM and

NN_MULTI_ATLAS. For each of the 10 tracts of the 15 test subjects (10 × 15)

= 150 points in total), the graph reports DSC computed with NN_DR_MAM

(x-axis) and the NN_MULTI_ATLAS method (y-axis).

subjects, when the number of example tracts varied from 1 to
15. Due to the variability of anatomy across subjects, having a
larger set of examples is desirable for segmenting. Expectedly,
all graphs show an increase in the score when the number of
examples increases. The increase between 10 and 15 is modest,
indicating that 15 examples are a meaningful example set size for
segmenting.

In Figure 10, we show the effect of using different numbers of
nearest neighbors of example tract when computing the superset
on which the LAP is carried out. The graphs show the ROC/AUC
score for each tract of interest, averaged over the test subjects
when the number of neighbors span from a few tens to 1000. A
small number of neighbors for each example streamline result
in a small superset. It is expected that, if such superset is too
small, then it might not contain all the streamlines of the actual
target tract, i.e., the ground truth, preventing the proposed LAP
method to get good quality of segmentation. In other words, a
too small superset acts as an artificial upper bound on the score
of LAP. Nevertheless, all the graphs show that, when the number
of neighbors is above a 200, such issue completely disappears,
for all tracts. Notice that, in the experiments, we always used 500
neighbors, a value which safely larger and, thus, justified.

6. DISCUSSION

In this section, we discuss the results obtained in section 5 and
show their impact on our claims.

We performed a set of experiments where the proposed
LAP-based segmentation method is compared against two
alternative methods: (i) the commonly used automatic ROI-
based segmentation (Zhang et al., 2010) and (ii) a recent
example-based multi-atlas method based on the idea of
correspondence implemented with the nearest neighbor
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FIGURE 8 | Receiver operating characteristic (ROC) analysis between segmented tracts and ground truth tracts for the NN_DR_MAM and the proposed LAP. Each

subfigure shows the average ROC curve for each tract averaged over 15 subjects. For each tract the voxel information has consider for the ROC curve analysis and

For each subject different thresholds has chosen.
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algorithm (NN_MULTI_ATLAS) (Yoo et al., 2015). The quality
of segmentations of 10 tracts for 15 test subjects, obtained by
each of the 3 methods, was scored according to their voxel-
overlap (as DSC) with the ground truth, obtained through
WMQL (Wassermann et al., 2013). Figure 4 reports the result
of average DSC for 10 tracts, averaged over 15 test subjects.
For each tract, three bar plots are reported, one for each
segmentation method, along with the standard deviation of
mean. The bar-plots show that proposed LAP-based method

FIGURE 9 | Change in the AUC score with the number of examples tracts.

The plot reports the average Area Under Curve (AUC) scores for ten tracts

over 15 subjects. Expectedly, the AUC score increases as the number of

examples increase.

is able to segment tracts much better than the automatic ROI-
based segmentation and remarkably better than example-based
segmentation with the NN strategy. Additionally, notice that our
results independently reproduce the result reported in Yoo et al.
(2015), on a different dataset, where the multi-atlas NN method
outperformed the ROI-based segmentation.

Across all tracts, our method showed strongly improved
results, in terms of voxel overlap, with respect to ROI-based
segmentation, usually doubling (or more) its score, i.e., from
0.15 to 0.40 vs. 0.45 to 0.75. The result from the ROI-based
segmentation approach is indeed quite modest with respect to the
other methods, as already seen in Yoo et al. (2015). This could be
due to the limitations of registration, occurring when aligning the
test subject to the cortical atlas.

Figure 4 showed that LAP-based segmentation is a substantial
improvement over the NN-based method of Yoo et al. (2015).
Nevertheless, we conducted a further analysis to make a detailed
and more general comparison between the greedy optimization
of the NN strategy, which defines the corresponding streamlines
as those with minimum distance, and the proposed solution
based on the LAP, which jointly minimizes the distances among
all example streamlines and the target tractogram, introducing
a one-to-one constraint. Our claim is that the segmentation
with the NN strategy may fail in some cases, like when there
is still a local systematic displacement between homologous
anatomical structures, after the tractograms of the example and
target subjects are registered. In such cases, the tract segmented
with NN will be under estimated, see Figure 1. Differently, the
one-to-one constraint of LAP should force the correspondence
to correctly follow such displacement.

In order to conduct a careful analysis without confounds, we
implemented an alternative version of the multi-example NN

FIGURE 10 | Change on the AUC score with the number of the nearest neighbors for each streamline in example tract used to compute the superset of each

example, in order to sparsify the cost matrix of the LAP. The plot reports the AUC scores for ten tracts over 15 subjects as the number of nearest neighbors increases

from 60 to 1,000. After 100 neighbors the results are stable, i.e., the target tract is always included in the superset.
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segmentation algorithm of Yoo et al. (2015), in order to match
all the aspects of the proposed LAP-based segmentation method,
see section 5.5. We supported such argument by showing that
our implementation, called NN_DR_MAM, provides equivalent
results to that of Yoo et al. (2015), called NN_MULTI_ATLAS,
see Figure 4. Then, we conducted a ROC/AUC analysis between
NN_DR_MAM and our LAP-based segmentation. In Figure 8

we presented the ROC curves for each tract of interest, averaged
over the 15 test subjects. Those curves are summarized in
Table 2, where the ROC/AUC scores are reported. The LAP-
based segmentation always obtains high ROC/AUC scores, i.e.,
0.75–0.90, always remarkably higher than the ones of NN, i.e.,
0.63–0.81, proving our claim. Notice that this result is even
more insightful than that of Figure 4, because the ROC/AUC
analysis is independent from the arbitrary choice of the number
of streamlines for the target tract that we defined as the median
value of the size of the example tracts. In other words, this result is
independent from the choice of the threshold that we introduced
with the proposed method.

Another important aspect of the proposed method is its
computational cost. In the experiments, we have shown that the
time required to segment one tract from 15 examples may be
even more than two hours of computation, when using the NN
method of Yoo et al. (2015). Instead, the proposed LAP-based
segmentation requires only a couple of minutes of computation,
obtaining also a higher quality of the results. Nevertheless,
with the efficient computational tools of the dissimilarity
representation and k-d tree adopted for the proposed method, we
also implemented an alternative version of themulti-example NN
segmentation method, called NN_DR_MAM. We have shown
that it requires even less time than the LAP-based segmentation
and obtains comparable results to those of Yoo et al. (2015). Our
fast implementation of NN-based segmentation from multiple
examples is comparable to that of Labra et al. (2017) in terms of
speed-up.

Despite all the positive results, there is notable variability
in the quality of segmentations of all methods, including the
proposed LAP-based one. In Figures 5, 6 we show 20 examples
of segmented tracts obtained with the proposed LAP-based
method, together with the respective ground truth (GT) obtained
with WMQL. There, we show 2 examples of segmentations for
each of the tracts of interest. These two examples are the one
where the LAP-based method obtained the highest DSC score
(column A) and the one with lowest DSC score (column B).
The salmon-colored streamlines are the correctly segmented
ones (TP). The green streamlines are the incorrectly segmented
ones (FP) and the yellow streamlines are the missed ones (FN).
In column A (highest DSC), for all the 10 tracts considered
in this study, the large majority of streamlines are correctly
segmented. Differently, in column B (lowest DSC), many tracts
are poorly segmented. This fact occurs for two reasons: first,
despite remarkable progress with respect to previous automatic
segmentation methods, the proposed LAP-based segmentation
cannot be considered as a final answer. The problem of automatic
tract segmentation, even with the support of multiple examples,
still have substantial room for future improvement. Secondly,
the quality of the ground truth, both for examples and test

tracts, should be improved. As it is clearly visible in Figures 5, 6,
column B, some of the ground truth tracts are questionable,
e.g., CST Right and ILF left, and could be easily challenged
by an expert neuroanatomist. If the ground truth is poor, we
cannot expect example-based segmentation methods to succeed.
The common use of WMQL for defining the ground truth is
appealing because of its low cost: like in our case, obtaining
300 high-quality segmentations from expert neuroanatomists
would be vastly beyond reach from a single research group.
At the same time, the limited quality of some of the tracts
limits the generalization ability of example-based methods. This
limitation is also a call to our community to collaboratively share
segmented tracts by experts, in order to reach sufficient numbers
to enable creation and assessment of higher-quality automatic
methods.

One important question is about the size of the example set,
that we set to 15 examples in our study. Given the variability of
white matter anatomy in the healthy population, it is important
to understand what is the trade-off between the cost of acquiring
more examples and the gain in quality of segmentation. We
analyzed this aspect and reported the results in Figure 9, where
we observed the expected increase in ROC/AUC score when
increasing the number of examples used by the proposed LAP-
based segmentationmethod. This increase confirms what already
has been observed in Yoo et al. (2015 see Figure 11 there) for the
case of NN-based segmentation and, in comparison to that study,
in Garyfallidis et al. (in press see Tables 1, 2 there, in particular
the Jaccard index15), where a variation of the NN from a single
example is presented. For our LAP-based segmentation, we also
observed moderate improvement of the quality of segmentation
when using more than 10 examples, justifying the choice of 15
presented in this paper. Of course, such result may be limited by
the quality of the ground truth tracts. With more homogeneous
ground truth tracts, we might expect a steeper curve than the
one in Figure 9, which would shift the desirable size of the set
of examples to a higher value.

Although our proposed LAP-based tract segmentation
method showed very positive experimental results, there is a
critical parameter: the threshold that defines the number of
streamlines for the segmented tract. In this work, we defined such
threshold as the median value among the sizes of the example
tracts. The median is a simple sensible choice because it is the
number that deviates less from what has been observed in the
example set. Moreover, it is more robust to outliers than the
sample mean value. Nevertheless, such threshold is based only
on example data and ignores the specificity of the test subject.
This current limitation reveals an implicit assumption of our
method, as well as the ones based on NN, i.e., that the number of
streamlines of the tract of interest across all subjects should not
change much. Besides the unavoidable subject variability in the
white matter anatomy, the main implication of this assumption
is that example and target tractograms should have a similar
number of streamlines. Frequently, this is the case only when all

15Given the much larger size of the segmented tract with respect to the ground

truth, themain value to consider against other segmentationmethods is the Jaccard

index.
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tractograms are generated with the same tracking algorithm and
same parameters. Different tracking algorithms, or even different
parameter values, usually result in significant differences in a
number of streamlines of the tractogram. As a consequence,
both NN and LAP algorithms should not be used on non
homogeneous (or inhomogeneous) sets of tractograms, at the
current state.

The one-to-one constraint introduced by the LAP-
based segmentation gives a clear advantage over NN-based
segmentation but, sometimes, it can be seen as a limitation.
Even in the case of homogeneous tractograms, the number of
streamlines of a given tract of interest may substantially vary
across subjects. In such case, each LAP will find the exact same
number of streamlines between example and target tractogram,
which may be sub-optimal. In future, we plan to refine and partly
relax this constraint to find a more convenient compromise
between the who extremes of NN and LAP.

7. CONCLUSIONS AND FUTURE WORK

In this work, we present a novel method for supervised tract
segmentation based on the idea of streamlines correspondence
across subjects as a set of linear assignment problems (LAPs).
Our proposed segmentation method is able to segment a given
tract of interest in the tractogram of a new subject using a set
of example tracts from other subjects, as prior information. The
results of multiple experiments show that the proposed method
provides a very large improvement over ROI-based segmentation
and a remarkable improvement over nearest-neighbor (NN)
segmentation. The time required to segment a tract of interest
is just a few minutes and we provide a Free/OpenSource
implementation of the proposed method.

The proposed method has some limitations, on which we plan
to work in near future. First, we plan to improve the reliability

of the results presented in this work by adding higher-quality
tracts segmented by expert neuroanatomists, thus extending the
current large dataset of 300 tracts used in our experiments.
Secondly, we plan to address the limitation of defining the size
of the target tract just from the examples, i.e., with the median
value, that currently does not adapt to the target tractogram. To
conclude, we plan to address automatic segmentation between
tractograms generated from different tracking algorithms and
with different parameters values. This last challenge should
have an important impact on the adoption of supervised
automatic segmentation systems, because we cannot expect to
always have segmented tracts from homogeneous tractograms
during deployment. In such cases, practitioners should provide
homogeneous segmented examples before being able to use the
supervised segmentation systems at their best.
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