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Quick detection of motor intentions is critical in order to minimize the time required to

activate a neuroprosthesis. We propose a Markov Switching Model (MSM) to achieve

quick detection of an event related desynchronization (ERD) elicited bymotor imagery (MI)

and recorded by electroencephalography (EEG). Conventional brain computer interfaces

(BCI) rely on sliding window classifiers in order to perform online continuous classification

of the rest vs. MI classes. Based on this approach, the detection of abrupt changes

in the sensorimotor power suffers from an intrinsic delay caused by the necessity of

computing an estimate of variance across several tenths of a second. Here we propose

to avoid explicitly computing the EEG signal variance, and estimate the ERD state directly

from the voltage information, in order to reduce the detection latency. This is achieved

by using a model suitable in situations characterized by abrupt changes of state, the

MSM. In our implementation, the model takes the form of a Gaussian observation model

whose variance is governed by two latent discrete states with Markovian dynamics. Its

objective is to estimate the brain state (i.e., rest vs. ERD) given the EEG voltage, spatially

filtered by common spatial pattern (CSP), as observation. The two variances associated

with the two latent states are calibrated using the variance of the CSP projection during

rest and MI, respectively. The transition matrix of the latent states is optimized by the

“quickest detection” strategy that minimizes a cost function of detection latency and false

positive rate. Data collected by a dry EEG system from 50 healthy subjects, was used

to assess performance and compare the MSM with several logistic regression classifiers

of different sliding window lengths. As a result, the MSM achieves a significantly better

tradeoff between latency, false positive and true positive rates. The proposed model

could be used to achieve a more reactive and stable control of a neuroprosthesis. This is

a desirable property in BCI-based neurorehabilitation, where proprioceptive feedback is

provided based on the patient’s brain signal. Indeed, it is hypothesized that simultaneous

contingent association between brain signals and proprioceptive feedback induces

superior associative learning.

Keywords: Markov switching model, Bayesian estimation, quickest detection, event related desynchronization,

sensorimotor rhythms, electroencephalogram, neuroprosthesis, brain computer interface
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1. INTRODUCTION

Sensorimotor rhythm-based brain robot interfaces (BRI) have
recently gathered attention in the field of neurorehabilitation
(Daly and Wolpaw, 2008). In this context, rehabilitation is
conducted by activating a device that assists movement using
the brain signal. The assisted movement produces sensory input
that is hypothesized to induce central nervous system (CNS)
plasticity, leading to the restoration of normal motor control.
Endogenous brain computer interfaces (BCI), such as the one
based on sensorimotor rhythms (SMR), have been used in
motor neurorehabilitation as an effective tool for promoting
neuroplasticity of neuromuscular pathways (Silvoni et al., 2011).

SMR are modulated by movement or motor imagery, and
they are often referred to as event-related (de)synchronization
(ERD/ERS). They can be detected by non-invasive methods such
as the electroencephalogram (EEG). An ERD is a power decrease
of mu (7–13Hz) and beta (13–30Hz) rhythms that occur in the
sensorimotor areas during a motor-related task, while an ERS
is a power increase following the offset (i.e., end) of the task
(Pfurtscheller and Lopes da Silva, 1999). The ERD/ERS elicited by
motor imagery have been used to control neuroprosthetic devices
such as functional electrical stimulation (FES) to achieve the
hand motion in spinal chord injury (Müller-Putz et al., 2005) or
stroke patients (Daly et al., 2009), and to activate upper (Gomez-
Rodriguez et al., 2011; Ramos-Murguialday et al., 2012; Sarac
et al., 2013) or lower (Do et al., 2013; Lisi et al., 2014) limb
exoskeleton robots (Lisi and Morimoto, 2017).

Most notably, clinical trials have been carried out to verify

the effectiveness of ERD-based brain robot interfaces (BRI) for

motor function recovery (Ang et al., 2009, 2014; Broetz et al.,
2010; Caria et al., 2011; Shindo et al., 2011; Ramos-Murguialday
et al., 2013; Naros and Gharabaghi, 2015). In these works,
the motion of a neuroprosthesis is either triggered (Shindo
et al., 2011) or continuously controlled (Ramos-Murguialday
et al., 2012) based on the output of a BCI. In this context,
minimizing the latency between the motor intention onset and
the device activation is critical (Muralidharan et al., 2011), since it
has been hypothesized that simultaneous contingent association
between brain oscillations and proprioceptive feedback leads
to superior associative learning and elicits motor learning
(Ramos-Murguialday et al., 2012, 2013). For the same reason,
an asynchronous BCI strategy, where a decoder continuously
estimates the mental state (i.e., rest vs. motor imagery) of a
subject, is more suitable. Here asynchronous refers to the fact that
a decoder continuously analyses the EEG data, irrespectively of
the cue given to the subject, trying to maximize true positives
during the motor imagery and to minimize the false positives
during the rest or idling state (Townsend et al., 2004).

Asynchronous BCI has received less attention compared to
synchronous BCI (Lotte et al., 2007). The most conventional
approach to real-time SMR-based asynchronous decoding
is sliding window classification (Townsend et al., 2004;
Muralidharan et al., 2011; Shindo et al., 2011; Ang et al., 2012;
Lisi et al., 2016). In such systems, a sliding window is required
in order to compute statistics, e.g., variance, associated with the
spectral features of the signal. Usually, longer sliding windows

(i.e., 1 s) are chosen since they provide smooth variance estimates
over time and a more stable output, which comes at the cost
of a larger latency in ERD detection. Reducing the threshold
of the classifier may reduce the latency, at the cost of a larger
false positive rate (Muralidharan et al., 2011). On the other hand,
shorter windows would minimize the latency, with the drawback
of a higher feature variability and unstable output. Therefore, it
becomes clear (Figure 1) that such systems are characterized by a

FIGURE 1 | Problem statement. The sliding window approach introduces a

delay in the ERD detection. A long sliding window achieves a stable output

(i.e., less false positives and more true positives) at the cost of a larger

detection latency. A shorter sliding window is faster at detecting the ERD, but

its output is less stable and has larger variability. Indeed, it is important to note

that the left vertical axis of (D) covers a broader range. Panel (A) shows the

EEG voltage obtained after optimal bandpass filtering and CSP spatial filtering

(using the most discriminative CSP component) as described in section 2.4.3.

The three rectangles represent the sliding window lengths (i.e., 1.0, 0.5, and

0.1 s) used for the models shown in (B–D). The vertical arrow indicates the

point in time corresponding to the output of the depicted sliding windows.

Panels (B–D) represent the decoding associated with sliding window lengths

1.0, 0.5, and 0.1 s, respectively. Each shows the variance, computed on the

signal in (A) by the respective sliding window, with a solid gray line. The

probability output of the logistic regression classifier is drawn with a solid

colored line. The vertical solid black line shows the time of the motor imagery

cue onset. The horizontal dashed colored line shows the classifier’s threshold

with respect to the classifier’s probability output (solid colored line). The vertical

solid magenta line shows the estimated latency of detection. This example is

taken from a subject performing left motor imagery.
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trade-off between detection latency, false positive rate (FPR) and
true positive rate (TPR).

Here, we propose to avoid the use of a sliding window for the
explicit calculation of the signal variance, and instead estimate the
likelihood of the ERD state directly from the instantaneous EEG
voltage. Based on the observation that often times the ERD occurs
abruptly, we use a Markov switching model (MSM), a method
that is suitable in applications where the latent state of a system
changes suddenly, such as in the economics field (Hamilton,
2010). In our implementation, the model takes the form of
a Gaussian observation model whose variance is governed by
two latent discrete states with ergodic (i.e., fully connected)
Markovian dynamics. The objective is to estimate the brain state
(i.e., rest vs. ERD) given the EEG voltage, spatially filtered by
common spatial pattern (CSP), as observation (Figure 2). The
two variances associated with the two latent states are calibrated
offline using the variance of the CSP projection during rest and
motor imagery, respectively. Intuitively, the first state (S0) has
larger probability during the baseline resting period, while the
second state (S1) has larger probability during motor imagery.
The transition matrix of the latent states is optimized by using a
variant of the “quickest detection” strategy (Poor and Hadjiliadis,
2009) that minimizes a cost function of detection latency and
false positive rate. A similar approach has been taken in the
development of an online seizure detection method based on
intracranial EEG (Santaniello et al., 2011).

Markov and state space models in general, are not widespread
within the non-invasive BCI community, but they are promising
classifiers (or decoders) for BCI systems (Lotte et al., 2007). In
literature, Hidden Markov models (HMM) have been proposed

FIGURE 2 | Conceptual representation of the Markov switching model (MSM).

The sensorimotor rhythms are obtained by CSP spatial filtering. The MSM is

composed of a Gaussian observation model whose variance is governed by

Markovian dynamics. If the variance of the sensorimotor rhythm is high, the

probability of state S0 is high; if the variance is low, the probability of S1 is

high. The probability of S1 represents the probability of an ERD.

with the objective of maximizing classification performance of
left vs. right motor imagery, without explicitly targeting the
rest class nor the trade-off between detection latency and FPR
reduction. The HMM proposed in previous works (Obermaier
et al., 2001; Chiappa and Bengio, 2003; Cincotti et al., 2003;
Rezaei et al., 2006) are left-to-right finite automata meant
to model the temporal changes of the EEG during a motor
imagery task. The rationale is that sensorimotor rhythms have
specific temporal characteristics, e.g., a short-latency ERD is often
followed by a ERS. Each class of interest is assigned a separate
HMM trained with trials from that specific class. An unknown
trial is classified according to the HMM model with the highest
probability, as calculated by Viterbi algorithm. Therefore, each
HMM represents one class, and each state of a HMM represents
a specific temporal state of that class. In Obermaier et al. (2001)
and Rezaei et al. (2006) the classification is done synchronously,
meaning that the rest class is not modeled. In Cincotti et al.
(2003) and Chiappa and Bengio (2003) the classification is
asynchronous, however the rest class is not modeled and not
evaluated (i.e., FPR not computed). The observations of an
HMM are spectral (Obermaier et al., 2001; Cincotti et al., 2003)
or statistical features (Rezaei et al., 2006) of the EEG signal
computed on a sliding window. Such models are not suitable to
classify rest vs. motor imagery, since temporal dynamics during
rest are not well determined. Moreover, the need of a sliding
window for feature extraction makes them comparable to a
sliding window classifier from a detection latency point of view.
On the other hand, the proposedMSM is an ergodic model where
no specific temporal sequence is modeled, and any state can be
visited at any time. In the MSM the rest class is modeled as a state
with high variance, and is included in the evaluation criteria (i.e.,
FPR). Moreover, a sliding window is not necessary, as previously
explained, making it possible to track closely abrupt changes
associated with the ERD.

2. METHODS

In this section we describe the modules composing the neural
decoding pipeline (Figure 3). We begin by explaining data
acquisition, followed by online decoding pipeline, the MSM and
offline parameter estimation. The last subsection describes the
methodology used to assess the performance of the proposed
method.

2.1. Data Acquisition
To explore the MSM model and its application to non-invasive
neural decoding, we have carried out motor imagery experiments
with 50 healthy subjects: age 24 ± 3, 9 females and 41 males.
Only one subject was familiar with motor imagery BCI, while
all the others had never performed a motor imagery BCI task
before. During a single run, a subject performed 10 trials of
cued motor imagery, interleaved by a period of rest. For each
subject, 4 runs were collected, interleaved by a few minutes of
rest. It should be noted that even though the experiment is cued,
the subsequent decoding is done irrespectively of the cue (i.e.,
asynchronous decoding), and that a cued experiment is needed in
order to know the ground truth onset of the motor imagery. For
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FIGURE 3 | Decoding pipeline. The green box on the left side represents the

steps during offline parameter estimation executed on the training set. The

blue box on the right is the online decoding pipeline, that uses the parameters

estimated offline.

a given subject, the motor imagery type was fixed. The majority
of the participants (N = 47) was randomly assigned either to a
left (N = 25) or right (N = 22) hand motor imagery task, with
7 s rest duration and 5 s motor imagery duration. The additional
3 subjects performed a foot motor imagery task with 8 s rest
duration and 4 s motor imagery duration. The EEG signal was
collected at a sampling rate of 500Hz, by the Quick-20 dry-
wireless headset (Cognionics, Inc.), which is a full 10–20 array,
with 19 channels (F7, Fp1, Fp2, F8, F3, Fz, F4, C3, Cz, P8,
P7, Pz, P4, T3, P3, O1, O2, C4, T4) plus reference on A1 and
ground on A2. Participants gave written informed consent for
the experimental procedures, which were approved by the ATR
Human Subject Review Committee.

2.2. Online Decoding Pipeline
Here we describe the online decoding pipeline (Figure 3, blue
box on the right), that uses the optimal parameters computed
offline by the method detailed in section 2.4. A subset of channels
that is typically associated with sensorimotor activity is selected
(i.e., F3, Fz, F4, C3, Cz, Pz, P4, P3, C4). The signal is bandpass
filtered in the 8–49 Hz range and downsampled at 100 Hz.
Outlying channels are identified using the deviation criterion (see
section 2.4.1), and temporarily invalidated by assigning them the
average of the valid channels. Subsequently, the projection of the
most discriminative CSP filter is computed and further bandpass

filtered within the optimal frequency band. The bandpass filtered
CSP projection is then given as an observation to the MSM in
order to estimate the current class (i.e., rest or motor imagery).

2.3. Markov Switching Model (MSM)
The MSM was first introduced in the field of econometrics
(Hamilton, 1989; Turner et al., 1989), but to the authors’
knowledge it has never been applied on EEGmotor imagery data.
The model is sketched in Figure 2, and it consists of a Gaussian
observation model whose variance is governed by two latent
states with Markovian state transitions. The observation model
is a simple zero-mean Gaussian with variance σ 2:

yt ∼ N (0, σ 2
t ) (1)

where yt is the observation at time t and σ 2
t is dependent on a

discrete state St :

σ 2
t =

{
σ 2
rest if St = 0

σ 2
erd

if St = 1
(2)

where St = 0 is associated with the resting state, and St = 1
is associated with a motor imagery ERD. Since St is hidden
(i.e., we do not know when to apply each sub-model), we use
a weighted combination of each sub-model (i.e., soft switching),
where the weights are given by P(St = i|y1 : t). Therefore, the
resulting system can be thought of as a mixture of Gaussian
models (Murphy, 1998).

The discrete state St = 0 or 1 denotes the latent space of the
system and it is generated by a realization of a first-order Markov
process with transition probabilities defined by the matrix:

Z =
[

p 1− p
1− q q

]
, (3)

where p = P(St = 0|St = 0) and q = P(St = 1|St = 1) represent
the probability of remaining in S = 0 or remaining in S = 1,
respectively. The offline calibration of the variances σ 2

rest , σ 2
erd

,
and probabilities p and q is described in section 2.4.4.

At each iteration, the new probability of each discrete state is
computed according to Bayes’ theorem:

posterior =
prior× likelihood

normalization factor
(4)

The likelihood for each discrete state i is:

Li =
1√
2πσ 2

i

e−y2/2σ 2
i (5)

where σ 2
i is either σ 2

rest or σ 2
erd

and y is the EEG voltage spatially
filtered by a CSP filter (see section 2.4.2). The prior in Equation 4,
which we denote by c̄, is computed by propagating the previous
probabilities of the discrete states according to the transition
probability matrix Z:

c̄ = Z · µ (6)
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where µ is the vector containing the previous probabilities of
the discrete states. The numerator of Equation 4 can simply be
computed as:

µ̃i = c̄i × Li (7)

and then normalized (i.e., normalization factor) so that it sums to
one:

µi =
µ̃i∑1
j=0 µ̃j

(8)

The new probability of each discrete state is contained in µi.
Given a CSP projection observation yt at time t, the

probability of state St = 0 associated with variance at rest (σ 2
rest)

is larger when the subject is in resting state, while the probability
of state St = 1 associated with variance during motor imagery
(σ 2

erd
) is larger when the subject does motor imagery.

2.4. Offline Parameters Estimation
Offline parameter estimation (Figure 3, green box on the left)
is performed on the training data set, before running online
decoding. Signal preprocessing is equivalent to the one used for
online decoding.

2.4.1. Bad Channel Detection Parameters
We implemented two types of bad channel detection methods,
based on the correlation and deviation criterions, respectively
(Bigdely-Shamlo et al., 2015). The former criterion labels a
channel as bad if its maximum correlation coefficient with the
other channels is below a threshold (0.4 by default). Here, the
correlation coefficients are computed on the same epochs used
by the CSP algorithm (section 2.4.2). This procedure is carried
out offline and, once a channel is rejected by the correlation
criterion, it is removed completely from both offline parameters
estimation and online decoding. On the other hand, the deviation
criterion is applied at each time sample of both offline and
online processing. In the deviation criterion, outlying channels
are identified using the modified Z-score method (Iglewicz and
Hoaglin, 1993): a channel i at time t whose modified Z-score
Mi(t) = 0.6745(xi(t) − xi)/MADi is larger than 5 is considered
as an outlier. The parameters xi and MADi are computed using
the entire EEG of the training set and they represent the median
and the median absolute value (MAD) of the EEG channel,
respectively. Channels marked as bad at time t are temporarily
invalidated by assigning them the average of the valid channels.
In the case that most channels are bad, the minority would
still be used online to compute final decoding and evaluate the
performance measures.

2.4.2. Robust CSP
A robust version of the CSP algorithm (Yong et al., 2008) is
executed on the training set to estimate the spatial filters, robust
to outliers, that maximize the difference in variance between the
two classes (i.e., rest vs. motor imagery). For this purpose, from
the bandpass filtered EEG signal (8–49Hz) of the training set,
we cut epochs of 2 s length from 1 s to 3 s with respect to the
motor imagery onset, for the motor imagery class. For the longer
rest class, the epochs start 1 s after rest onset and end 1 s before
rest offset. The length discrepancy between motor imagery and

rest epochs is due to the fact that we want the covariance matrix
of the rest class to capture as much as possible the variability of
the rest EEG, to make the CSP filters more robust. Finally, we
select the first 3 and last 3 columns of the CSP unmixing matrix,
representing the most discriminative spatial filters (Figure 4, top
row). The CSP filters selected at this point are redundant, so that
the CSP filter selection at the next step has enough options to
choose from.

2.4.3. Optimal Frequency Band and CSP Filter

Selection
For each CSP filter, the most discriminative frequency band
(Figure 4) is computed using the heuristic proposed in Blankertz
et al. (2008). Frequency bands with a high correlation coefficient
between the logpower and classes labels are iteratively added
to the optimal frequency band: the frequency with the largest
correlation is selected and then the adjacent frequencies (i..e.
above and below) are added if their correlation is at least 90%
of the best correlation. Correlation coefficients are computed
on the spectrogram of the same epochs used for CSP (section
2.4.2). Likewise, in order to select the most discriminative
CSP filter (Figure 4), we compute the average logpower within
the optimal frequency band of each filter, and keep the
one having the largest correlation coefficient with classes
labels.

2.4.4. MSM Parameters Estimation
The parameters σ 2

rest and σ 2
erd

are assigned the variances of the
CSP projection during rest and motor imagery, respectively.
Contrary to the CSP epochs, the durations of the rest (i.e.,
[−3 s,−1 s] with respect to onset) and motor imagery (i.e.,
[1 s, 3 s] with respect to onset) time epochs are chosen to be
the same, so that the chance of them containing outliers is
minimized. Indeed, it is important to remove epochs with
extreme values, in order to obtain an unbiased estimate of
variance. Therefore, variance is computed for all the epochs; then,
epochs whose variance exceeds 3 standard deviations from the
mean are removed. Once data is clean, the average variance of
the rest and motor imagery epochs are computed.

For convenience sake, the transition probabilities (p, q) of the
latent states are defined using the exponential duration model
πd = 1 − 1

d
, where d is the duration in number of frames and

πd is the probability of staying in a given state Rabiner (1989).
Then, according to amodified “quickest detection” strategy (Poor
and Hadjiliadis, 2009; Santaniello et al., 2011), the tuple (p, q) is
optimized by minimizing a cost function of detection latency (δt)
and false positive rate (FPR):

C = δt + FPR (9)

The optimization is carried out by Sequential Least Squares
Programming (Kraft, 1988), and the starting point of the
optimization is set to the probabilities (p, q) computed from the
durations of rest and motor imagery, respectively. With respect
to the cost function, FPR is the false positive rate computed
using the samples during the rest condition. Computing the
detection latency δt is more complex, since it is important to
avoid irrelevant short-lasting false positives. For this purpose,
we use a sliding window approach to find the most robust state
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FIGURE 4 | Offline optimal frequency band and CSP filter selection. For each

CSP filter the spectrograms of the rest (top) and MI (bottom) conditions are

shown. The selected optimal frequency band is depicted with two horizontal

lines over the time frequency representation. The optimal CSP filter, selected

among the first 3 and last 3 columns of the unmixing matrix, is surrounded by

a red box. The color scale of the time-frequency representation is equalized for

each column (i.e., CSP), and for the selected CSP it is between 5.4 and 8.9

with unit 10log10(µV
2/Hz). All the other CSPs have comparable color ranges.

This example is taken from a subject performing foot motor imagery. It is

possible to appreciate how the optimal frequency band and CSP filter contain

the most discriminative (i.e., rest vs. MI) spectral features.

transition S0 → S1 across a trial. Accordingly, the detection
time is the td that maximizes the difference Spost − Spre, where

Spost is the average estimated state S in the range [td, td + 3 s]

and Spre is the average state S in the range [td − 1 s, td]. The

rationale for having a longer range for Spost is that in case of
several S0 → S1 transitions, the one with the longer stay in
S1 should be considered as the real ERD. Once td is computed,
δt = td − to, where to is the time of the motor imagery cue
onset. Trials that cannot be improved (i.e., FPR = 0) or trials
where ERD does not exist (TPR = 0) should be excluded from
the optimization. Based on this rationale and in order to reduce
computational cost, only the five most improvable trials within
the training set are used for optimization. This is done by looking
for the trials in the training set that jointly minimize the absolute
difference between FPR and the average FPR (i.e., |FPR − FPR|)
and maximize TPR.

2.5. Performance Evaluation
Leave-one-run-out cross-validation is used, separately for each
subject, to evaluate the online performance of the proposed
decoder: n − 1 runs are used as training set and 1 run as test set,
so that every run is used as test set once.

2.5.1. Baseline Models
The MSM model is compared against a sliding window logistic
regression (LR) classifier. Specifically, three different window’s
lengths are used: 1.0 s, 0.5 s, 0.1 s (i.e., LR 1.0 s, LR 0.5 s, LR 0.1 s).
The sliding window includes time samples prior to the current
time, as shown in Figure 1, in order to avoid using future
information. A logistic regression classifier is trained and tested
on the log-transformed sliding window variance of the optimal
CSP projection (Townsend et al., 2004). The decoding pipeline
up to classification is the same as the one used for MSM. During
classifiers’ training, the time ranges used to represent the rest
and motor imagery classes are equal to the ones used to tune the
MSM: the sliding windowwhose last sample is within [−3 s,−1 s]
and [1 s, 3 s], with respect to motor imagery onset, is assigned
to the rest and motor imagery class, respectively. During online
decoding and performance evaluation, the positive class of the
classifier (i.e., motor imagery) corresponds to S1 of the MSM.

2.5.2. Online Performance Measures
Three measures are used within each trial of each subject for
model evaluation: the latency of detection (δt), the false positive
rate (FPR), and the geometric mean (Barandela et al., 2003) of
true positive rate (TPR) and true negative rate (TNR).

The latency of detection δt has beed described in section
2.4.4. Here, however, we need to find consistent δt values across
the four models being compared (i.e., MSM, LR 1.0 s, LR 0.5 s,
LR 0.1 s), and make sure that state estimates instability would not
lead to incompatible δt values across models. Indeed, noisy state
estimates of LR 0.5 s and LR 0.1 s may have a maximum of the
value Spost−Spre at a very different δt compared to themore stable
MSM and LR 1.0 s, making the comparison difficult and often
unfair. Such noisy state estimates would already be accounted for
by the TPR and FPR. Therefore, we decided no to judge them
again from the latency point of view, and force their latency to be
close to that of the more stable models. We do this by extending
the procedure described in section 2.4.4: first we find a common
point of reference 1t between the more stable models MSM and
LR 1.0 s, then we compute the δt of each model with respect to
1t . The common point of reference 1t is found by applying
the sliding window procedure (described in section 2.4.4) over
the average estimated class of MSM and LR 1.0 s. Then, for each
model we look for the time td closest to 1t , where a transition
S0 → S1 occurs. Latency is computed as δt = td − to, where to is
the time of the motor imagery cue onset.

The FPR, TPR, TNR and G-mean are computed for each trial
(i.e., consecutive rest and motor imagery) assuming that samples
up to 4 s before motor imagery cue onset belong to the negative
class, and samples during the motor imagery cue belong to the
positive class. The geometric mean (G-mean =

√
TPR · TNR) is

used here as an estimator of accuracy separately for each trial.
It should be noted that if in a given trial there is no ERD, even
an optimal decoder would produce an uninformative output:
correct classification only 50% of the time samples during rest
(i.e., TNR = 0.5) and motor imagery (i.e., TPR = 0.5), yielding
G-mean = 0.5. Conversely, for a trial containing an ERD, a
sufficiently good decoder is expected to have at least TNR =
0.6 and TPR = 0.6, yielding G-mean = 0.6. One attractive
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property of G-mean (Barandela et al., 2003) is that it penalizes
unbalanced TPR and TNR, compared to the arithmetic mean,
e.g.,

√
0.8 · 0.4 <

√
0.6 · 0.6, (0.8 + 0.4)/2 = (0.6 + 0.6)/2. G-

mean and FPR measure the ability of a decoder of estimating the
correct state at each point in time; therefore, they are indicative
of the decoder output stability (Figure 1).

Models are evaluated on all the trials from all the subjects
according to their TPR and FPR (see Table 1), in order to
verify that the baseline classification performance is in agreement
with previous studies of asynchronous BCI, and to verify that
decoding performance is similar across motor imagery tasks (i.e.,
foot, left and right hand motor imagery).

Not every subject is able to produce an ERD at every trial,
due to the so called BCI illiteracy (Vidaurre and Blankertz, 2010)
and to the fact that sensorimotor rhythms are noisy signals. This
means that several trials do not contain an ERD at all. In such
cases, it is uninformative to compare different models, since all
will fail due to the absence of an ERD. Therefore, to obtain a
meaningful comparison across models, it is necessary to remove
such trials. Here, a trial with no ERD is defined as a trial where
neither the MSM nor the best sliding window classifier (i.e.,
LR 1.0 s) are able to produce a sufficiently accurate and stable
output. Based on this assumption, a trial with a G-mean smaller
than 0.6 is considered as a trial with no ERD. This threshold is
a compromise between chance level (i.e., 0.5) and the threshold
commonly accepted in BCI (i.e., 0.7) as the minimum needed
for communication (Nijboer et al., 2008). Subjects who could
not produce an ERD in at least 25% of the trials are removed
from the analysis. This threshold was chosen based on the fact
that one trial contains two classes. Therefore, the probability of
a successful trial by chance is 25%: the combination of majority
of true negatives (TN) and majority of true positives (TP) against
all the other 3 combinations (e.g.,majority of false negatives (FN)
andmajority of TN). Based on this approach, 2 out of 50 subjects
were removed. The percentage of successful trials for the retained
subjects was on average 58± 18 (SD) (chance level at 25%).

2.5.3. Statistical Testing
For each of the three performance measures (i.e., latency,
FPR and G-mean) we compare MSM with the sliding window
classifiers (i.e., LR 1.0 s, LR 0.5 s, LR 0.1 s) by Analysis of variance
(ANOVA) with a linear mixed-effects model (Bates et al., 2015),
specified by the formula, in Wilkinson notation:

Measure = Decoder + (1+Decoder|Subject) +
(1|Subject:Trial)

For each measure (i.e., latency, FPR or G-mean), one new model
is inferred. Therefore, the dependent variable Measure is either

TABLE 1 | Mean and standard deviation, of true positive rate (TPR) and false

positive rate (FPR) of each model, computed across across 50 subjects and

including all the trials, i.e., before removing trials with no ERD.

MSM LR1.0 LR0.5 LR0.1

TPR 0.64± 0.14 0.62± 0.11 0.60± 0.10 0.55± 0.08

FPR 0.37± 0.11 0.37± 0.10 0.38± 0.08 0.41± 0.06

latency, FPR or G-mean. The fixed-effect predictor Decoder
represents the type of decoder (i.e., MSM, LR 1.0 s, LR 0.5 s,
LR 0.1 s). The term (1+Decoder|Subject) represents a
random intercept and random slope for Decoder, which allows
for different random relationships among the decoders for each
subject. The term (1|Subject:Trial) allows for different
random intercepts for each trial of each subject. Tukey’s all-pair
comparisons post-hoc tests are carried out by z-test, corrected for
multiple comparisons by the Holm-Bonferroni procedure (Bretz
et al., 2010).

3. RESULTS

The true positive rate (TPR) and false positive rate (FPR) of
the models before removing trials with no ERD are shown
in Table 1. This allows us to verify whether the baseline
classification performance is in agreement with previous studies
of asynchronous BCI. The performance measures of MSM and
LR 1.0 s are approximately 10% lower than the results reported
in Townsend et al. (2004) in which 3 healthy subjects, achieved

TABLE 2 | Result of multiple comparisons.

Latency

Estimate z-value Pr(>|z|)

LR1.0 - MSM 0.155 4.48 2.22× 10−5

LR0.5 - MSM −0.0908 −2.46 0.014

LR0.1 - MSM −0.152 −5.29 4.96× 10−7

LR0.5 - LR1.0 −0.246 −15.1 0

LR0.1 - LR1.0 −0.307 −12.6 0

LR0.1 - LR0.5 −0.0616 −3.63 0.000561

False positive rate (FPR)

Estimate z-value Pr(>|z|)

LR1.0 - MSM 0.0011 0.0726 0.942

LR0.5 - MSM 0.0419 2.78 0.0108

LR0.1 - MSM 0.0984 6.43 3.79× 10−10

LR0.5 - LR1.0 0.0408 11.1 0

LR0.1 - LR1.0 0.0973 16.3 0

LR0.1 - LR0.5 0.0565 11.5 0

G-mean(TPR,TNR)

Estimate z-value Pr(>|z|)

LR1.0 - MSM −0.0144 −1.77 0.0774

LR0.5 - MSM −0.0508 −5.88 8.21× 10−9

LR0.1 - MSM −0.11 −13.7 0

LR0.5 - LR1.0 −0.0365 −12.1 0

LR0.1 - LR1.0 −0.0958 −23.4 0

LR0.1 - LR0.5 −0.0594 −17.7 0

Each subtable contains the results of latency, FPR and G-mean, respectively. Each row

contains one pairwise comparison between two models. The column Estimate contains

the estimated average difference between the two models being compared. P-values

below 2× 10−16 are assigned P = 0.
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on average an FPR of 0.27 and a TPR of 0.74. This may be due
to the fact that while the 3 subjects of Townsend et al. (2004)
were all familiar with the BCI, in our experiment 49 out of
50 subjects had never experienced a motor imagery BCI task.
Thus, a consistent portion of these naive subjects may have been
labeled as BCI illiterate (Vidaurre and Blankertz, 2010). Indeed,
our averaged performance is in line with the least performing
subject in Townsend et al. (2004). Moreover, before removing
trials with no ERD, we verify that MSM decoding performance
is similar across motor imagery tasks (i.e., foot, left and right
hand motor imagery) as measured by G-mean: 0.66 ± 0.07 for
foot, 0.61 ± 0.08 for left hand and 0.64 ± 0.07 for right hand.
Such similarity across tasks is confirmed, for every decoder, by
the large p-values (p > 0.1) of a one-way ANOVA with G-mean
as response variable and motor imagery tasks as groups.

The linear mixed-effects ANOVA tests, computed on the
trials with ERD, showed that the effect of the type of decoder
(i.e., MSM, LR 1.0 s, LR 0.5 s, LR 0.1 s) was significant on latency
[F(3) = 79.09, P < 2.2 × 10−16], on FPR [F(3) = 92.99, P <

2.2 × 10−16] and on G-mean [F(3) = 212.36, P < 2.2 × 10−16].
The magnitude and significance of all the pairwise comparisons
are shown in Table 2.

The main result is that MSM achieves the best tradeoff
between latency, FPR and G-mean, as depicted in Figure 5. The
latency of MSM is on average 155 ms shorter than that of LR 1.0 s,
with significance at P = 2.2 × 10−5; while FPR and G-mean are
not significantly different. Indeed, the estimated averages show
that MSM improves G-mean of only 1.4% with significance at
P = 0.077, and increases FPR of only 0.1% with significance at
P = 0.94. Moreover, LR 0.5 s and LR 0.1 s achieve significantly
better latency but significantly worse FPR and G-mean.

We appreciate the importance of achieving the best tradeoff
between latency, FPR andG-mean, from Figures 6, 7. The former
depicts the same left motor imagery trial as in Figure 1, while the
latter shows another example from a different subject performing
foot motor imagery. In Figure 6 we observe how MSM detects

the ERD faster than LR 1.0 s, LR 0.5 s and as quick as LR 0.1 s,
while keeping a stable output. In the example of Figure 7, when
comparing MSM with LR 1.0 s we observe that latency is shorter,
FPR is equivalent and G-mean is slightly larger due to more true
positives. On the other hand, MSM detects the ERD as quick as
LR 0.5 s, but with less false positives and more stability. Also, we
observe how unstable the output of LR 0.1 s can be.

4. DISCUSSION

We showed that, in asynchronous motor imagery detection, the
proposed MSM achieves the best tradeoff between latency of
detection, false positive rate and G-mean of true positive rate and
true negative rate. This translates into a quicker motor imagery
detection (i.e., latency) at no cost of output stability (i.e., FPR and
G-mean), compared with sliding window classifiers. On average,
the proposed MSM was able to detect an ERD 155 ms faster
than the most performant and commonly used sliding window
approach (i.e., LR 1.0 s). The main reason for such improvement
is due to the fact that the ERD is a phenomenon that occurs
abruptly, and MSM have been historically used in applications
where the latent state of a system changes suddenly (Hamilton,
2010).

Given the relatively low signal-to-noise ratio of the EEG
signal, the most realistic application of the proposed model is
BCI-based neurorehabilitation, where proprioceptive feedback
is provided by a neuroprosthesis, based on the patient’s brain
signal. The control of only one degree of freedom is typically
required, and false negatives or positives do not have the potential
of becoming disastrous. In this context, the short latency of
detection and stable output of the MSM allows for a more
reactive proprioceptive feedback and for a reduced delay of
contingent feedback. This is a desirable property, since it is
hypothesized that simultaneous contingent association between
volitionally evoked SMR and proprioceptive feedbackmay lead to

FIGURE 5 | Online performance measures of trials containing an ERD. The average measure of each individual is represented by a black dot. Panel (A) shows the

latency of detection. Panel (B) shows the false positive rate (FPR). Panel (C) shows the geometric mean (G-mean) between true positive rate (TPR) and true negative

rate (TNR). The significance of the multiple comparisons involving MSM are illustrated, while all the other comparisons are shown in Table 2.
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FIGURE 6 | Example 1 of the typical behavior of the four models. The same

left motor imagery trial as in Figure 1 is depicted. We observe that the MSM

achieves the “quickest detection”, while keeping a stable output. Panel (A)

shows the EEG voltage obtained after CSP spatial filtering in gray and the

MSM model output in red. Panels (B–D) represent the decoding associated

with sliding window lengths 1.0, 0.5, and 0.1 s, respectively. This figure follows

the same convention as in Figure 1.

superior associative learning and elicit motor learning (Ramos-
Murguialday et al., 2012, 2013).

It should be noted that the ERD does not always occur at the
cue onset, but on average it happens a few tenths of a second
later. However, the cue onset is the only ground truth available.
As a result, the average latencies shown in Figure 5A include the
intrinsic delay of ERD occurrence with respect to cue onset. Such
delay of ERD occurrence cannot be improved, and should not
be taken into account when evaluating the models. Indeed, the
relative difference among models’ latencies is the most important
aspect. In this context, the MSM is able to detect the ERD 155 ms
earlier than LR 1.0 s, meaning that the time required between the
ERD occurrence (not necessarily at time 0 s) and the detection
is 155 ms shorter, on average. In addition, associative learning is
hypothesized to occur with respect to the ERD onset, not the cue
onset.

Whether a latency reduction of 155ms is crucial for improving
temporal association, inducing neural plasticity and restoring
function is yet to be confirmed. It has been hypothesized that
the maximum proprioceptive feedback delay still inducing

FIGURE 7 | Example 2 of the typical behavior of the four models. This

example is taken from a subject performing foot motor imagery. The MSM

achieves the best tradeoff between latency, FPR and G-mean. Panel (A)

shows the EEG voltage obtained after CSP spatial filtering in gray and the

MSM model output in red. Panels (B–D) represent the decoding associated

with sliding window lengths 1.0, 0.5, and 0.1 s, respectively. This figure follows

the same convention as in Figure 1.

co-activation in Hebbian plasticity should be 200 or 300 ms,
but this remains an open question that needs to be addressed by
the community (Grosse-Wentrup et al., 2011; Xu et al., 2015).
Muralidharan et al. (2011) discussed that increasing decoding
accuracy at the expense of longer latencies (i.e., 200, 400, or
600 ms) would cause delayed neuroprosthetis activation and
may limit therapeutic benefits. Another study (Xu et al., 2014)
proposed a new method for the detection of movement-related
cortical potentials, reporting a 145 ms latency reduction. They
discussed that such an improvement is fundamental in order
to induce neuroplastic changes in closed-loop BCIs, since the
temporal association between movement-related brain signals
and the afferent input is crucial for plasticity (Mrachacz-Kersting
et al., 2012).

In the neurorehabilitation field of application, a question
arises: whether a neurological injury would have impact on the
CSP algorithm. We expect the CSP patterns to be different
between healthy subjects and patients (Lei et al., 2017). However,
previous reports of CSP-based BCI in clinical trials have shown
that the algorithm successfully finds themost discriminant spatial
filters in stroke patients (Ang et al., 2015). Therefore, retraining
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the CSP filters individually for each subject should be sufficient to
discover subject-specific patterns that are customizsed according
to the brain injury.

As for the limitations of the MSM, the computation of the
posterior probability has a time complexity of O(nm2), where
m is the number of latent variables, and n is the length of the
sequence of the observed variable. This procedure has to be
repeated for each training trial and each iteration during the
optimization of the MSM’s transition matrix. On the other hand,
the logistic regression model is not time dependent, therefore the
samples of log-transformed variance are only computed once.
This results in a large difference of calibration time between the
MSM and the sliding window logistic regressionmodel: theMSM
may take up to tens of seconds to converge, while training the
logistic regression classifier is a matter of several hundredths of a
second. However, such difference in calibration time may not be
prohibitive in practice, since subjects are usually asked to rest for
several minutes between runs.

The MSM and sliding window classifiers achieved
classification performance levels (i.e., TPR, FPR) comparable
to previous studies (Townsend et al., 2004; Muralidharan et al.,
2011). However, a similar comparison with previous literature
is more challenging with respect to the latency of detection.
This is due to the fact that, in most asynchronous ERD-based
BCI studies, latency or delay are regarded as the time required
to achieve the peak classification performance between two
classes (i.e left and right motor imagery) (Pfurtscheller et al.,
2009).

The proposed model could be applied to phenomenons other
than motor imagery, such as gait related ERD (Wagner et al.,
2012; Lisi and Morimoto, 2015) or processing of sensory and
cognitive information (Pfurtscheller and Lopes da Silva, 1999),
as long as an abrupt change in power occurs in the signal of

interest. The MSM could be extended to adaptively handle the
non-stationarities of the EEG signal (Vidaurre et al., 2011), by
means of Bayesian update techniques. It may also be possible
to handle multi-class problems: for each additional class, a new
hidden state should be included, and the Gaussian observation
models should be parameterized with a covariance rather than
a variance in order to handle multiple CSP projections. Given
the Bayesian nature of the model, we could also include priors
related to external environment, or to the current state of a
neuroprosthesis in order to achieve context-dependent behavior.
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