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Auditory spatial localization in humans is performed using a combination of interaural

time differences, interaural level differences, as well as spectral cues provided by the

geometry of the ear. To render spatialized sounds within a virtual reality (VR) headset,

either individualized or generic Head Related Transfer Functions (HRTFs) are usually

employed. The former require arduous calibrations, but enable accurate auditory source

localization, which may lead to a heightened sense of presence within VR. The latter

obviate the need for individualized calibrations, but result in less accurate auditory source

localization. Previous research on auditory source localization in the real world suggests

that our representation of acoustic space is highly plastic. In light of these findings,

we investigated whether auditory source localization could be improved for users of

generic HRTFs via cross-modal learning. The results show that pairing a dynamic auditory

stimulus, with a spatio-temporally aligned visual counterpart, enabled users of generic

HRTFs to improve subsequent auditory source localization. Exposure to the auditory

stimulus alone or to asynchronous audiovisual stimuli did not improve auditory source

localization. These findings have important implications for human perception as well as

the development of VR systems as they indicate that generic HRTFs may be enough to

enable good auditory source localization in VR.

Keywords: virtual reality, HRTF (head related transfer function), spatial audio, auditory perception, auditory

training, cross-modal perception, cross-modal plasticity

INTRODUCTION

How we identify the source of sounds in space is determined largely by three acoustic cues: (a)
interaural time differences (ITD), (b) interaural level differences (ILD), as well as (c) acoustic
filtering i.e., spectral cues derived from the shape of one’s ears, head, and torso (Møller et al.,
1995; Majdak et al., 2014). Together, these cues provide us with a fairly accurate representation
of acoustic space (Sabin et al., 2005). To simulate natural acoustic perception in Virtual Reality
(VR) these auditory spatial cues are usually rendered using Head Related Transfer Functions
(HRTFs), which can either be generic or individualized. The use of HRTFs leads to accurate source
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localization and increased sense of presence within the virtual
environment, when compared to non-spatialized audio (Hendrix
and Barfield, 1996; Bergstrom et al., 2017). Individualized HRTFs
are calibrated on a per user basis, and are therefore better
suited to simulate one’s natural acoustic environment. However,
creating individualized HRTFs can be very time consuming,
technically difficult, and expensive to implement (Meshram
et al., 2014). On the other hand, generic HRTFs can be pre-
calculated which makes it easier to deliver spatialized sound
to any device with head tracking (Gardner and Martin, 1995).
Unimodal comparisons between auditory source localization
of virtually rendered sounds using generic vs. individualized
HRTFs have revealed that the use of generic HRTFs leads
to increased confusion over auditory source location (Wenzel
et al., 1993) and an increase in the magnitude of source
localization errors (Middlebrooks, 1999). Thus, improving the
perceptual experience of generic HRTFs could be enormously
beneficial to remove the current practical barriers associated with
individualized HRTFs.

Research on auditory perception suggests that our
representation of acoustic space is fairly plastic (Fiorentini
and Berardi, 1980; Shinn-cunningham et al., 1998; Seitz and
Watanabe, 2005; Keuroghlian and Knudsen, 2007; Carlile, 2014).
Manipulating acoustic cues by blocking one ear has shown
modest improvements in auditory spatial localization over a
period of 2–7 days (Bauer et al., 1966; Kumpik et al., 2010).
Subsequent research has investigated auditory performance
in response to altered ITDs using generic HRTFs. In these
experiments the researchers found that the participants’ auditory
localization performance improved following a series of training
sessions repeated of 2–6 weeks (Shinn-cunningham et al.,
1998). While these findings demonstrate improved localization
performance following unimodal training, the long exposure
periods required for only limited improvements, make this an
impractical solution to improving the perceptual experience for
casual users of generic HRTFs.

Research on multisensory integration (Witten and Knudsen,
2005; Ghazanfar and Schroeder, 2006; Stein and Stanford,
2008) and multisensory learning (Shams and Seitz, 2008;
Paraskevopoulos et al., 2012; Connolly, 2014) have highlighted
the extent to which visual perception can influence auditory
perception (Howard and Templeton, 1966; Vroomen et al.,
2001; Bonath et al., 2007) and even lead to rapid changes
in one’s acoustic perception (Recanzone, 1998; Lewald, 2002;
Wozny and Shams, 2011). One classic example of the visual
influence over the perceived location of sounds can be observed
in the ventriloquist illusion—an audiovisual illusion in which the
perceived location of an auditory source is translocated toward
a visual source that is presented at the same time, but in a
different location (Howard and Templeton, 1966; Bertelson and
Aschersleben, 1998). Moreover, it has been found that repeated
exposure to the ventriloquist effect can lead to a “ventriloquism
after-effect” in which spatially disparate but temporally aligned
audiovisual stimuli lead to an altered representation of acoustic
space (Recanzone, 1998; Woods and Recanzone, 2004; Frissen
et al., 2005, 2012). That is, a visual stimulus presented slightly
to the right of the veridical source of the auditory stimulus leads

to a remapping of acoustic space. This will cause individuals to
misperceive auditory stimuli as coming slightly to the side of
their veridical sources when presented alone (i.e., without visual
stimuli). Similar visual-to-auditory adaptation effects have been
observed for the representation of auditory motion. Kitagawa
and Ichihara (2002) found that repeatedly viewing visual objects
moving in depth led to an auditory aftereffect in which spatially
static sounds were miss-perceived as moving in the opposite
direction (Kitagawa and Ichihara, 2002). Together, the findings
presented above highlight the highly adaptable nature of the
auditory system, and the importance of vision in shaping acoustic
perception (cf., Berger and Ehrsson, 2016). Given the known
plasticity of the auditory system, and the importance of vision
in generating rapid changes in acoustic perception, research and
development of HRTFs in VR could be significantly improved
by applying some of these basic principles of human sensory
perception.

Here, we examine whether it is possible to recalibrate users’
auditory perception to a new virtual acoustic environment, rather
than adapting the environment to the users inside VR. We
sought to investigate whether brain plasticity mechanisms can
be exploited via cross-modal learning from vision to improve
auditory source localization. Using generic HRTFs, we first
examined whether exposure to spatially and temporally aligned
audiovisual (AV) stimuli would improve subsequent auditory-
only source localization. In a control condition (Auditory
Only), we examined whether exposure to the auditory stimulus
alone would also improve auditory-only source localization.
In an additional follow-up experiment, we further explored
whether the introduction of an impact auditory stimulus
associated with the physics of the moving visual object would
strengthen any observed AV-driven improvement in subsequent
auditory source localization (AV + Impact Sync) and whether
temporally dissociating the audiovisual stimuli would prevent
any subsequent improvement in source localization (AV +

Impact Async). Consistent with previous research on the
plasticity of the auditory system we hypothesized that exposure
to spatio-temporally congruent AV stimuli within the virtual
environment would lead to a spatial recalibration of acoustic
space and therefore improve the participants’ subsequent
auditory-only source localization. On the contrary, exposure to
the auditory stimuli alone or asynchronous AV stimuli would
not. To further examine the generalizability of the remapping of
acoustic space from one sound-type to another, we performed an
additional experiment in which different sounds were used for
the localization test stimuli and the training stimuli (V + Impact

Sync).

MATERIALS AND METHODS

Experimental Design and Stimuli
The current paper includes a series of experiments that were
presented to the participants in three phases:

1. Pre-exposure auditory source localization test. During the
pre-exposure phase participants performed a localization
test. This test consisted of identifying the source of a
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repeating “beep-like” sound presented at 55 dB SPL via
in-ear headphones (frequency range = 0.042–15.21 kHz,
duration = 190.5ms; rise/fall time = 15ms; silent interval
between repeat = 19.6ms). Participants used a white cylinder
attached to their head, i.e., virtually linked to the head
mounted displays (HMDs), and projected outwards in space
to point to the perceived source of the sound and used the
hand-held trigger to log their response and proceed with
the next trial (see Figure 1). The repeating beep tone came
from one of 5 different locations (±26.6◦, ±11.3◦, 0◦) along
a horizontal white bar situated 10 meters in front of the
participants along the azimuth (visual angle = 73.74◦). The
pre-exposure phase of the experiment consisted of 25 trials (5
trials per auditory location). Trials were presented randomly.

2. Exposure phase. The exposure phase had a duration of

60 s and consisted of an auditory source moving in
3D space (see Video V1). The audio sound during this

phase was the same “beep-like” auditory stimulus used in
the localizationphases (frequency range = 0.042–15.21 kHz,

duration = 190.5ms; rise/fall time = 15ms; silent interval

between repeat = 19.6ms). The audio source was sometimes
co-located with a visual stimulus (AV and AV + Impact),
orpresented unimodally (without a visual counterpart; i.e.,

Auditory Only), depending on the experimentand the

condition, as explained below:

a. In the main experiment (Unimodal vs. Multimodal

mapping experiment), we presented an audiovisual (AV)

condition in which we attached a visual stimulus (white
sphere, radius = 0.5m; mean visual angle = 5.72◦) to
the auditory source. The hypothesis was that cross-modal
learning would help to remap the acoustic space and
improve subsequent auditory source localization in VR.
In the Auditory Only control condition, there was no
visual counterpart to the auditory motion. We designed
this unimodal condition to rule out the possibility that
any observed improvement in the localization of the AV
condition could simply be due to improved accuracy over
time, but due to the cross-modal influences.

b. In the second experiment (Multimodal Mapping with

Impact Sound experiment) we introduced the impact

sound conditions with additional bottom-up sounds
associated with the physics of the moving object (i.e., an
impact sound when the object abruptly changed direction)
in the virtual environment (AV + Impact Sync condition).
Previous experiments have shown that impact sounds can
have very strong effects on audiovisual motion perception
as they are naturally associated in a bottom-up fashion
with related visual motion cues (Sekuler et al., 1997;
Shimojo and Shams, 2001). Thus, in addition to the AV
experiment’s repeating beep-like sound, we also introduced
an impact sound (with exponential decay starting at
height = −5 dB and until −20 dB, duration = 150ms
frequency range = 0.042–18 kHz). This impact sound
was spatially and temporally aligned with each visual
bounce (i.e., abrupt change in direction) made by the
white sphere. As a control condition in this experiment

we manipulated the temporal relationship between the
impact sound and the changes in direction of the white
sphere, so that there was a random temporal delay of at
least 300ms between both stimuli (AV + Impact Async).
Therefore, here we sought to examine whether introducing
temporal asynchrony between the impact sound and the
visual bounce during the exposure phase would reduce
or abolish any improvements in auditory spatial acuity
observed in the experiments above. Note that the temporal
delay value was random but always chosen to fall outside
of the temporal window for which auditory and visual
stimuli may be perceived as simultaneous andmultisensory
integration can occur (Lewkowicz, 1996, 1999). The spatial
relationship between the sphere and the sounds remained
intact in this condition. That is, the sounds were still
co-located spatially with the white sphere as it moved
around in the 3D environment, but the impact sound
played asynchronously with respect to the sphere’s abrupt
changes in trajectory. Adding this experiment with impact
sounds allowed us to also explore the effects of temporal
asynchrony on the cross-modal influences for auditory
remapping.

c. In a third experiment (Remapping with Impact Sound

Only) we used the impact sound as the sole audio
stimulation during the AV Exposure Phase, while the
localization test is still done using the beep-like stimulus
(i.e., the test and the training are done in different sounds)
(V + Impact Sync). The aim of this experiment is two-
fold: on one hand, the results will provide evidence for
whether the synchronous presentation of the impact sound
with each bounce of the visual object during the adaptation
phase is sufficient to recalibrate acoustic perception, and on
the other hand, it will help provide evidence for whether
the remapping of acoustic space in VR can easily transfer
from one kind of sound to another. Previous work suggests
that the remapping of acoustic space (outside VR) does not
transfer across disparate frequencies (Recanzone, 1998).
Therefore, the results from this study will have theoretical
as well as practical significance for future work focused on
improving auditory source localization of users of generic
HRTFs.

3. Post-exposure auditory source localization test: Following
the exposure phase, participants once again performed the
sound localization test, consisting of 25 trials. The stimuli and
procedures for the post-exposure phase trials were identical to
the pre-exposure phase across all the experiments.

At the beginning of the experiments participants answered a
demographic questionnaire.

Participants

Seventeen participants were recruited to participate in the
unimodal vs. multimodal mapping experiment (mean age= 37.1
years, SD = 9.4; 4 females). Sixteen participants were recruited
for the Multimodal Mapping with Impact Sound experiment
(mean age = 37.3 years, SD = 9.7; 4 females). Eleven
participants participated in the Remapping with Impact Sound
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FIGURE 1 | Experimental setup. (A) The participants were equipped with the VR headset and could identify and report the source of sounds originating from five

different locations (± 26.6◦, ± 11.3◦, 0◦) along a white bar that was located 10m in front of the participant and spanned 73.74◦ along the azimuth. (B) First person

perspective within the VR environment during the auditory localization task. (The person in the picture is an author of the paper and gave consent to publish an

identifiable image of him).

Only experiment (mean age = 34.2 years, SD = 6.8; 5 females).
The conditions on each experiment were counterbalanced and
presented to all participants in a within subject design. There was
at least 1 day of rest between conditions. All participants were
recruited fromwithinMicrosoft Research, were healthy, reported
no history of psychiatric illness or neurologic disorder, and
reported no impairments of hearing or vision (or had corrected-
to-normal vision). The experimental protocol was approved
by Microsoft Research and followed the ethical guidelines of
the Declaration of Helsinki. Participants gave written informed
consent and received a lunch card as compensation for their
participation.

Apparatus
All visual stimuli were presented via an HTC Vive HMD with
a 110◦ FoV and 2160 × 1200 combined resolution for both
eyes (refresh rate = 90Hz) and equipped with a position
tracking system. Both the head tracking and the controller
positions and rotations were acquired using the HTCVive system
based on lighthouses that implement laser LIDAR technology
with sub-millimeter precision. The head tracking enabled the
spatialization of the audio in real-time based on the user’s current
head pose using a generic Head Related Transfer Function
(HRTF), based on the KEMAR data set (Gardner and Martin,
1995), which preserved the sensorimotor contingencies for the
audio motor perception. Sounds were presented through in ear-
headphones (model Earpod). During the auditory localization
tests participants used a HTC Vive hand-held remote to log their
response and proceed with the next trial once they were confident
that they were pointing with the HMD at the correct location

of the sound. Stimulus presentation and data collection were
controlled using Unity 3D Software (version 5.3.6f1).

Statistical Analyses
We ran a statistical analysis to examine whether a 60-s exposure
to the dynamic stimulus moving around in 3D space could
improve auditory source localization. For each sound localization
trial, we calculated the intersection of the ray projected from the
participants’ head and the horizontal line from which the sounds
originated along the azimuth in 3D space. The spatialization error
was then calculated as the distance between this location and the
true source of the sound. The process was completed for each
location for each trial, and then averaged across locations and
trials for each participant for the pre-exposure and post-exposure
phases, separately.

We then ran paired comparisons between the pre-exposure
and post-exposure localization error scores in order to measure
the pre-post improvement for each experiment. In all cases,
a Shapiro-Wilk test was run prior to conducting the pair
comparisons to confirm the assumption of normality in the
paired-differences between the pre-exposure and post-exposure
errors. For the cases when the normality assumption was fulfilled,
we ran a paired t-test.

For the cases in which within-subjects’ analysis was available
(AV vs. Auditory only, and AV + Impact Sync vs. AV +Impact
Async) we ran a repeated measures ANOVA. Test of Statistical
Equivalence (TOST) was performed to find similar distributions
among the data. All statistical analyses were performed using the
computing environment (R Core Team, 2016). The data for this
study have also been made available online (see Data Sheet 1 in
Supplemental Materials).
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RESULTS

Unimodal vs. Multimodal Mapping
The results from the first experiment compared Audio only
to AV remapping (Figure 2). Repeated Measures ANOVA with
factors Condition (Audio, AV) × Test (pre, post), showed
a significant within subjects interaction between Condition
and Test [F(1, 16) = 5.62, p = 0.03, η

2
p = 0.26]. Planned

comparisons of pre- and post-exposure conditions, revealed
that the synchronous moving audiovisual stimulus in the 3D
environment significantly reduced the participants auditory
source localization errors, t(16) = 2.87, p= 0.011, η2

p = 0.34, 95%
CI [0.05, 0.35]. That is, localization accuracy was significantly
better during the post-exposure phase (localization error:
M = 1.41, SD = 0.85) compared to the pre-exposure phase
(localization error: M = 1.61, SD = 0.88). However, the
remapping effect was not found after exposure to only the
moving sound, as the comparison between the pre- and post-
exposure Audio only conditions was not significant {t(16) = 0.4,
p = 0.53, η

2
p = 0.02, 95% CI [−0.28, 0.15]}. These results

indicate a stronger auditory accuracy improvement in the AV
condition than in the Audio only condition. A Shapiro-Wilk
test for normality confirmed that the paired-differences between
the pre-exposure and post-exposure errors in both the AV
and Audio only conditions did not violate the assumption of
normality (W = 0.95, p = 0.634 and W = 0.95, p = 0.417,
respectively).

Multimodal Mapping with Impact Sound
We also examined whether the addition of an impact sound
associated with each change in the visual stimulus’ direction
in the environment would further improve the auditory spatial
remapping (AV + Impact Sync condition). This manipulation
also allowed us to examine whether disrupting the temporal
relationship between the visual object and an associated sound
would reduce the cross-modal recalibration effect (AV + Impact
Async Condition). The AV + Impact Async condition kept the
spatial relationship between the sphere and the auditory stimulus
the same, and manipulated only the temporal correspondence
between the bounce and the occurrence of the impact
sound.

We ran a within subjects repeated measures analysis with
factors Test (pre, post) × Condition (AV + Impact Sync,
AV + Impact Async) and found a significant within subjects
interaction in Test × Condition F(1, 15) = 7.625, p = 0.01,
η
2
p = 0.34, (see Figure 2). Planned comparisons of localization

performance between the pre- and post-exposure phases of the
AV + Impact Sync condition revealed a significant reduction
in the participants’ auditory source localization error during the
post-exposure phase (M = 1.29, SD= 0.42) compared to the pre-
exposure phase (M = 1.50, SD = 0.55), t(15) = 2.9, p = 0.011,
η
2
p = 0.36, 95% CI [0.05, 0.36]. However, the comparison

between localization performance in the pre- and post-exposure
phases in the AV + Impact Async condition was not significant
{t(15) = 0.24, p = 0.632, η

2
p = 0.01, 95% CI [−0.15, 0.24]}. A

Shapiro-Wilk test confirmed normality of the paired differences
localization performance between pre- and post-exposure phases

for both the AV + Impact Sync (W = 0.98, p = 0.97) and AV +

Impact Async conditions (W = 0.99, p= 0.99).
An independent samples between subjects t-test revealed that

there were no significant differences between the localization
performance in the AV + Impact Sync condition and the AV
condition from the previous experiment {t(31) = 0.17, p = 0.9,
η
2
p = 0.002, 95% CI [−0.21, 0.20]}. Further, a Test of Statistical

Equivalence (TOST) revealed that the localization performance
in the AV Impact Sync condition and the AV Condition
were equivalent (df = 18.9, p = 0.01, confidence = 0.97).
However, the AV Impact Async Condition was not equivalent
to the AV Impact Sync (rejected: df = 18.7, p = 0.14,
confidence= 0.71).

Remapping with Impact Sound Only
We ran an additional experiment that examined the use of
the impact sound as the only auditory cue during the AV
Exposure phase (without the beep-like sound). As in all previous
experiments, the post-localization test was done with the beep-
like sound.

Planned comparisons of localization performance between
the pre- and post-exposure phases of this experiment revealed
no significant reduction in the participants’ auditory source
localization error during the post-exposure phase (M = 1.22,
SD= 0.11) compared to the pre-exposure phase (M= 1.35, SD=

0.16), {t(10) = 1.012, p= 0.33, η2
p = 0.01, 95% CI [−0.16, 0.42]}.

A Shapiro-Wilk test for normality confirmed that the paired-
differences between the pre-exposure and post-exposure errors
did not violate the assumption of normality (W = 0.89, p= 0.16).

DISCUSSION

In the experiments presented here, we have demonstrated that
pairing a visual stimulus with an auditory source in virtual 3D
space for a duration as short as 60 s is sufficient to induce a
measurable improvement in auditory spatial localization in VR.
The improvement did not occur when the moving auditory
stimulus was not paired with a visual stimulus, or when the paired
visual stimulus was temporally inconsistent (i.e., asynchronous
audiovisual stimuli). Additionally, we found that the remapping
does not transfer well if the training and the test were done
with two different types of sound. Given these results, we
believe that synchronous multisensory stimulation is key for a
rapid adaptation to novel spatialized audio cues. Our results are
consistent with previous findings suggesting that the brain can
accommodate changes in acoustic mapping though multisensory
learning (King, 2009; Carlile, 2014). Considering the improved
auditory source localization within the VR environment, these
findings support the use of multisensory recalibration techniques
when utilizing generic HRTFs. Furthermore, we suggest that
personalized HRTFs may not be required for users to experience
accurate auditory source localization if they are able to recalibrate
their auditory perception through cross-modal techniques.

The results from this study suggest that the improvement
in auditory source localization through exposure with a
paired visual stimulus occurs through multisensory integration
processes. Remapping was stronger in the AV + Impact
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FIGURE 2 | Results from all experiments. (A) Box-plots of the auditory remapping for all experiments. A significant improvement of the participants’ auditory

localization error wasand the localization test in a observed following the 60 s Audiovisual (AV) exposure. No such improvement was observed following the Auditory

Only exposure. In the experiment on the effect of impact sounds, improved auditory source localization was observed following the synchronous audiovisual exposure

phase with the additional impact related auditory cues (AV + Impact Sync). No significant remapping was observed following exposure to asynchronous but spatially

aligned audiovisual stimuli (AV + Impact Async), or when the training was done in one sound and the localization was tested using a different sound (V + Impact

Sync). (B) Mean pre- and post- adaptation localization errors for all participants, with each participant’s data represented by pair of dots connected by a line.

Asterisks indicate significant difference between pre-exposure and post-exposure phases (*p < 0.05) and “n.s.” indicates that there was no significant difference

between pre- and post-exposure phases (p > 0.05).

sound experiment when the auditory stimulus was presented
in synchrony with an additional bounce-like sound consistent
with the physics of the moving object, as compared to when
the bounce-like sound was asynchronous, and thus multisensory
integration was disrupted (Lewkowicz, 1996, 1999). This effect
was found even though the auditory and visual stimuli were
still spatially congruent in the environment, which suggest that
either (a) noise in the environment can lead to a deterioration of
visually induced improvements in auditory spatial acuity; and/or
(b) top-down knowledge of the relationship between the visual
and auditory stimuli are necessary to have a discernible effect

on auditory source localization. Previous work suggests that it is
likely a combination of both factors (Shimojo and Shams, 2001).
The temporal relationship between sounds is critical for the low-
level perceptual organization of sound early on in the auditory
processing stream (Bregman, 1990), and also plays a critical role
in identifying whether sounds are of the same or a different
source (Pressnitzer et al., 2008). Additionally, research on top-
down auditory source localization suggests that explicit attention
and knowledge about the target auditory stimulus is also needed
to segregate or group auditory stimuli in a noisy environment.
These factors form the basis of the well-known “Cocktail party
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effect.” The “cocktail party effect” refers to the ability of hearing
a specific sound of interest in a noisy environment (Cherry and
Taylor, 1954; McDermott, 2009). Consistent with both research
on bottom-up —i.e., low-level mediators of auditory scene
analysis—and on top-down influences on perceptual grouping,
the results from our study indicated that top-down knowledge
of visual objects could be disturbed by bottom-up factors such as
the temporal relationship between the visual and auditory stimuli
(Sanabria et al., 2006). We found that asynchrony between the
bounce-like sound and the visual stimulus (AV+ Impact Async)
did not significantly improve auditory source localization.

Additionally, when the impact sound was presented as the
sole audio cue in the AV Exposure Phase, the training did not
lead to an improvement in the post-localization test that was
performed with a different type of sound (beep-like sound). This
finding is consistent with previous work which has shown that the
recalibration of acoustic space does not transfer between sounds
of disparate frequencies/types (Recanzone, 1998; Frissen et al.,
2005; Berger and Ehrsson, in press). Thus, our results suggest
that the use of broadband noise or multiple sound-types should
be used during the recalibration phase in future work aimed at
utilizing AV recalibration as a means to improve auditory source
localization for users of generic HRTFs. Our results also suggest
that while the impact sound was able to disrupt AV binding
and recalibration of the continuous beeping sound in the AV

+ Impact Async condition, it was not sufficient to recalibrate
acoustic space for the beep sound on its own (in the V + Impact

Sync condition) nor did it significantly improve recalibration in
theAV+ Impact Sync condition. This suggests that there is little
to no perceptual benefit of additional acoustic cues (i.e., impact
sounds) for the remapping of acoustic space for a given sound,
and that a mismatch between such additional cues can only serve
to disrupt the remapping of acoustic space.

Although in the current experiments we have addressed
whether auditory spatial acuity can be improved from
audiovisual training, we have only examined this effect
along the horizontal plane. Further research should assess the
effectiveness of AV recalibration on the front/back or up/down
dimensions. This may be a particular area of interest for future
research given that spectral cues provided by the geometry of
the head, body, and ears are also crucial for spatially orienting
sounds in these dimensions (Carlile et al., 2005; Carlile, 2014).
Moreover, in this experiment, we have only used an exposure
period of 60 s, as previous works have found that effects of
audiovisual recalibration can be observed with this duration of
exposure (Wozny and Shams, 2011; Frissen et al., 2012; Chen
and Vroomen, 2013). However, additional research may serve to
examine the minimal duration of AV training necessary for users
to reach asymptotic localization performance. Furthermore,
although previous work has demonstrated that auditory source
localization is impaired when using generic HRTFs compared
to individualized HRTFs (Mehra et al., 2016), and that even
the use of individualized HRTFs can result in an increase in
front-to-back confusion of auditory stimuli compared to free
field localization (Wightman and Kistler, 1989), subsequent
work has found that auditory source localization when using
generic HRTFs can be as good as free field source localization
performance (Wenzel et al., 1993) or individualized HRTFs

(Romigh et al., 2017) after training. Thus, in light of our findings,
future work will serve to directly compare auditory source
localization performance when using individualized HRTFs vs.
post-recalibration localization performance when using generic
HRTFs. Additional work will also serve to explore the duration of
auditory source localization improvements, and how much time
is necessary to recalibrate to the real world after experiencing
this new spatial acoustic mapping in VR.

Overall the experiments presented here provide new evidence
in support of the high degree of cross-modal plasticity in cortical
sensory processing. The psychophysical data indicate that the
interaction between congruent auditory and visual stimuli is
key to the spatial re-calibration of auditory stimuli in VR.
Our research also opens new avenues for future visual and
auditory motion studies. Inside VR, it is relatively easy to achieve
and simulate dynamic systems that allow researchers to test
spatialized multisensory integration (Väljamäe et al., 2008, 2009;
Riecke et al., 2009; Padrao et al., 2016; Gonzalez-Franco and
Lanier, 2017; Gonzalez-Franco et al., 2017). Thus, motivated by
some of the recent advances on VR technologies, we put forth a
new hypothesis that has the potential to improve the immersive
experience when using generic HRTFs. We hypothesize that
the improvement triggered by AV cross-modal plasticity in the
audio spatialization might make generalized HRTFs potentially
as good as individualized HRTFs. In which case, participants
could undergo a non-invasive acoustic recalibration when they
enter the VR, enabling them to rapidly adapt to the spatial cues
provided by a multimodal combination of visual and auditory
stimuli and thereby reducing the need for technologically
complex and time-consuming pre-calibrations. Interestingly, our
findings demonstrate that this re-calibration process does not
require strenuous conscious effort or extensive training regimens
on the part of the user. Placing congruent co-located visual and
audio sources around the VR environment is sufficient to remap
the auditory space and achieve higher spatialization accuracies.
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