
PROTOCOLS
published: 22 January 2018

doi: 10.3389/fnins.2018.00006

Frontiers in Neuroscience | www.frontiersin.org 1 January 2018 | Volume 12 | Article 6

Edited by:

Alexandre Gramfort,

Inria Saclay—Île-de-France Research

Centre, France

Reviewed by:

Marijn van Vliet,

Aalto University, Finland

Sheraz Khan,

Massachusetts General Hospital,

Harvard Medical School,

United States

*Correspondence:

Lau M. Andersen

lau.moller.andersen@ki.se

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 28 September 2017

Accepted: 04 January 2018

Published: 22 January 2018

Citation:

Andersen LM (2018) Group Analysis in

MNE-Python of Evoked Responses

from a Tactile Stimulation Paradigm: A

Pipeline for Reproducibility at Every

Step of Processing, Going from

Individual Sensor Space

Representations to an across-Group

Source Space Representation.

Front. Neurosci. 12:6.

doi: 10.3389/fnins.2018.00006

Group Analysis in MNE-Python of
Evoked Responses from a Tactile
Stimulation Paradigm: A Pipeline for
Reproducibility at Every Step of
Processing, Going from Individual
Sensor Space Representations to an
across-Group Source Space
Representation
Lau M. Andersen*

NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

An important aim of an analysis pipeline for magnetoencephalographic data is that it

allows for the researcher spending maximal effort on making the statistical comparisons

that will answer the questions of the researcher, while in turn spending minimal effort

on the intricacies and machinery of the pipeline. I here present a set of functions and

scripts that allow for setting up a clear, reproducible structure for separating raw and

processed data into folders and files such that minimal effort can be spend on: (1)

double-checking that the right input goes into the right functions; (2) making sure that

output and intermediate steps can be accessed meaningfully; (3) applying operations

efficiently across groups of subjects; (4) re-processing data if changes to any intermediate

step are desirable. Applying the scripts requires only general knowledge about the Python

language. The data analyses are neural responses to tactile stimulations of the right index

finger in a group of 20 healthy participants acquired from an Elekta Neuromag System.

Two analyses are presented: going from individual sensor space representations to,

respectively, an across-group sensor space representation and an across-group source

space representation. The processing steps covered for the first analysis are filtering the

raw data, finding events of interest in the data, epoching data, finding and removing

independent components related to eye blinks and heart beats, calculating participants’

individual evoked responses by averaging over epoched data and calculating a grand

average sensor space representation over participants. The second analysis starts from

the participants’ individual evoked responses and covers: estimating noise covariance,

creating a forward model, creating an inverse operator, estimating distributed source

activity on the cortical surface using a minimum norm procedure, morphing those

estimates onto a common cortical template and calculating the patterns of activity

that are statistically different from baseline. To estimate source activity, processing of

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00006
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00006&domain=pdf&date_stamp=2018-01-22
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lau.moller.andersen@ki.se
https://doi.org/10.3389/fnins.2018.00006
https://www.frontiersin.org/articles/10.3389/fnins.2018.00006/full
http://loop.frontiersin.org/people/111818/overview

Andersen Group Analysis in MNE-Python

the anatomy of subjects based on magnetic resonance imaging is necessary. The

necessary steps are covered here: importing magnetic resonance images, segmenting

the brain, estimating boundaries between different tissue layers, making fine-resolution

scalp surfaces for facilitating co-registration, creating source spaces and creating volume

conductors for each subject.

Keywords: MEG, analysis pipeline, MNE-Python, minimum norm estimate (MNE), tactile expectations, group

analysis, good practice

INTRODUCTION

Magnetoencephalography (MEG) studies often include questions
about how different experimental factors relate to brain
activity. To test experimental factors, one can create contrasting
conditions to single out the unique contributions of each
experimental factor. Single subject studies usingMEGwould face
two limitations in singling out the contributions of experimental
factors. Firstly, theMEG signals of interest are mostly too weak to
find due to the noise always present in MEG data, and secondly
there is often an interest in making an inference from one’s data
to the population as a whole. Group level analyses can circumvent
these limitations by increasing the signal-to-noise ratio and
by allowing for an inference to the population as a whole. It
should be mentioned though that single subject analyses can be
meaningful for clinicians trying to diagnose patients. Epilepsy
investigations are routinely carried out on single subjects. Despite
the fact that most studies rely on group level comparisons to
increase the signal-to-noise ratio and for allowing for inferences
to the population, almost all tutorials are based on single subject
analyses. In the current paper, part of a special issue devoted to
group analysis pipelines, I try to remedy this for anyone fancying
using the MNE-Python (Gramfort et al., 2013) analysis package.
The example analysis that will be used is focused on group level
source reconstruction analyses of evoked responses, since this is a
very common strategy in theMEG literature. As such, the focus is
on how to organize a data analysis pipeline, but for more general
introductory information about MEG and the analysis of evoked
fields in general, see Hämäläinen et al. (1993) and Hari and
Puce (2017). The organizational principle will be that all parts,
both within-subject and between-subject parts, of the analysis
will be accessible from the Python interface using a single script.
The data is structured according to theMagnetoencephalography
Brain Imaging Data structure (MEG-BIDS) format to ease access
to the data (Galan et al., 2017).

The basic idea of the current group pipeline is to set up a
structure that allows for:

1. Dividing output files into folders belonging to the respective
subjects and recordings.

2. Applying an operation across a group of subjects.
3. (Re)starting the analysis at any intermediate point by saving

output for each intermediate point.
4. Plotting the results in a way that allows for changing the

figures in a principled, but flexible manner.

A structure that allows for all four points will minimize the time
that researchers have to spend on (1) double-checking that the

right input goes into the right functions; (2) making sure that
output and intermediate steps can be accessed meaningfully; (3)
applying operations efficiently across groups of subjects; (4) re-
processing data if changes to any intermediate step are desirable.

THE NEUROSCIENTIFIC EXPERIMENT

Since the focus is on how to conduct a group analysis, the
neuroscientific questions answered with the pipeline are neither
novel nor interesting. The focus is rather on the pipeline,
which can facilitate other experimenters’ research, so that
they efficiently can answer their own novel and interesting
questions. The reserved digital object identifier (DOI) for the
data repository, where data for this experiment and scripts for
the pipeline can be freely downloaded is: 10.5281/zenodo.998518.
The corresponding URL is: https://zenodo.org/record/998518.
The study that the data are taken from is not published yet. The
updated and maintained github code can be found at https://
github.com/ualsbombe/omission_frontiers.

Goal of Analysis
The goal of the analysis is to make a statistical appraisal of the
neural activation evoked from the stimulation of the right index
finger. The question is whether evidence can be found against
the null hypothesis that neural activation in the contralateral
somatosensory cortex does not depend on whether or not the
right index finger is stimulated. This has been shown to be
a robust effect, which makes it suitable for illustrating the
pipeline. In reality, it is well known that stimulation of the
finger evokes (at least) two evoked responses, the first after
∼60ms and the second after ∼135ms (Hari et al., 1984). The
first localizes to contralateral primary somatosensory cortex
and the second to bilateral secondary somatosensory cortex.
To meet this goal, the following are sufficient: (1) evoked
responses from each subject’s raw data. (2) volume conductors
and forward models based on the subjects’ magnetic resonance
images (MRIs) of their brains. (3) minimum norm estimates
for each subject (4) statistics across the events based on the
individual source reconstructions. The paradigm (Figure 1)
and the whole analysis pipeline for each subject is shown in
Figure 2.

A far from comprehensive list of studies facilitating similar
pipelines includes: word recognition paradigms (Halgren
et al., 2002; Pulvermüller et al., 2003); language lateralization
assessment (Raghavan et al., 2017); auditory stimulation (Coffey
et al., 2016) expectations toward painful stimulation (Fardo et al.,

Frontiers in Neuroscience | www.frontiersin.org 2 January 2018 | Volume 12 | Article 6

https://zenodo.org/record/998518
https://github.com/ualsbombe/omission_frontiers
https://github.com/ualsbombe/omission_frontiers
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

FIGURE 1 | An example sequence of the experimental paradigm is shown. The annotations on the bottom show the coding used throughout for the different events of

interest. Stimulations happened at a regular pace, every three seconds. When omissions occurred, there were thus six seconds between two consecutive stimulations.

2017); face processing (Junghöfer et al., 2017); cross-sensory
activations in visual and auditory cortices (Raij et al., 2010);
somatosensory response activations (Nakamura et al., 1998) and
many more.

Subjects
Twenty participants volunteered to take part in the experiment
(eight males, twelve females, Mean Age: 28.7 y; Minimum
Age: 21; Maximum Age: 47). The experiment was approved
by the local ethics committee, Regionala etikprövningsnämnden
i Stockholm. Both written and oral informed consent were
obtained from all subjects.

Paradigm
The paradigm is based on building up tactile expectations
by rhythmic tactile stimulations. These tactile expectations
are every now and then violated by omitting otherwise
expected stimulations (Figure 1). The inter-stimulus interval was
3,000ms. Around every twenty-five trials, and always starting
after an omission, periods of non-stimulation occurred that
would last 15 s. The first six seconds worked as a wash-out period,
and the remaining nine seconds were cut into three epochs of
non-stimulation. There are thus nine trigger values in the data
responding to nine different kinds of events (Table 1).

During the stimulation procedure, participants were watching
an unrelated nature programme with sound being fed through
sound tubes into the ears of participants at ∼65 dB, rendering
the tactile stimulation completely inaudible. Participants were
instructed to pay full attention to the movie and no attention to
the stimulation of their finger. In this way, expectations should
be mainly stimulus driven, and thus not cognitively driven or
attention driven.

An analysis of evoked responses will be carried out. The
specific parameters going into the analysis will become apparent
in the analysis steps below.

Preparation of Subjects
In preparation for the MEG-measurement each subject had their
head shape digitized using a Polhemus Fastrak. Three fiducial
points, the nasion and the left and right pre-auricular points, were
digitized along with the positions of four head-position indicator

coils (HPI-coils). Furthermore, about 200 extra points, digitizing
the head shape of each subject, were acquired.

Acquisition of Data
Data was sampled on an Elekta TRIUX system at a sampling
frequency of 1,000Hz and on-line low-pass and high-pass filtered
at 330 and 0.1Hz, respectively. The data were first MaxFiltered
(-v2.2) (Taulu and Simola, 2006), movement corrected and line-
band filtered (50Hz). MaxFiltering was done with setting the
coordinate frame to the head coordinates, setting the origin
of the head to (0, 0, 40mm), setting the order of the inside
expansion to 8, setting the order of the outside expansion to
3, enabling automatic detection of bad channels and doing a
temporal Signal Space Separation (tSSS) with a buffer length of
10 s and a correlation limit of 0.980. Calibration adjustment and
cross-talk corrections were based on the most recent calibration
adjustment and cross-talk correction performed by the certified
Elekta engineers maintaining the system.

Conventions
<variable> will be used to refer to the variable called
“variable.”
functionwill be used to refer to the function called “function.”
[parameter] will be used to the parameter called “parameter.”
script will be used to refer to the script called “script.”

Requirements
The packages in Table 2 are required to run the scripts, and the
versions listed are the ones that have been used to test the scripts.

CODE

General Structure of the Code
The idea behind this pipeline is that each processing step can
be run independently of what is in the workspace of the python
interpreter as long as the appropriate processing step has been
applied once earlier. To ascertain this almost all the functions
begin with loading the appropriate data and by saving the
processed data.

MNE-Python functions are used to do the actual operations.
The functions supplied in this pipeline mostly serve as

Frontiers in Neuroscience | www.frontiersin.org 3 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

FIGURE 2 | Cookbook for performing the Minimum-Norm Estimates for a single subject.

Frontiers in Neuroscience | www.frontiersin.org 4 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

Table 1 | Mapping of trigger values and annotated events.

Trigger

value

Annotation Notes Number

of trials

1 Standard 1 First stimulation ∼200

2 Standard 2 Second stimulation ∼200

3 Standard 3 Third stimulation ∼200

4 Standard 4 Fourth stimulation ∼135

5 Standard 5 Fifth stimulation ∼66

13 Omission 4 Omission following third stimulation ∼66

14 Omission 5 Omission following fourth stimulation ∼66

15 Omission 6 Omission following fifth stimulation ∼66

21 Non-Stimulation Absence of stimulation outside the

rhythmic stimulation sequences

∼130

Table 2 | Packages, their purposes and origins, that are necessary for the

pipeline.

Packages Purposes Origin Version

Mne Analysing MEG data Anaconda 0.15

Numpy Easing numerical operations Anaconda 1.9.2

Os Interacting with operating system Anaconda From python

2.7.11

Matplotlib Enabling MATLAB-like plotting Anaconda 1.4.3

Scipy Getting statistical functions and

distributions

Anaconda 0.15.1

Mayavi Plotting 3D-plots Anaconda 4.4.0

convenience functions that load the right data, process it and
finally save it so it can be loaded for the next processing step.

Structure of pipeline.py
This is the main script, which is used to designate which
operations should be run on the MEG data. The pipeline script
is ordered into five blocks of code: Imports (Code Snippet 1),
Paths (Code Snippet 2), Operations (Code Snippet 3), Parameters
(Code Snippet 4), and the Processing Loop. It can be found one
directory up from <script_path> (Code Snippet 1).

Imports
This sets the home folder <home_path>, which should to
be changed to the user’s home folder and imports necessary
packages. Also make sure that the path to the scripts
<script_path> points to the appropriate path where the below
scripts can be found (Code Snippet 1). Finally also set the project
name <project_name> to the folder where your analysis is
stored.

#===

SET HOME PATH

#%%===

home_path = '/home/lau/'## change this according to needs

#===

IMPORTS

#%%===

from os.path import join

from os import chdir

project_name = 'analyses/omission_frontiers_BIDS-MNE-Python/'

script_path = join(home_path, project_name, 'scripts', 'python',

'analysis_functions_frontiers')

chdir(script_path)

import operations_functions as operations

import io_functions as io

import plot_functions as plot

Code Snippet 3 | Importing packages necessary for the pipeline.

Input/output—io_functions.py
The file io_functions.py is a set of functions that loads and saves
operational steps with a consistent naming structure. These need
not be called from pipeline.py, since everything is taken care of in
the appropriate operations (Code Snippet 3).

Operations—operations_functions.py
The file operations_functions.py is a set of functions that uses
MNE-Python functions to apply the actual operations that are set
with the pipeline script. These are set by the operations dictionary
([operations_to_apply], (Code Snippet 3))

Plotting—plot_functions.py
The file plot_functions.py is a set of convenience functions
used for making a subset of possible plots. If [save_plots]
is set to <True>, whatever is plotted will be saved in
the given subject’s figure directory (see [figures_path]).
Since there are many variations on what plots one might
want to create, I have included only very general plot
functions that users can modify according to their own
needs.

Paths
This sets the paths according to the structure of the downloadable
data. <subjects_to_run> can be set to only a subset of the
subjects (Code Snippet 2).

#===

PATHS

#%%===

data_path = join(home_path, project_name, 'data/')

subjects_dir = join(home_path, project_name, 'data/FreeSurfer/')

name = 'oddball_absence'

save_dir_averages = data_path + 'grand_averages/'

figures_path = join(home_path, project_name, 'figures/')

subjects = [

'sub-01',

'sub-02',

'sub-03',

'sub-04',

'sub-05',

'sub-06',

'sub-07',

'sub-08',

'sub-09',

'sub-10',

'sub-11',

'sub-12',

'sub-13',

Frontiers in Neuroscience | www.frontiersin.org 5 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

'sub-14',

'sub-15',

'sub-16',

'sub-17',

'sub-18',

'sub-19',

'sub-20'

]

subjects_to_run = (None, None) ## means all subjects

#subjects_to_run = (0, 1)# subject indices to run, if you don't want to run all

Code Snippet 2 | Setting up the paths for structuring the data.

Operations
The operations block contains a dictionary with all the
operations you can apply to the downloadable data. All values
should be Boolean, meaning that they should be set to either
True (1) or False (0). The appropriate operations for all values
set to True will be applied to all subjects. The keys, e.g.,
“filter_raw,” correspond one-to-one in name with functions in
operations_functions imported above (Code Snippet 1), except
for keys that start with “plot_.” They correspond one-to-one with
functions in plot_functions (Code Snippet 1). Make sure to run
“populate_data_directory” before all the others. This will create
all the necessary paths for the current analysis (Code Snippet
3). The operations are arranged in the order that they are most
naturally performed, but since the output from each step is saved,
one can jump into the analysis at any given point after a given step
has been completed, if one wants to change some parameters. As
an example of calculating the grand averages of the evoked fields
and subsequently plotting the grand averages, the following keys
need to be set to 1 (True): populate_data_directory; filter_raw;
find_events; epoch_raw; run_ica; apply_ica; get_evokeds;

grand_average_evokeds; plot_grand_average_evokeds or
plot_grand_average_evokeds_butterfly. Which functions are
run by setting these keys will be shown below (Code Snippets
5–10 and 23). Another example is for running the MRI
preprocessing necessary for creating a forward model. For this,
the following keys need to be set to 1 (True): import_mri;

segment_mri; apply_watershed; make_source_space;

make_bem_solutions; create_forward_solution (Code Snippets
12–15 and 17–18). [In between a semi-manual transformation
(Figure 6) bringing the MEG and MRI data into the same
coordinate needs to be done, which can be made more precise
usingmake_dense_scalp_surfaces (Code Snippet 16)].

#==

OPERATIONS

#%%===

operations_to_apply = dict(

OS commands

populate_data_directory=0,

WITHIN SUBJECT

sensor space operations

filter_raw=0,

find_events=0,

epoch_raw=0,

run_ica=0,

apply_ica=0,

get_evokeds=0,

source space operations

import_mri=0,

segment_mri=0, # long process (>6 h)

apply_watershed=0,

make_source_space=0,

make_dense_scalp_surfaces=0,

make_bem_solutions=0,

create_forward_solution=0,

estimate_noise_covariance=0,

create_inverse_operator=0,

source_estimate=0,

morph_to_fsaverage=0,

BETWEEN SUBJECTS

compute grand averages

grand_averages_evokeds=0, # sensor space

average_morphed_data=0, # source space

PLOTTING

plotting sensor space (within subject)

plot_maxfiltered=0,

plot_filtered=0,

plot_power_spectra=0,

plot_ica=0,

plot_epochs_image=0,

plot_evokeds=0,

plot_butterfly_evokeds=0,

plotting source space (within subject)

plot_transformation=0,

plot_source_space=0,

plot_noise_covariance=0,

plot_source_estimates=0,

plotting sensor space (between subjects)

plot_grand_averages_evokeds=0,

plot_grand_averages_butterfly_evokeds=0,

plotting source space (between subjects)

plot_grand_averages_source_estimates=0,

statistics in source space

statistics_source_space=0,

plot source space with statistics mask

plot_grand_averages_source_estimates_cluster_masked=0

)

Code Snippet 3 | Dictionary of operations that can be applied to the data. The

value associated with each key (e.g., “filter_raw”) is a boolean, i.e., either True (1)

or False (0).

Parameters
The variables here (Code Snippet 4) go into the functions as
parameters that the comments above them associate them with,
e.g., <lowpass> goes as a parameter into filter_raw (Code
Snippet 5). Preset is a number of bad channels. <overwrite>,
allows for making sure that overwriting is only done when

Frontiers in Neuroscience | www.frontiersin.org 6 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

explicitly requested, while <save_plots> determines whether
plots are saved.

#===

PARAMETERS

#%%==

should files be overwritten

overwrite = True ## this counts for all operations below that save output

save_plots = True ## should plots be saved

raw

lowpass = 70 ## Hz

bad_channels_dict = dict()

bad_channels_dict[subjects[0]] = []

bad_channels_dict[subjects[1]] = []

bad_channels_dict[subjects[2]] = []

bad_channels_dict[subjects[3]] = []

bad_channels_dict[subjects[4]] = []

bad_channels_dict[subjects[5]] = []

bad_channels_dict[subjects[6]] = ['MEG0111', 'MEG0121']

bad_channels_dict[subjects[7]] = ['MEG1411', 'MEG1421', 'MEG2121']

bad_channels_dict[subjects[8]] = ['MEG1531', 'MEG1541', 'MEG1711',

'MEG0141']

bad_channels_dict[subjects[9]] = []

bad_channels_dict[subjects[10]] = []

bad_channels_dict[subjects[11]] = []

bad_channels_dict[subjects[12]] = ['MEG0111', 'MEG0121']

bad_channels_dict[subjects[13]] = ['MEG0111', 'MEG0121', 'MEG0141']

bad_channels_dict[subjects[14]] = []

bad_channels_dict[subjects[15]] = []

bad_channels_dict[subjects[16]] = ['MEG0111', 'MEG0121']

bad_channels_dict[subjects[17]] = []

bad_channels_dict[subjects[18]] = []

bad_channels_dict[subjects[19]] = []

events

adjust_timeline_by_msec = 41 ## delay to stimulus

epochs

stim_channel = 'STI101'

min_duration = 0.002 # s

event_id = dict(standard_1=1, standard_2=2,

standard_3=3, standard_4=4, standard_5=5,

omission_4=13, omission_5=14, omission_6=15,

non_stimulation=21)

tmin = -0.200 # s

tmax = 1.000 # s

baseline = (None, 0) # from tmin to 0

reject = dict(grad=400e-12, mag=4e-12) # T/cm and T

decim = 1 ## downsampling factor

source reconstruction

method = 'dSPM'

grand averages

empty containers to the put the single subjects data in

evoked_data_all = dict(standard_1=[], standard_2=[], standard_3=[],

standard_4=[], standard_5=[], omission_4=[],

omission_5=[], omission_6=[], non_stimulation=[])

morphed_data_all = evoked_data_all.copy()

plotting

mne_evoked_time = 0.056 ## s

statistics

independent_variable_1 = 'standard_3'

independent_variable_2 = 'non_stimulation'

time_window = (0.050, 0.060)

n_permutations = 10000 ## specify as integer

statistics plotting

p_threshold = 1e-15 ## 1e-15 is the smallest it can get for the way it is coded

freesurfer and MNE-C commands

n_jobs_freesurfer = 32 ## change according to amount of processors you have

available

source_space_method = ['ico', 5] ## supply a method and a spacing/grade

see mne_setup_source_space --help in bash

methods 'spacing', 'ico', 'oct'

Code Snippet 4 | Parameters that need to be set for the operations applied.

Applying the Operations
To reiterate: all functions mentioned below come from the
script: operations_functions.py. They are dependent on the
input/output-functions from io_functions.py that are always
called from operations_functions.py. Which processing steps are
run depend on what dictionary keys in <operations_to_apply>
in pipeline.py are set to True. The user only needs to
change pipeline.py to apply the functions described herein. The
functions operations_functions.py and io_functions.py should not
be changed, but more functions can be added for needs not
covered in this protocol.

Preprocessing the MEG Data

Dependencies
This part is only dependent on MNE-Python. All data plotted for
single subjects is from subject sub-01.

MaxFilter
Since the MaxFilter software is proprietary software we do not
expect everyone to have access to it, and thus the MaxFiltered
data will be the starting point of the analysis from the MEG
side.

Read MaxFiltered data and low-pass filter
Use filter_raw (Code Snippet 5) to read in the data and
low-pass filter it according to [lowpass]. Three parameters,
[name, save_dir, overwrite] occur for the first time here
and are set by the corresponding variables <name, save_dir,
overwrite> in pipeline.py. They determine the prepending name
(oddball_absence) of the file to be saved, the path to which it
should be saved, and finally whether it should be overwritten
or not (True/False). Both the MaxFiltered and the low-pass
filtered data can be plotted. This is done, respectively, with
plot_maxfiltered and plot_filtered. The power spectra for the
raw data can be plotted with plot_power_spectra. The effect of
applying a low-pass filter is that it attenuates the contribution
of frequencies above that cut-off while mostly preserving the
contribution of frequencies below that cut-off. Since evoked
responses are normally below frequencies of 30Hz, the setting
of the low-pass filter to 70Hz should increase the signal-to-
noise ratio by removing noise sources oscillating at frequencies
>70Hz. Signal-to-noise ratio might be improved even further

Frontiers in Neuroscience | www.frontiersin.org 7 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

by lowering the low-pass filter. This is left as an exercise to the
user.

def filter_raw(name, save_dir, lowpass, overwrite):

filter_name = name + filter_string(lowpass) + '-raw.fif'

filter_path = join(save_dir, filter_name)

if overwrite or not isfile(filter_path):

raw = io.read_maxfiltered(name, save_dir)

raw.filter(None, lowpass)

filter_name = name + filter_string(lowpass) + '-raw.fif'

filter_path = join(save_dir, filter_name)

raw.save(filter_path, overwrite=True)

else:

print('raw file: ' + filter_path + ' already exists')

Code Snippet 5 | The function for filtering the raw data.

Find events of interest and adjust timeline
Use find_events (Code Snippet 6) to find the events in the low-
pass filtered data file and to adjust the events by the delay
between the trigger and the actual event (the blowing up of
the membrane). [stim_channel] and [min_duration] are used
to set the stimulus channel and the minimum duration of an
event in seconds, which are also their normal behaviours in
MNE-Python. Events shorter than that are regarded as spurious
and not included. [adjust_timeline_by_msec] is adjusting the
events by the measured delay between the trigger value in the
MEG recording and the actual blowing up of the membrane
(41ms).

def find_events(name, save_dir, stim_channel, min_duration,

adjust_timeline_by_msec, lowpass, overwrite):

events_name = name + '-eve.fif'

events_path = join(save_dir, events_name)

if overwrite or not isfile(events_path):

raw = io.read_filtered(name, save_dir, lowpass)

events = mne.find_events(raw, stim_channel, min_duration=min_duration)

events[:, 0] = [ts + np.round(adjust_timeline_by_msec ∗ 10∗∗-3 ∗ \

raw.info['sfreq']) for ts in events[:, 0]]

mne.event.write_events(events_path, events)

else:

print('event file: '+ events_path + ' already exists')

Code Snippet 6 | The function for finding the events in the raw files. This function

also adjusts the timeline for the events for the delay between the trigger and the

actual event.

Epoch the raw data files
The parameters [event_id, tmin, tmax, baseline, reject,
bad_channels, decim] all serve their normal purposes in MNE-
Python. The [event_id] parameter is a dictionary indicating
the names used for each event. In the code, this follows
the naming in Table 1. The [tmin] and [tmax] parameters
together define the time range (in seconds) around the triggers
that make up each epoch, here chosen to be −0.200 and
1.000 s. After 1.000 s, one rarely sees evoked components, but
this depends on one’s paradigm. One should always check

whether activity seems to return to baseline. In this case
it does (Figures 4, 9). The [baseline] parameter indicates
which part of the epoch, if any, should be used as a baseline.
This demeans the whole epoch by the average magnetic field
measured in the baseline time range. Here, the pre-stimulus
time range, −0.200 to 0.000 s, is used, amounting to the
assumption that there is no evoked activity of interest before
the stimulation. This removes the offset response from each
sensor and makes the evoked response amplitudes quantifiable
relative to the pre-stimulus time range. It also removes the
unwanted effects of slow drifts in the data (Gross et al., 2013),
potentially leading to different offsets for each epoch. The
[reject] parameter allows for automatically rejecting epochs
where a given threshold value is exceeded, here chosen to be
4 pT for magnetometers and 400 pT/cm for gradiometers.
These values are rejected since they are so high that they
are not likely to arise due to neuronal activity. A list of
subject-specific bad channels is passed to epochs_raw (Code
Snippet 7) by [bad_channels], which have been filled in in
<bad_channels_dict>. These have been assessed to contain very
noisy data. When rejecting trials based on threshold values, it is
always recommended to assess whether the rejection is due to
a few bad channels. If this is so, it is advisable to just mark the
relevant channel(s) as bad instead. For faster processing of the
pipeline [decim] can be set to a higher value to downsample the
data.

def epoch_raw(name, save_dir, lowpass, event_id, tmin, tmax,

baseline, reject, bad_channels, decim, overwrite):

epochs_name = name + filter_string(lowpass) + '-epo.fif'

epochs_path = join(save_dir, epochs_name)

if overwrite or not isfile(epochs_path):

events = io.read_events(name, save_dir)

raw = io.read_filtered(name, save_dir, lowpass,)

raw.info['bads'] = bad_channels

picks = mne.pick_types(raw.info, meg=True, eog=True, ecg=True,

exclude='bads')

epochs = mne.Epochs(raw, events, event_id, tmin, tmax, baseline,

reject=reject, preload=True, picks=picks,

decim=decim)

epochs.save(epochs_path)

else:

print('epochs file: '+ epochs_path + ' already exists')

Code Snippet 7 | The function for epoching the raw data, defining events, time

before trigger, time after trigger, what to use as the baselining period, rejection

threshold, which channels are bad and by which factor to decimate (downsample)

the data.

Run independent component analysis (ICA)
Use run_ica to estimate the independent components that
explain the data the best, using the “fastica” algorithm
(Hyvärinen, 1999). Epochs are then created that contain the
electrooculographic- and electrocardiographic-related signals
(eye blinks and heart beats). Next step is finding the indices for
the components that correlate with eye blinks and heart beats.
For the eye blinks this was done with Pearson correlation and

Frontiers in Neuroscience | www.frontiersin.org 8 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

FIGURE 3 | ICA components corresponding to eye blinks (ICA 000 and ICA 0001) and heart beats (ICA 028).

for the heart beats this was done with the default method in
MNE-Python, namely cross-trial phase statistics (Dammers et al.,
2008). Finally, these components are removed from the ICA-
solution, and the solution is saved. The removed components
can be plotted with plot_ica (Figure 3). A particular issue that
may arise when using ICA is that some components, say the
heart beat component, may not be identifiable in all subjects.
This would mean that it would not be possible to process all
subjects in the same manner. There may be several reasons
for this, e.g., the heart beat signal being only very weakly
represented in the MEG data, as may happen for subjects where
the distance between the heart and the head is great, i.e., tall
subjects, or it may simply be that the recording is too noisy to
faithfully record the electrocardiogram. The problem of having
differently processed subjects is greatest in between-group studies
where having different signal-to-noise ratios between groups
may bias results. In within-group studies, the problem is thus
less severe, since the decreased signal-to-noise ratio will apply
to all conditions the given subject participated in, if ICA is
run on all conditions collapsed, as is the case here. Alternative
strategies for eye blinks and eye movements is to manually or
automatically reject trials that contain eye blinks or excessive
eye movements. To automatically reject trials that contain eye
blinks or eye movements, one can add a key to the dictionary
<reject> (Code Snippet 4) containing a threshold value for
rejecting trials based on the electrooculogram. The process used
here for ICA depends on automatic selection of components.
These components should always be plotted to ascertain that
they make sense, which can be done with plot_ica. As artefact
rejection always requires some subjective assessment, it is always
useful to describe in some detail how these assessments were
made. Following the suggestions for good practice by Gross
et al. (2013) one should describe the ICA algorithm (fastica:
Code Snippet 8), the input data to the algorithm (the epoched
data: Code Snippet 8), the number of components estimated
(sufficient number to explain at least 95% of the variance:
Code Snippet 8), the number of components removed (three
components: Figure 3) and the criteria for removing them
(the aforementioned cross-trial phase statistics and Pearson
correlation for heart beats and eye blinks respectively, which

may be changed in ica.find_bads_eog and ica.find_bads_ecg:
Code Snippet 8). It should also be mentioned that one can
use subjective assessment of whether components are likely
to be related to eye blinks or heart beats (Andersen, this
issue).

def run_ica(name, save_dir, lowpass, overwrite):

ica_name = name + filter_string(lowpass) + '-ica.fif'

ica_path = join(save_dir, ica_name)

if overwrite or not isfile(ica_path):

raw = io.read_filtered(name, save_dir, lowpass)

epochs = io.read_epochs(name, save_dir, lowpass)

ica = mne.preprocessing.ICA(n_components=0.95, method='fastica')

ica.fit(epochs)

eog_epochs = mne.preprocessing.create_eog_epochs(raw)

ecg_epochs = mne.preprocessing.create_ecg_epochs(raw)

eog_indices, eog_scores = ica.find_bads_eog(eog_epochs)

ecg_indices, ecg_scores = ica.find_bads_ecg(ecg_epochs)

ica.exclude += eog_indices

ica.exclude += ecg_indices

ica.save(ica_path)

else:

print('ica file: '+ ica_path + ' already exists')

Code Snippet 8 | The function for finding the independent components that

most likely correspond to eye blinks, eye movements and heart beats.

Zero out eye- and heart-related components in the epoched
data
Use apply_ica (Code Snippet 9) to zero out the components
identified above to clean the data of eye- and heart-related
activity.

def apply_ica(name, save_dir, lowpass, overwrite):

ica_epochs_name = name + filter_string(lowpass) + '-ica-epo.fif'

ica_epochs_path = join(save_dir, ica_epochs_name)

Frontiers in Neuroscience | www.frontiersin.org 9 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

if overwrite or not isfile(ica_epochs_path):

epochs = io.read_epochs(name, save_dir, lowpass)

ica = io.read_ica(name, save_dir, lowpass)

ica_epochs = ica.apply(epochs)

ica_epochs.save(ica_epochs_path)

else:

print('ica epochs file: '+ ica_epochs_path +' already exists')

Code Snippet 9 | The function for removing the eye blink, eye movement and

heart beat components from the epoched data.

Event-related fields after relevant components have been
removed
Finally, the event-related fields are found for all the events
of interest by looping through <epochs.event_id> and
an averaged response is created for each event by calling
get_evokeds (Code Snippet 10). The cleaned epochs
can be plotted with plot_epochs_image (Figure 4). The
event-related fields can be plotted with plot_evokeds and
plot_butterfly_evokeds.

def get_evokeds(name, save_dir, lowpass, overwrite):

evokeds_name = name + filter_string(lowpass) + '-ave.fif'

evokeds_path = join(save_dir, evokeds_name)

if overwrite or not isfile(evokeds_path):

epochs = io.read_ica_epochs(name, save_dir, lowpass)

evokeds = []

for trial_type in epochs.event_id:

evokeds.append(epochs[trial_type].average())

mne.evoked.write_evokeds(evokeds_path, evokeds)

else:

print('evokeds file: '+ evokeds_path + ' already exists')

Code Snippet 10 | The function for calculating the evoked responses based on

the ICA-cleaned epochs.

Summary
This part of the code covered filtering of the data, finding events
of interest, epoching of the data, estimating independent
components, removing the eye- and heart-beat-related
components and finally averaging the cleaned data. Expected
evoked response can be seen after about 60 and 135ms
(Figure 4). The averages will be used for the subsequent source
reconstruction of the data. To this end we need to preprocess the
MRI data as well.

Preprocessing the MRI Data

Dependencies
The python functions required for preprocessing the MRI
data require FreeSurfer http://freesurfer.net/ and MNE-C
http://martinos.org/mne. Both run exclusively on Linux and
Mac platforms using the Bash language https://www.gnu.
org/software/bash/. The plotting functions are based on

FIGURE 4 | Epochs and event-related field for channel MEG 1812 for condition standard 3. The colouring indicates the field strength for each epoch. Two evoked

responses can be seen after about 60 and 135ms respectively.

Frontiers in Neuroscience | www.frontiersin.org 10 January 2018 | Volume 12 | Article 6

http://freesurfer.net/
http://martinos.org/mne
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

MNE-Python. The function for creating high-resolution scalp
surfaces also requires MATLAB. This is not strictly necessary
for completing the source analysis, but is included since
it aids in aligning the MEG and MRI coordinate systems.
Due to concerns about subject anonymity, the original MRI
data are not provided. The “bem” folder for each subject in
<subjects_dir> is provided though, as this information is judged
non-sensitive. The python functions, import_mri, segment_mri

and apply_watershed (Code Snippets 12–14) can thus not be
applied to the data, but they are included such that users can these
in their own experiments. They cover reading in dicom files,
segmenting the brain and delineating the surface between brain,
skull and skin. The functions below (Code Snippets 12–17)
all use the local function run_process_and_write_output

to call the commands in Bash and print the output
of the operations in the Python console (Code
Snippet 11).

def run_process_and_write_output(command, subjects_dir):

environment = environ.copy()

environment["SUBJECTS_DIR"] = subjects_dir

process = subprocess.Popen(command, stdout=subprocess.PIPE,

env=environment)

write bash output in python console

for c in iter(lambda: process.stdout.read(1), ''):

sys.stdout.write(c)

Code Snippet 11 | The local function used for calling Bash commands, setting

the subjects_dir, and printing the outputs of the Bash commands in the Python

console.

Read in dicom files
Use Code Snippet 12 to read in the MR1s. This creates a subject
folder in the SUBJECTS_DIR directory required by FreeSurfer.

def import_mri(dicom_path, subject, subjects_dir, n_jobs_freesurfer):

files = listdir(dicom_path)

first_file = files[0]

check if import has already been done

if not isdir(join(subjects_dir, subject)):

run bash command

print 'Importing MRI data for subject: ' + subject + \

' into FreeSurfer folder.\nBash output follows below.\n\n'

command = ['recon-all',

'-subjid', subject,

'-i', join(dicom_path, first_file),

'-openmp', str(n_jobs_freesurfer)]

run_process_and_write_output(command, subjects_dir)

else:

print('FreeSurfer folder for: ' + subject + ' already exists.' + \

' To import data from the beginning, you would have to ' + \

"delete this subject’s FreeSurfer folder")

Code Snippet 12 | Code for importing the dicom files into the FreeSurfer folder,

which FreeSurfer requires.

Segment the MRI
Use Code Snippet 13 to do the full segmentation of the brain into
its constituent parts using FreeSurfer. [openmp] sets the number
of processors that FreeSurfer will use. This is a very lengthy
process and takes between ∼6–24 h for each subject depending
on processing power.

def segment_mri(subject, subjects_dir, n_jobs_freesurfer):

print 'Segmenting MRI data for subject: ' + subject + \

' using the Freesurfer ``recon-all'' pipeline.' + \

'Bash output follows below.\n\n'

command = ['recon-all',

'-subjid', subject,

'-all',

'-openmp', str(n_jobs_freesurfer)]

run_process_and_write_output(command, subjects_dir)

Code Snippet 13 | Code for doing a full FreeSurfer segmentation (a very lengthy

process).

Create boundaries with the Boundary Element Method
(BEM) using the watershed algorithm
Use Code Snippet 14 to create surfaces for the inner skull, the
outer skin, the outer skull and the brain surface with an MNE-C
command, which uses FreeSurfer code. Copies of the watershed
files are created in the bem-folder for each subject since this is
where MNE-C expects to find them.

def apply_watershed(subject, subjects_dir, overwrite):

print 'Running Watershed algorithm for: ' + subject + \

". Output is written to the bem folder" + \

"of the subject's FreeSurfer folder" + \

'Bash output follows below.\n\n'

if overwrite:

overwrite_string = '--overwrite'

else:

overwrite_string = ''

watershed command

command = ['mne_watershed_bem',

'--subject', subject,

overwrite_string]

run_process_and_write_output(command, subjects_dir)

copy commands

surfaces = dict(

inner_skull=dict(

origin=subject + '_inner_skull_surface',

destination='inner_skull.surf'),

outer_skin=dict(origin=subject + '_outer_skin_surface',

destination='outer_skin.surf'),

outer_skull=dict(origin=subject + '_outer_skull_surface',

destination='outer_skull.surf'),

brain=dict(origin=subject + '_brain_surface',

destination='brain_surface.surf')

)

for surface in surfaces:

this_surface = surfaces[surface]

copy files from watershed into bem folder where MNE expects to

find them

command = ['cp', '-v',

join(subjects_dir, subject, 'bem', 'watershed',

this_surface['origin']),

join(subjects_dir, subject, 'bem',

this_surface['destination'])

]

run_process_and_write_output(command, subjects_dir)

Code Snippet 14 | Code for creating the boundary elements necessary for

defining the volume conductor.

Frontiers in Neuroscience | www.frontiersin.org 11 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

Make source spaces
Use Code Snippet 15 to create a source space that is restricted
to the cortex with ∼10,000 sources modelled per hemisphere as
equivalent current dipoles normal to the cortical surface.

def make_source_space(subject, subjects_dir, source_space_method, overwrite):

print 'Making source space for ' + \

'subject: ' + subject + \

". Output is written to the bem folder" + \

" of the subject's FreeSurfer folder.\n" + \

'Bash output follows below.\n\n'

if overwrite:

overwrite_string = '--overwrite'

else:

overwrite_string = ''

command = ['mne_setup_source_space',

'--subject', subject,

'--' + source_space_method[0], str(source_space_method[1]),

overwrite_string

]

run_process_and_write_output(command, subjects_dir)

Code Snippet 15 | Code for making the source space.

The source space can be plotted with plot_source_space

(Figure 5).

Make scalp surfaces
Use Code Snippet 16 to make high-resolution scalp surfaces for
each subject. This eases the co-registration since it makes it easier
to identify the fiducials, nasion and left and right pre-auricular
points. The MNE-C code here is dependent on MATLAB, but
the high-resolution scalp surfaces are not strictly necessary for
the completing the analysis. Their purpose is to ease the co-
registration of the MEG and MRI data.

def make_dense_scalp_surfaces(subject, subjects_dir, overwrite):

print 'Making dense scalp surfacing easing co-registration for ' + \

'subject: ' + subject + \

". Output is written to the bem folder" + \

" of the subject's FreeSurfer folder.\n" + \

'Bash output follows below.\n\n'

if overwrite:

overwrite_string = '--overwrite'

else:

overwrite_string = ''

command = ['mne_make_scalp_surfaces',

'--subject', subject,

overwrite_string]

run_process_and_write_output(command, subjects_dir)

Code Snippet 16 | Code for making high-resolution scalp surfaces.

Create solutions for the BEMs
Use Code Snippet 17 to create a volume conductor model
describing how the magnetic fields spread throughout the

FIGURE 5 | Source space. Sources are restricted to the cortex. Yellow dots

mark equivalent current dipoles on the cortical surface.

conductor (the head). [homog] makes a single-compartment
model (sensible for MEG). [surf] instructs MNE-C to use the
surfaces created with the watershed algorithm. [ico] determines
the downsampling of the surface. [ico, 4] results in ∼10,000
sources for the two hemispheres.

def make_bem_solutions(subject, subjects_dir):

print 'Writing volume conductor for ' + \

'subject: ' + subject + \

". Output is written to the bem folder" + \

" of the subject's FreeSurfer folder.\n" + \

'Bash output follows below.\n\n'

command = ['mne_setup_forward_model',

'--subject', subject,

'--homog',

'--surf',

'--ico', '4'

]

run_process_and_write_output(command, subjects_dir)

Code Snippet 17 | Code for making the BEM-solutions, that is the volume

conductor.

Frontiers in Neuroscience | www.frontiersin.org 12 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

Source Reconstruction of Time Courses

Co-registration
Call the function mne.gui.coregistration directly from a
Python environment to co-register the MEG data to the
MRI data. Fiducials used are the nasion and the left and
right pre-auricular points. The scalp surfaces made above
should make it easier to identify these fiducials. When these
have been set, load a file that has the extra head shape
digitization points and lock the fiducials. Then fit the head
shape, and if the fit looks good save the transformation
file as “oddball_absence_dense-trans.fif” in the same folder
where all other MEG data files are saved. The resulting
transformation can be plotted with plot_transformation

(Figure 6). Note that a transformation with this name has
already been supplied, such that the analysis can be replicated
faithfully.

Create forward model
Use create_forward_solution (Code Snippet 18) to create the
forward model for the source reconstructions. This contains the
source space, the volume conductor model, the transformation
between the MEG and MRI coordinate systems and information
about the channels in the data. The forward model is linking the
source model (where sources are and how sources are oriented)
to the sensors in the recording system. The volume conductor
models how the magnetic field spreads from the sources, here we
modelled them as spreading homogeneously (Code Snippet 17),
to the sensors, whose positions are stored in the information field
of the raw data. The co-registration is necessary to make sure that
the MRI data and the MEG sensors are in the same coordinate
space. In physical units, the forwardmodel contains the magnetic
field/gradient estimates for each sensor for each source given a
unit-activation of the source (1 nAm).

def create_forward_solution(name, save_dir, subject, subjects_dir,

overwrite):

forward_name = name + '-fwd.fif'

forward_path = join(save_dir, forward_name)

if overwrite or not isfile(forward_path):

info = io.read_info(name, save_dir)

trans = io.read_transformation(name, save_dir)

bem = io.read_bem_solution(subject, subjects_dir)

source_space = io.read_source_space(subject, subjects_dir)

forward = mne.make_forward_solution(info, trans, source_space, bem,

n_jobs=1)

forward = mne.convert_forward_solution(forward, surf_ori=True)

mne.write_forward_solution(forward_path, forward, overwrite)

else:

print('forward solution: ' + forward_path + ' already exists')

Code Snippet 18 | Function for creating the forward solution (also known as the

lead field). This is created from the BEM-solution (the volume conductor), the

channel info about the sensor positions, the coordinate transformation between

the MEG and the MRI data and the source space defining where sources are.

FIGURE 6 | Transformation. The positions of the head, skull, brain, and helmet

sensors after the transformation.

Estimate noise covariance
Use estimate_noise_covariance (Code Snippet 19) to estimate
the noise covariance and regularize it. The noise covariance
serves as an estimate of the noise in the data, which is
necessary for MNE-like solutions. Regularization is done
since the smallest eigenvalues of the noise covariance matrix
might be inaccurate, thus giving rise to errors in the
source estimates. The noise covariance matrix can be plotted
with plot_noise_covariance (Figure 7). To investigate more
thoroughly whether regularization is necessary, one can set the
parameter [method] inmne.compute.covariance to “auto” to test
which of several ways of estimating the covariance is optimal
(Engemann and Gramfort, 2015). This is a lengthy process
though (>12 h) on a modern computer, but will give estimates,
among other things, on whether regularization would improve
the estimate of the noise in the data. It is possible though just
to compare whether or not regularization should be applied to
the noise covariance matrix estimated by using the trials, by just
comparing the “diagonal_fixed” and “empirical” methods using
mne.compute.covariance, which is much faster (on the scale of
minutes), This also allows for comparing different degrees of
regularization. Including the regularization done here allowed for
better noise covariance matrices for all subjects when compared
to not including regularization, according to the approach of
Engemann and Gramfort (2015).

def estimate_noise_covariance(name, save_dir, lowpass, overwrite):

covariance_name = name + filter_string(lowpass) + '-cov.fif'

covariance_path = join(save_dir, covariance_name)

if overwrite or not isfile(covariance_path):

epochs = io.read_epochs(name, save_dir, lowpass)

Frontiers in Neuroscience | www.frontiersin.org 13 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

noise_covariance = mne.compute_covariance(epochs, n_jobs=1)

noise_covariance = mne.cov.regularize(noise_covariance,

epochs.info)

mne.cov.write_cov(covariance_path, noise_covariance)

else:

print('noise covariance file: '+ covariance_path + \

' already exists')

Code Snippet 19 | Function for estimating the noise covariance in the MEG data.

Create the inverse operator
The final step before estimating source activity is to create
an inverse operator, which contains the info about the MEG-
recordings, the estimated noise, the source reconstruction
method used and the forward model. This is done with
create_inverse_operator (Code Snippet 20).

def create_inverse_operator(name, save_dir, lowpass, overwrite):

inverse_operator_name = name + filter_string(lowpass) + '-inv.fif'

inverse_operator_path = join(save_dir, inverse_operator_name)

if overwrite or not isfile(inverse_operator_path):

info = io.read_info(name, save_dir)

noise_covariance = io.read_noise_covariance(name, save_dir, lowpass)

forward = io.read_forward(name, save_dir)

inverse_operator = mne.minimum_norm.make_inverse_operator(

info, forward, noise_covariance)

mne.minimum_norm.write_inverse_operator(inverse_operator_path,

inverse_operator)

else:

print('inverse operator file: '+ inverse_operator_path + \

' already exists')

Code Snippet 20 | Function for creating the inverse operator that defines what

inverse solution should be applied.

Estimating the source time courses
Finally, we estimate the source time courses. [method] is set in
the parameter selection. dSPM is a depth-weighted minimum
source estimate (Dale et al., 2000),MNE is the classical algorithm
described by Hämäläinen and Ilmoniemi (1994) and sLORETA
is described by Pascual-Marqui (2002). A source time course
(stc-file) is created for each condition. This is done with
source_estimate (Code Snippet 21). Here, dSPM is chosen as the
[method] parameter since it is known to reduce the bias that
MNE has toward superficial cortical areas.

def source_estimate(name, save_dir, lowpass, method,

overwrite):

inverse_operator = io.read_inverse_operator(name, save_dir, lowpass)

to_reconstruct = io.read_evokeds(name, save_dir, lowpass)

evokeds = io.read_evokeds(name, save_dir, lowpass)

stcs = dict()

for to_reconstruct_index, evoked in enumerate(evokeds):

stc_name = name + filter_string(lowpass) + '_' + evoked.comment + \

'_' + method + '-lh.stc'

stc_path = join(save_dir, stc_name)

if overwrite or not isfile(stc_path):

trial_type = evoked.comment

stcs[trial_type] = mne.minimum_norm.apply_inverse(

to_reconstruct[to_reconstruct_index],

inverse_operator,

method=method)

else:

print('source estimates for: '+ stc_path + \

' already exists')

for stc in stcs:

stc_name = name + filter_string(lowpass) + '_' + stc + '_' + method

stc_path = join(save_dir, stc_name)

if overwrite or not isfile(stc_path + '-lh.stc'):

stcs[stc].save(stc_path)

Code Snippet 21 | Function for doing the actual minimum norm estimate source

reconstruction.

FIGURE 7 | Noise covariance matrices. As can be seen the covariance between magnetometers is greater than between gradiometers. This can be explained by

magnetometers being more sensitive to far away sources than gradiometers are.

Frontiers in Neuroscience | www.frontiersin.org 14 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

FIGURE 8 | Spatial distribution of neural activity at 56ms for standard 3 for

sub-01: There is some spread, but there is a clear activation of the

contralateral sensory cortex. Values are dSPM-values. These are current

estimates normalized with the noise-covariance. The cortex is shown inflated

with gyri darker than sulci.

The spatial source distribution for a given time point
can be plotted with plot_source_estimates (Figure 8).
<mne_evoked_time> in pipeline.py can be set to control
which time point is plotted.

Morph to a common template
Use morph_data_to_fsaverage (Code Snippet 22) to make a
meaningful estimate across subjects, by morphing the data from
each individual subject to a common template brain. In this
case, the fsaverage brain from FreeSurfer is used (This requires
the fsaverage brain to be in $SUBJECTS_DIR). [method] can be
“dSPM,” “MNE,” or “sLORETA.”

def morph_data_to_fsaverage(name, save_dir, subjects_dir, subject,

lowpass, method, overwrite):

stcs = io.read_source_estimates(name, save_dir, lowpass, method)

subject_to = 'fsaverage'

stcs_morph = dict()

for trial_type in stcs:

stc_morph_name = name + filter_string(lowpass) + '_' + \

trial_type + '_' + method + '_morph'

stc_morph_path = join(save_dir, stc_morph_name)

if overwrite or not isfile(stc_morph_path + '-lh.stc'):

stc_from = stcs[trial_type]

stcs_morph[trial_type] = mne.morph_data(subject, subject_to,

stc_from,

subjects_dir=subjects_dir,

n_jobs=-1)

else:

print('morphed source estimates for: '+ stc_morph_path + \

' already exists')

for trial_type in stcs_morph:

stc_morph_name = name + filter_string(lowpass) + '_' + \

trial_type + '_' + method + '_morph'

stc_morph_path = join(save_dir, stc_morph_name)

if overwrite or not isfile(stc_morph_path + '-lh.stc'):

stcs_morph[trial_type].save(stc_morph_path)

Code Snippet 22 | Function for making morph maps that define how individual

subject source reconstructions can be mapped onto a common template that

allows for comparisons between subjects.

Summary
Now we have estimated source time courses for all the individual
subjects. The next step is to meaningfully make a group estimate
across subjects. The activity for our example subject (sub-01)
can be localized to the somatosensory cortex (Figure 8) as was
expected.

Between Subjects Analyses

Dependencies
This part is only dependent on MNE-Python.

Sensor space
With the function grand_average_evokeds (Code
Snippet 23), the grand average in sensor space for
each condition is calculated and saved. Grand averages
can be plotted with plot_grand_averages_evokeds and
plot_grand_averages_butterfly_evokeds (Figure 9). Note
that these may not be easy to interpret since the relative positions
between a given subject’s head and the MEG sensors will differ
from the relative positions between any other subject’s head and
the MEG sensors. The early and the late responses are picked up
however (Figure 9).

def grand_average_evokeds(evoked_data_all, save_dir_averages, lowpass):

grand_averages = dict()

for trial_type in evoked_data_all:

grand_averages[trial_type] = \

mne.evoked.grand_average(evoked_data_all[trial_type])

for trial_type in grand_averages:

grand_average_path = save_dir_averages + \

trial_type + filter_string(lowpass) + \

'_grand_average-ave.fif'

mne.evoked.write_evokeds(grand_average_path,

grand_averages[trial_type])

Code Snippet 23 | Function for calculating grand averages across the evokeds

of individual subjects.

Source space
With the function average_morphed_data (Code Snippet 24),
the grand average in source space over the morphed
source time courses for each condition is calculated and
saved. [method] can be “dSPM,” “MNE,” or “LORETA.”
The grand averages for the source space can be plotted

Frontiers in Neuroscience | www.frontiersin.org 15 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

FIGURE 9 | Grand average butterfly plot for standard 3 showcasing the SI (56ms) and SII (135ms) components.

with plot_grand_averages_source_estimates (Figure 10).
<mne_evoked_time> needs to be set.

def average_morphed_data(morphed_data_all, method, save_dir_averages,

lowpass):

averaged_morphed_data = dict()

n_subjects = len(morphed_data_all['standard_1'])

for trial_type in morphed_data_all:

trial_morphed_data = morphed_data_all[trial_type]

trial_average = trial_morphed_data[0].copy()#get copy of first instance

for trial_index in range(1, n_subjects):

trial_average._data += trial_morphed_data[trial_index].data

trial_average._data /= n_subjects

averaged_morphed_data[trial_type] = trial_average

for trial_type in averaged_morphed_data:

stc_path = save_dir_averages + \

trial_type + filter_string(lowpass) + '_morphed_data_' + method

averaged_morphed_data[trial_type].save(stc_path)

Code Snippet 24 | Function for calculating the grand average across all

individual morphed subject source reconstructions.

Statistical Analyses
This part is only dependent on MNE-Python.

With the function statistics_source_space (Code Snippet 25),
different statistical null hypotheses can be tested.

def statistics_source_space(morphed_data_all, save_dir_averages,

independent_variable_1,

independent_variable_2,

time_window, n_permutations, lowpass, overwrite):

cluster_name = independent_variable_1 + '_vs_' + independent_variable_2 + \

filter_string(lowpass) + '_time_' + \

str(int(time_window[0] ∗ 1e3)) + '-' + \

FIGURE 10 | Spatial distribution of neural activity at 56ms for grand average

of standard 3: There is some spread, but there is a clear activation of the

contralateral sensory cortex. Values are dSPM-values. These are current

estimates normalized with the noise-covariance. The cortex is shown inflated

with gyri darker than sulci.

str(int(time_window[1] ∗ 1e3)) + '_msec.cluster'

cluster_path = join(save_dir_averages, 'statistics', cluster_name)

if overwrite or not isfile(cluster_path):

input_data = dict(iv_1=morphed_data_all[independent_variable_1],

iv_2=morphed_data_all[independent_variable_2])

info_data = morphed_data_all[independent_variable_1]

Frontiers in Neuroscience | www.frontiersin.org 16 January 2018 | Volume 12 | Article 6

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

n_subjects = len(info_data)

n_sources, n_samples = info_data[0].data.shape

get data in the right format

statistics_data_1 = np.zeros((n_subjects, n_sources, n_samples))

statistics_data_2 = np.zeros((n_subjects, n_sources, n_samples))

for subject_index in range(n_subjects):

statistics_data_1[subject_index, :, :] = input_data['iv_1'][subject_index].data

statistics_data_2[subject_index, :, :] = input_data['iv_2'][subject_index].data

print 'processing data from subject: ' + str(subject_index)

crop data on the time dimension

times = info_data[0].times

time_indices = np.logical_and(times >= time_window[0],

times <= time_window[1])

statistics_data_1 = statistics_data_1[:, :, time_indices]

statistics_data_2 = statistics_data_2[:, :, time_indices]

set up cluster analysis

p_threshold = 0.05

t_threshold = stats.distributions.t.ppf(1 - p_threshold / 2, n_subjects - 1)

seed = 7 ## my lucky number

statistics_list = [statistics_data_1, statistics_data_2]

T_obs, clusters, cluster_p_values, H0 = \

mne.stats.permutation_cluster_test(statistics_list,

n_permutations=n_permutations,

threshold=t_threshold,

seed=seed,

n_jobs=-1)

cluster_dict = dict(T_obs=T_obs, clusters=clusters,

cluster_p_values=cluster_p_values, H0=H0)

with open(cluster_path, 'wb') as filename:

pickle.dump(cluster_dict, filename)

print 'finished saving cluster at path: ' + cluster_path

else:

print('cluster permutation: '+ cluster_path + \

'already exists')

Code Snippet 25 | Function for doing cluster statistics in source space.

<independent_variable_1>, <independent_variable_2>,
<time_window> and <n_permutations> should all be set.
With plot_grand_averages_source_estimates_cluster_masked
(Figure 11) the t-masked grand average source estimates can
be plotted. <p_threshold> should be set. This function can be
changed such that any other function in the mne.stats module is
used.

SUMMARY

This protocol allows for all steps of conducting a MEG group
study aiming to provide evidence for a significant effect of
one experimental condition compared to another experimental
condition using Minimum Norm Estimates of MEG data. We
found as expected that stimulation of the finger elicited more
activity in the contralateral somatosensory cortex than when no
such stimulation occurred.

FIGURE 11 | A t-value map for standard 3 vs. non-stimulation at 56ms. The

cortex is shown inflated with gyri darker than sulci.

DISCUSSION

The presented pipeline allows for covering all steps involved
in an MNE-Python pipeline focusing on evoked responses
and the localization of their neural origin. Furthermore, it
also supplies a very flexible framework that users should be
able to extend to meet any further needs that the user may
have. Facilitating other MNE-Python functions not showcased
here across groups of subjects can be attained by emulating
the style of defining functions presented here. If one is
interested in estimating induced responses, one can use the
functions in the mne.time_frequency module. The neural origin
of induced responses are often localized with beamformer
solutions (Gross et al., 2001), which can also be performed
with MNE-Python using the mne.beamformer module. Both
these can be extended by a user with some programming
experience.

The present pipeline is all contained within a single pipeline
script and three function scripts containing the functions
called from the pipeline. Another way of organizing one’s data
is to creating batches using build systems like GNU Make
(https://www.gnu.org/software/make/) (Stallman et al., 2002),
luigi (https://luigi.readthedocs.io/en/stable/), doit (http://pydoit.
org/).

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
approved it for publication.

Frontiers in Neuroscience | www.frontiersin.org 17 January 2018 | Volume 12 | Article 6

https://www.gnu.org/software/make/
https://luigi.readthedocs.io/en/stable/
http://pydoit.org/
http://pydoit.org/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Andersen Group Analysis in MNE-Python

FUNDING

Data for this study was collected at NatMEG (www.natmeg.se),
the National infrastructure for Magnetoencephalography,

Karolinska Institutet, Sweden. The NatMEG facility is supported
by Knut and Alice Wallenberg (KAW2011.0207). The study and
LMA, was funded by Knut and Alice Wallenberg Foundation
(KAW2014.0102).

REFERENCES

Coffey, E. B. J., Herholz, S. C., Chepesiuk, A. M. P., Baillet, S., and Zatorre, R.

J. (2016). Cortical contributions to the auditory frequency-following response

revealed by MEG. Nat. Commun. 7:11070. doi: 10.1038/ncomms11070

Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J.

W., Lewine, J. D., et al. (2000). Dynamic statistical parametric

mapping: combining fMRI and MEG for high-resolution imaging

of cortical activity. Neuron 26, 55–67. doi: 10.1016/S0896-6273(00)

81138-1

Dammers, J., Schiek, M., Boers, F., Silex, C., Zvyagintsev, M., Pietrzyk,

U., et al. (2008). Integration of amplitude and phase statistics for

complete artifact removal in independent components of neuromagnetic

recordings. IEEE Trans. Biomed. Eng. 55, 2353–2362. doi: 10.1109/TBME.2008.

926677

Engemann, D. A., and Gramfort, A. (2015). Automated model selection in

covariance estimation and spatial whitening of MEG and EEG signals.

Neuroimage 108, 328–342. doi: 10.1016/j.neuroimage.2014.12.040

Fardo, F., Auksztulewicz, R., Allen, M., Dietz, M. J., Roepstorff, A., and

Friston, K. J. (2017). Expectation violation and attention to pain jointly

modulate neural gain in somatosensory cortex. Neuroimage 153, 109–121.

doi: 10.1016/j.neuroimage.2017.03.041

Galan, J. G. N., Gorgolewski, K. J., Bock, E., Brooks, T. L., Flandin, G., Gramfort,

A., et al. (2017). MEG-BIDS: an extension to the brain imaging data structure

for magnetoencephalography. bioRxiv 172684. doi: 10.1101/172684

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,

C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front.

Neurosci. 7:267. doi: 10.3389/fnins.2013.00267

Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., et al.

(2013). Good practice for conducting and reportingMEG research.Neuroimage

65, 349–363. doi: 10.1016/j.neuroimage.2012.10.001

Gross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., and

Salmelin, R. (2001). Dynamic imaging of coherent sources: studying neural

interactions in the human brain. Proc. Natl. Acad. Sci. U.S.A. 98, 694–699.

doi: 10.1073/pnas.98.2.694

Halgren, E., Dhond, R. P., Christensen, N., Van Petten, C., Marinkovic, K., Lewine,

J. D., et al. (2002). N400-like magnetoencephalography responses modulated by

semantic context, word frequency, and lexical class in sentences. Neuroimage

17, 1101–1116. doi: 10.1006/nimg.2002.1268

Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V.

(1993). Magnetoencephalography—theory, instrumentation, and applications

to noninvasive studies of the working human brain. Rev. Mod. Phys. 65,

413–497. doi: 10.1103/RevModPhys.65.413

Hämäläinen, M. S., and Ilmoniemi, R. J. (1994). Interpreting magnetic fields

of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32, 35–42.

doi: 10.1007/BF02512476

Hari, R., and Puce, A. (2017).MEG-EEG Primer. New York, NY: Oxford University

Press.

Hari, R., Reinikainen, K., Kaukoranta, E., Hämäläinen, M., Ilmoniemi, R.,

Penttinen, A., et al. (1984). Somatosensory evoked cerebral magnetic fields

from SI and SII in man. Electroencephalogr. Clin. Neurophysiol. 57, 254–263.

doi: 10.1016/0013-4694(84)90126-3

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for

independent component analysis. IEEE Trans. Neural. Netw. 10, 626–634.

doi: 10.1109/72.761722

Junghöfer, M., Rehbein, M. A., Maitzen, J., Schindler, S., and Kissler, J. (2017).

An evil face? Verbal evaluative multi-CS conditioning enhances face-evoked

mid-latency magnetoencephalographic responses. Soc. Cogn. Affect. Neurosci.

12, 695–705. doi: 10.1093/scan/nsw179

Nakamura, A., Yamada, T., Goto, A., Kato, T., Ito, K., Abe, Y., et al. (1998).

Somatosensory homunculus as drawn by MEG. Neuroimage 7, 377–386.

doi: 10.1006/nimg.1998.0332

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic

tomography (sLORETA): technical details.Methods Find. Exp. Clin. Pharmacol.

24(Suppl. D), 5–12.

Pulvermüller, F., Shtyrov, Y., and Ilmoniemi, R. (2003). Spatiotemporal dynamics

of neural language processing: an MEG study using minimum-norm current

estimates. Neuroimage 20, 1020–1025. doi: 10.1016/S1053-8119(03)00356-2

Raghavan, M., Li, Z., Carlson, C., Anderson, C. T., Stout, J., Sabsevitz,

D. S., et al. (2017). MEG language lateralization in partial epilepsy

using dSPM of auditory event-related fields. Epilepsy Behav. 73, 247–255.

doi: 10.1016/j.yebeh.2017.06.002

Raij, T., Ahveninen, J., Lin, F.-H., Witzel, T., Jääskeläinen, I. P., Letham, B., et al.

(2010). Onset timing of cross-sensory activations andmultisensory interactions

in auditory and visual sensory cortices. Eur. J. Neurosci. 31, 1772–1782.

doi: 10.1111/j.1460-9568.2010.07213.x

Stallman, R. M., McGrath, R., and Smith, P. (2002). GNU Make: A Program for

Directed Compilation. Boston, MA: Free Software Foundation.

Taulu, S., and Simola, J. (2006). Spatiotemporal signal space separation method

for rejecting nearby interference in MEG measurements. Phys. Med. Biol. 51,

1759–1768. doi: 10.1088/0031-9155/51/7/008

Conflict of Interest Statement: The author declares that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Andersen. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) or licensor

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 18 January 2018 | Volume 12 | Article 6

www.natmeg.se
https://doi.org/10.1038/ncomms11070
https://doi.org/10.1016/S0896-6273(00)81138-1
https://doi.org/10.1109/TBME.2008.926677
https://doi.org/10.1016/j.neuroimage.2014.12.040
https://doi.org/10.1016/j.neuroimage.2017.03.041
https://doi.org/10.1101/172684
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1073/pnas.98.2.694
https://doi.org/10.1006/nimg.2002.1268
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1007/BF02512476
https://doi.org/10.1016/0013-4694(84)90126-3
https://doi.org/10.1109/72.761722
https://doi.org/10.1093/scan/nsw179
https://doi.org/10.1006/nimg.1998.0332
https://doi.org/10.1016/S1053-8119(03)00356-2
https://doi.org/10.1016/j.yebeh.2017.06.002
https://doi.org/10.1111/j.1460-9568.2010.07213.x
https://doi.org/10.1088/0031-9155/51/7/008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Group Analysis in MNE-Python of Evoked Responses from a Tactile Stimulation Paradigm: A Pipeline for Reproducibility at Every Step of Processing, Going from Individual Sensor Space Representations to an across-Group Source Space Representation
	Introduction
	The Neuroscientific Experiment
	Goal of Analysis
	Subjects
	Paradigm
	Preparation of Subjects
	Acquisition of Data
	Conventions
	Requirements

	Code
	General Structure of the Code
	Structure of pipeline.py
	Imports
	Input/output—io_functions.py
	Operations—operations_functions.py
	Plotting—plot_functions.py
	Paths
	Operations
	Parameters

	Applying the Operations
	Preprocessing the MEG Data
	Dependencies
	MaxFilter
	Read MaxFiltered data and low-pass filter
	Find events of interest and adjust timeline
	Epoch the raw data files
	Run independent component analysis (ICA)
	Zero out eye- and heart-related components in the epoched data
	Event-related fields after relevant components have been removed
	Summary

	Preprocessing the MRI Data
	Dependencies
	Read in dicom files
	Segment the MRI
	Create boundaries with the Boundary Element Method (BEM) using the watershed algorithm
	Make source spaces
	Make scalp surfaces
	Create solutions for the BEMs

	Source Reconstruction of Time Courses
	Co-registration
	Create forward model
	Estimate noise covariance
	Create the inverse operator
	Estimating the source time courses
	Morph to a common template
	Summary

	Between Subjects Analyses
	Dependencies
	Sensor space
	Source space

	Statistical Analyses

	Summary
	Discussion
	Author Contributions
	Funding
	References

