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Thinners are highly toxic chemicals widely employed as organic solvents in industrial and

domestic use. They have psychoactive properties when inhaled, and their chronic abuse

as inhalants is associated with severe long-term health effects, including brain damage

and cognitive-behavioral alterations. Yet, the sites and mechanisms of action of these

compounds on the brain are far from being fully understood. Here, we investigated the

consequences of paint thinner inhalation in adult male mice. Depression-like behaviors

and an anxiolytic effect were found following repeated exposure in chronic treatments

lasting 12 weeks. Both subchronic (6 weeks) and chronic treatments impaired learning

and memory functions, while no changes were observed after acute treatment. To

investigate possible molecular/structural alterations underlying such behavioral changes,

we focused on the hippocampus. Notably, prolonged, but not acute thinner inhalation

strongly affected adult neurogenesis in the dentate gyrus (DG), reducing progenitor cell

proliferation after chronic treatments and impairing the survival of newborn neurons

following both chronic and subchronic treatments. Furthermore, a down-regulation in

the expression of BDNF and NMDA receptor subunits as well as a reduction in CREB

expression/phosphorylation were found in the hippocampi of chronically treated mice.

Our findings demonstrate for the first time significant structural and molecular changes

in the adult hippocampus after prolonged paint thinner inhalation, indicating reduced

hippocampal neuroplasticity and strongly supporting its implication in the behavioral

dysfunctions associated to inhalant abuse.

Keywords: thinner inhalation, depression, anxiety, cognitive impairment, DG neurogenesis, BDNF

INTRODUCTION

Inhalant use disorder is defined as a pattern of inhaling hydrocarbon-based fumes, such as
those found in solvents or paint thinner, for the purpose of altering the mental state (5th ed.,
DSM-5, American Psychiatric Association, 2013). Paint thinners are chemical mixtures of various
halogenated and aromatic hydrocarbons (e.g., toluene, xylene, N-hexane and benzene), among
the most common abused inhalants for their psychoactive and rewarding properties (Beckley and
Woodward, 2013). Following thinner inhalation, hydrocarbon ingredients rapidly diffuse into the

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00035
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00035&domain=pdf&date_stamp=2018-02-06
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:silvia.demarchis@unito.it
https://doi.org/10.3389/fnins.2018.00035
https://www.frontiersin.org/articles/10.3389/fnins.2018.00035/full
http://loop.frontiersin.org/people/452142/overview
http://loop.frontiersin.org/people/3506/overview
http://loop.frontiersin.org/people/24667/overview


Malloul et al. Thinner Inhalation Reduces Hippocampal Neuroplasticity

blood, cross readily through the blood-brain barrier thanks to
their lipophilic properties, and produce a wide spectrum of
adverse outcomes, including acute and chronic behavioral effects
similar to those of other psychoactive drugs (Balster, 1998;
Howard et al., 2011).

Significant cognitive impairments, including altered learning,
memory, and attention, paralleled by a loss in white matter
volume, particularly in the frontal temporal lobes, are among the
symptoms reported following organic solvents chronic exposure
in humans (Fornazzari et al., 1983; Rosenberg et al., 1988; Wang
and Chen, 1993; Filley et al., 2004). Moreover, comorbidity
with other mental impairments such as mood disorders, like
major depression and antisocial personality disorder, has been
reported in association with inhalant abuse (Sakai et al., 2004;
Zubaran et al., 2010). Although inhalants are among the most
common forms of abused substances worldwide, they remain
the least studied of major drugs (Howard et al., 2011; Beckley
and Woodward, 2013), and relatively little is known on their
mechanisms of action. Over the last years, research on animal
models has began to unravel selective effects of inhalants on
common molecular targets (including several receptor systems
such as NMDA and GABA; Bowen et al., 2006; Win-Shwe and
Fujimori, 2010) and on specific neural circuits that underlie
complex behaviors, including those involved in reward and
cognition (e.g., mesolimbic and neocortical pathways; Permit
et al., 2012; Beckley and Woodward, 2013; Fifel et al., 2014;
Malloul et al., 2017). Nevertheless, further studies are needed
to get deeper insights into the cellular/molecular mechanisms
underpinning cognitive-behavioral deficits due to inhalant
abuse.

In this study, we first assessed behavioral depression-
related responses, anxiety, learning, and memory functions in
adult mice following acute or prolonged thinner inhalation.
Next, given the critical role played by adult hippocampal
neurogenesis in learning and memory (Aimone et al., 2014) and
its possible implication in disease conditions associated with
cognitive impairment, depression, anxiety, and drug abuse (Kang
et al., 2016), we characterized its alteration in paint thinner
treated mice. Finally, we measured paint thinner treatment-
induced changes in the hippocampus at the molecular level,
analyzing the expression of the plasticity-related genes BDNF,
NMDA receptor subunits and of the cAMP response element-
binding protein (CREB). Our results show drastic hippocampal
molecular/structural changes that are likely to be directly
involved in the behavioral dysfunctions associated to inhalant
abuse.

MATERIALS AND METHODS

Animals
Experiments were performed on 8-week-old male Swiss mice
bred in the central animal care facilities of the Cadi Ayyad
University, Marrakech (Morocco). Animals were maintained 5
per cage on a 12:12 light/dark cycle, with standard diet and water
ad libitum. All animal procedures were in accordance with the
European Communities Council Directive of November 24, 1986
(86/609/EEC), Recommendation 18/06/2007, Dir. 2010/63/UE.

The study received also the approval of the Council Committee
of research laboratories of the Faculty of Sciences, Cadi Ayyad
University of Marrakech.

Paint Thinner Exposure
We exposed mice to paint thinner (Sodas, Mohammed,
Morocco), whose chemical composition, determined in our
previous study (Fifel), includes more than 25 distinct molecules
among which the most representative are Toluene (24.46%),
Xylene (15.47%), Benzene (10.67%), Dichloromethylene
(6.34 %), and Acetone (5.55%).

Experimental paradigms used comprise acute (1 day),
subchronic (6 weeks), and chronic (12 weeks) treatments. For
each experimental paradigm mice were randomly divided into 3
groups (two treated and one control; n = 5 each) and placed in a
whole-body inhalation chamber as previously described (Fifel).
Briefly, 200 or 400 µl of liquid thinner was added to a filter
paper located on a glass petri dish covered by a wire mesh on
the inhalation chamber floor to obtain an estimated thinner
concentration of 300 ppm or 600 ppm respectively. Mice were
put in the whole inhalation chamber twice a day (first exposure
between 8:00 and 9:00 a.m. and second exposure 8 h later) for
two sessions of 15min (thinner was renewed at the beginning
of each session), separated by 5min interval in which mice were
returned to the home cage. The control group was maintained in
the exposure chamber for the same periods and conditions as for
treated mice, but without thinner.

Behavioral Tests
To assess depressive-like behaviors we used the tail suspension
test (TST; Steru et al., 1985) and forced-swim test (FST; Porsolt
et al., 1977); anxiety-like state of mice was evaluated by means
of the open field test (OFT; Sahay et al., 2011) and the elevated
plus maze test (EPMT; Torres and Escarabajal, 2002); memory
retention was assessed by the step-through passive avoidance
task (SPAT; Ogren and Stiedl, 2013), and recognition memory
by the object recognition test (ORT; Antunes and Biala, 2012).
The OFT, EPMT, and ORT were recorded and analyzed using
Ethovision XT Noldus 8.5 video tracking program (Noldus,
The Netherlands) connected to a video camera (JVC). The
behaviors in TST, FST, and SPAT were video-recorded (Samsung
SCO-2080R) and measured manually using the event-recording
function in the video-tracking software (Debut video capture
software, NHC). All the tests were performed between 8:00
and 12:00 a.m. to avoid any circadian related fluctuation in the
performance of the animals, starting from the day after the last
thinner exposure. To reduce the number of animals used, both in
the subchronic and chronic treatments the samemice were tested
for either FST, OFT, and ORT or for EPMT, TST, and SPAT with
an interval of 1 day between each assay.

Tail Suspension Test
Mice were suspended from a plastic rod mounted 50 cm above
the surface by fastening the tail with adhesive tape. Immobility,
defined as the absence of any limb or body movements, except
those caused by respiration, was measured during 6min.
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Forced Swim Test
Themice were gently placed in a clear rectangular glass container
(20 × 50 × 30 cm) filled with water at 30◦C. Climbing (i.e.,
front paw movements against the tank wall bringing part of the
body out of the water) and immobility (i.e., no movements of
limb, tail, or head) of the mice were scored over a period of
6min. Immediately after, each animal was removed from the
water, towel-dried, and returned to its home cage. The water
was changed and the container was cleaned in between each
experimental animal.

Open Field Test
The apparatus used for this test consisted of a simple square
enclosure field (50 × 50 × 50 cm). A 75W lamp was placed in
porthole diffusing light and located at 200 cm from the device
allowing the center of the apparatus to be under a dim light
(100 lx). At the beginning of each session, mice were placed in the
central part of the arena and the total time spent into center and
border was determined over a 10min period. The center zone is
17.5 cm from the wall of the maze, corresponding to the standard
area (Malloul et al., 2017). The apparatus was cleaned with a 75%
ethanol solution in between each trial to remove any trace of
odor.

Elevated Plus Maze Test
The maze consisted of two acrylic open arms (50 × 5 cm) and
two enclosed arms (50 × 5 × 15 cm) connected to a common
central platform (5 × 5 cm). The maze floor and the side/end
walls (15 cm height) of the enclosed arms were made of clear
Plexiglas. The apparatus was set 50 cm above floor level and
was under an approximate brightness of 200 lx. Each mouse was
placed in the center facing an open arm and left to explore the
maze for a single 5min recorded session. The percentage of time
spent in the open arms was analyzed by calculating the “time
spent in the open arms” divided by the “total time spent in both
the open and enclosed arms.” Maze was cleaned in between each
trial.

Step-through Passive Avoidance Task
The SPAT apparatus consisted of a bright (200 lx) and a dark
equally sized Plexiglas compartments (30 × 25 × 25 cm), with
independent electrical grid floor, and connected by a guillotine
door (10× 8.5 cm). The training session was carried out 24 h after
the last exposure to thinner. In the training session, each mouse
was placed in the light chamber, and as soon as the animal entered
the dark chamber, the door was closed and an unavoidable
electric foot shock (0.5mA, 5 s duration) was delivered by a
shocker through the grid floor. The animal was removed from
the chamber 10 s after receiving the shock and replaced in its
home cage. The retention of the avoidance response was tested
24 h later. In the test session, eachmouse was placed into the light
chamber and the time taken to enter the dark compartment was
measured as step-through latency. The mice that did not enter
the dark chamber during the cut-off time (180 s) were removed
from the box and assigned a ceiling score of 180 s. Short latencies
indicate poor retention.

Object Recognition Test
Mice were first habituated in the testing open field arena (50
× 50 × 50 cm) in the absence of any objects during 10min,
24 h before starting the task. The objects to be discriminated
were in plastic with three different shapes: cube, pyramid, and
cylinder. They were 3.5 cm high and could not be displaced
by the mice. During the training session, two objects selected
randomly with different shapes were presented to each mouse
for 10min. The open field area and objects were cleaned with
75% ethanol between trials to prevent the buildup of olfactory
cues. The 10 min-long test session was performed 24 h after
training; one of the same objects and a novel one were presented
to the trained mouse. The interaction of the mouse with each
object, including approaches and sniffing, was recorded by the
video tracking system. If the mouse had memory retention for an
old object, it would show preference to the novel object during
testing. The percentage preference was defined as the “time spent
investigating a specific object” divided by the “total time spent
investigating both objects.”

5-Bromo-2-Deoxyuridine Injections
For assessing proliferation, acute, subchronic and chronic treated
mice were intraperitoneally injected with a single pulse of 5-
bromo-2-deoxyuridine solution (BrdU; 100 mg/kg in 0.1M Tris,
pH 7.4; Sigma-Aldrich) 24 h after the last thinner exposure and
sacrificed 24 h later. For evaluating newborn cell survival in the
DG, BrdU was injected for seven days (one injection/day; 50
mg/kg in 0.1M Tris, pH 7.4; Sigma-Aldrich) starting from the
beginning of the subchronic treatment and on week 6 for the
chronic treatment. For both treatments, mice were allowed to
survive for further 5 weeks following the last BrdU injection.

Tissue Preparation and Sectioning
Mice were deeply anesthetized by an intraperitoneal injection of
a sodium pentobarbital (>90 mg/kg) and perfused transcardially
with 0.9% saline, followed by 4% paraformaldehyde in 0.1M
phosphate buffer (pH 7.4). Brains were removed from the skull,
post-fixed overnight in the same fixative solution, cryoprotected
in a 30% sucrose solution, frozen and cryostat sectioned (Leica
Microsystems,Milan, Italy). Forty-micrometer thick free-floating
coronal sections containing the DG were collected serially in
multiwell dishes (12 wells/animal). Sections were stored at
−20◦C in antifreeze solution until use.

Immunofluorescence
Sections were incubated 48 h at 4◦C in primary antibodies
diluted in 0.01M phosphate-buffered saline (PBS, pH 7.4),
0.5% Triton X-100 and 2% normal serum of the same
species as the secondary antibody and then incubated for
2 h in the appropriate secondary antibodies. The primary
antibodies used were: anti-BrdU (1:3000, rat, AbD Serotec, code
number OBT0030CX), anti-Ki-67 (1:1,000, rabbit, Novocastra,
code number NCL-Ki67p), anti-Ki-67 (1:500, mouse, BD
Pharmingen, code number 550609), anti-PH3 (1:1,000, rabbit,
Millipore, code number 2066052,), anti-GFAP (1:2,000, rabbit,
Dako, code number Z0334,), anti-DCX (1:1,500, goat, Santa Cruz
Biotechnology, code number Sc-8066), anti-NeuroD1 (1:400,
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goat, Santa Cruz Biotechnology, code number Sc-1804), anti-
NeuN (1:1,000, mouse, Chemicon, code number MAB377),
anti-Caspase-3(1:300, rabbit, Cell Signaling Technology, code
number D9661S). For BrdU immunostaining, sections were pre-
treated with 2N HCl for 30min at 37◦C, and neutralized with
borate buffer (pH 8.5) before incubation with anti-BrdU. For
DCX, Ki67 and NeuroD1 reactions, sections were pre-treated
with sodium citrate buffer (pH 6.0) for 10min at 95◦C. For
immunofluorescence double/triple-staining, the sections were
incubated in a mixture of primary antibodies (made in different
species) and appropriate blocking sera. For multiple labeling with
BrdU, sections were first incubated 48 h at 4◦C in anti-NeuN
and anti-GFAP primary antibodies and the appropriate serum,
and then for 2 h at room temperature in secondary antibodies.
Sections were then processed for BrdU detection following the
protocol described above. Secondary antibodies were used as
follows: donkey anti-rabbit and anti-rat Cy3-conjugated (1:800,
Jackson ImmunoResearch, code number 712-165-153); donkey
anti-goat and anti-mouse AlexaFluor 647-conjugated (1:600,
Jackson ImmunoResearch, code number 705-605-147 and 705-
605-151); donkey anti-mouse AlexaFluor 488-conjugated (1:400,
Jackson ImmunoResearch, code number 715-545-151). For
immunofluorescence reactions, sections were incubated in the
appropriate secondary antibody/ies for 2 h at room temperature

(RT), counterstained with the nuclear dye 4
′
, 6-diamidino-2-

phenylindole (DAPI) (1:1,000) then mounted on gelatine-coated
slides, air dried and cover-slipped with anti-fade mounting
mediumMowiol (4-88 reagent, Calbiochem 475904).

Microscopy and Quantifications
All cell counts were conducted blind with regards to the
experimental group. Cell counting and image analysis were
performed on either a Nikon microscope coupled with a
computer-assisted image analysis system (Neurolucida software,
MicroBrightField) or a TCS SP5 confocal microscope (Leica).
To estimate the volume of the DG granule cell layer (GCL), we
used one series of sections out of 12 per animal (i.e., n = 5/6
sections representative of the entire DG). The boundaries of the
GCL were drawn based on DAPI staining and the GCL area of
each DG was automatically calculated by Neurolucida software.
The total volume of the GCL was estimated by applying the
Cavalieri method (Prakash et al., 1994). For each analysis, one
series of sections (n = 5/6 sections) per animal was used and
the density of antigen-positive cells was calculated using the
formula D = N/[(A∗t)/106], where N is the number of counted
cells, A is the layer area (µm2) t is the thickness of the section
analyzed, and expressed as the number of positive cells per
mm3. Confocal image z-stacks were captured through the entire
slice thickness at 1µm optical steps and used for double/triple-
labeled cell counts. The mitotic index was calculated as the
fraction of mitotic cells (i.e., PH3-positive) among the Ki-67+cell
population in the SGZ/GCL. The fraction of newly generated
cells (BrdU+ cells) co-expressing either GFAP or NeuN among
all BrdU+ cells was calculated by using manual cell counting
on ImageJ software on confocal images. Double BrdU/GFAP
labeled cells were classified as radial-glia or astrocytes based
on morphological criteria (Gebara et al., 2016). To assess the

phenotype of apoptotic cells in the DG, double/triple-labeled cells
for Caspase-3, DCX, and/or NeuN, were systematically analyzed
throughout the rostral-caudal DG axis by examining two series
of sections per animal. Confocal pictures and reslicing were
assembled into panels using the Inkscape 0.91 software.

RNA Isolation, cDNA Preparation, and
Quantitative Real-Time PCR
24 h following the final thinner inhalation of chronic treatment,
RNA was extracted from hippocampus from independent groups
of control and 600 ppm exposed mice (n = 5 each). Total
RNA was isolated using RNeasy R© Mini Kit (Qiagen) according
to the manufacturer’s instructions. Retrotranscription (RT) of
1 µg total RNA was carried out in a 25 µl reaction volume
containing: 1x RT-Buffer, 0.1µg/µl bovine serum albumin (BSA),
0.05% Triton, 1mM dNTPs, 7.5µM Random Hexamer Primers,
40U RIBOlock, and 200U RevertAid R© Reverse Transcriptase
(all RT ingredients were provided by Thermo Scientific). The
reaction was performed 10min at 25◦C, 90min at 42◦C, 15min
at 70◦C. Quantitative real-time PCR (qRT-PCR) was carried
out using an ABI Prism 7300 (Applied Biosystems) detection
system. cDNA was diluted 10 fold in nuclease-free water and 5
µl (corresponding to 15 ng starting RNA) were analyzed in a 20
µl reaction volume, containing 1 × iTaq Universal SYBR Green
Supermix (BioRad) and 300 nM forward and reverse primers.
Dissociation curves were routinely performed to check for the
presence of a single peak corresponding to the required amplicon.
Analyses were performed in technical duplicate and biological
quintuplicate.

Data from qRT-PCR experiments were analyzed using the
−11Ct method for the relative quantification. The threshold
cycle number (Ct) values were normalized to the geometric
average of two endogenous housekeeping genes: TBP (TATA
box Binding Protein) and UbC (UbiquitinC), as suggested by
Vandesompele et al. (2002). As calibrator, the CT average of
control samples was used. All normalized relative quantitative
data are shown as 2−11CT. Primers were designed using Annhyb
software (http://www.bioinformatics.org/annhyb/), possibly on
different exons separated by a large (>1000 bp) intron, and
were synthesized by Invitrogen. Primer sequences are reported
in Supplementary Table 1.

Protein Extraction and Western Blot
Analysis
After RNA extraction with RNeasy R© Mini Kit (Qiagen) total
proteins were precipitated with acetone from lysates according
to the manufacturer’s instructions. In the final passage, the
protein pellet was re-suspended in 300 µl boiling Laemmli
buffer (2.5% SDS, 0.125M Tris-HCl, pH 6.8) by 1min sonication
with Bandelin Sonoplus GM2070/GM2200 (Bandelin Electronic,
Berlin, Germany), denatured at 100◦C for 3min and spun
at room temperature for 20min at 12000 rpm to discard
cell debris. Protein concentration was determined using the
Bicinchoninic Acid (BCA) Protein Assay Kit (Sigma-Aldrich)
on 1:4 diluted proteins to avoid detergent interference. Equal
amounts of proteins (30 µg) were loaded into each lane. Proteins
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were resolved by 8% SDS-PAGE, transferred to a supported
nitrocellulose membrane (Biorad, code number 162-0093) and
blocked 1 h at 37◦C in 1X TBST containing 5% nonfat milk.
Primary antibodies used are anti-phospho-CREB Ser 133 (1:1000,
rabbit, Cell Signaling, code number 9198), anti-total-CREB
(1:1000, rabbit, Cell Signaling, code number 9197,) and anti-
GAPDH (1:20000, mouse, Ambion, code number AM4300).
Secondary antibodies used are horseradish peroxidase linked
anti-rabbit (1:20000, GE Health, code number NA934) and anti-
mouse (1:40000, GE Health, code number NA931). All primary
antibodies were diluted in 1X TBS-0.1% Tween 20 (TBST)
containing 5% BSA and 0.02% sodium azide; all secondary
antibodies were diluted in 1X TBST containing 1% BSA. Bands
were quantified through Quantity One software (Biorad). Protein
phosphorylation was normalized to the total amount of the
corresponding protein (for each sample the ratio between the
phosphorylated band and the total protein was calculated) and
the result is shown in the graphic relatively to the control
samples.

Statistical Analysis
Statistical analyses were performed using Prism 5.0 for Windows
(GraphPad software). For statistical evaluations of behavioral
tests, One-way ANOVA followed by a Bonferroni post-hoc for
multiple comparisons was used. For cellular and molecular
analyses, statistical comparisons were conducted by two-tail
unpaired Student’s t-test. In all cases, significance levels were set
at p ≤ 0.05. Data are expressed as mean ± SEM. Behavioral tests
were carried out on 10 different mice in each group. Cell counts
and DG volumes are derived from at least three different animals
per group.

RESULTS

Behavioral Impairments in Mice Exposed
to Chronic/Subchronic Paint Thinner
Inhalation
To analyze the effect of paint thinner inhalation on adult
mice we first performed a set of behavioral tests assessing
depression-related responses, anxiety, learning and memory
functions. The behavioral analyses started from the day after
the last thinner exposure. The experimental design included
acute (two exposures 8 h apart in the same day), subchronic
(two exposures/day, repeated for 6 weeks), and chronic (two
exposures/day, repeated for 12 weeks) treatments (Figure 1A).
For each experimental set, two thinner concentrations (i.e., 300
and 600 ppm) were tested and the results compared to control
conditions (Figure 1A; summary of data and statistical analyses
are presented as Supplementary Table 2).

To assess depression-like behaviors we performed the TST
and FST. In the TST we found a statistically significant increase
in the time spent in immobility in chronically treated mice
[One-way ANOVA, F(2, 27) = 7.33, p = 0.003; Figure 1B].
Both thinner concentrations used induced similar increased
immobility compared to control mice (Figure 1B). However,
although subchronically treated mice showed longer immobility

time in average and One-way ANOVA indicates an effect of
treatment [F(2, 27) = 3.70, p = 0.04], Bonferroni post-hoc
comparison reveals no significant differences among groups
(Supplementary Table 2). No differences were observed in the
time spent in immobility following acute treatment [One-way
ANOVA, F(2, 27) = 0.23, p = 0.79]. In the FST, similarly to TST,
the time of immobility increased significantly only after chronic
treatments, with no dose effect [One-wayANOVA, F(2, 27) = 4.71,
p = 0.018; Figures 1C]. On the other hand, a statistically
significant decrease in the time spent for climbing behavior was
observed in mice treated with either 300 or 600 ppm of thinner
in subchronic [One-way ANOVA, F(2, 27) = 9.43, p = 0.001;
Figure 1C] and chronic [One-way ANOVA, F(2, 27) = 9.07,
p = 0.001; Figure 1C], but not acute [One-way ANOVA,
F(2, 27) = 0.24, p = 0.79] treatments (Supplementary Table
2). All together, these data suggest that signs of depression-
like behaviors start to emerge following 6 weeks of thinner
treatment and strengthen in longer exposure protocols (i.e., 12
weeks).

The OFT and EPMT were applied to assess anxiety-related
behaviors. In the OFT, mice chronically exposed to either 300
or 600 ppm of thinner spent significantly more time in the
center of the open field [One-way ANOVA, F(2, 27) = 5.22,
p = 0.012; Figures 1D], with no dose effect (Supplementary
Table 2). Similarly, chronic treatment also increased the time
spent in the open arms of the elevated plus maze [One-way
ANOVA, F(2, 27) = 6.56, p = 0.005; Figure 1E], with comparable
effects for the two thinner concentrations. The subchronic
treatment had no effect in the EPMT [One-way ANOVA,
F(2, 27) = 1.26, p = 0.301; Figure 1E], while increased the time
spent in the center of the arena in the OFT [One-way ANOVA,
F(2, 27) = 3.66, p = 0.039; Figure 1D]. However, here Bonferroni
post-hoc comparison between groups does not show statistically
significant difference (Supplementary Table 2). Finally, no change
in anxiety-related behavior was observed after acute treatment
in both OFT [One-way ANOVA, F(2, 27) = 0.09, p = 0.910;
Figure 1D] and EPMT [One-way ANOVA, F(2, 27) = 0.06,
p = 0.956], indicating that a clear anxiolytic effect only occurs
after chronic thinner exposure.

Next, we assessed the consequences of thinner exposure
on learning and memory functions by step-through passive
avoidance test (SPAT) and object recognition memory test
(ORMT) (Figures 1F,G). In the SPAT both subchronic and
chronic treatments induced a robust and significant shortening
in the step-through latency time compared to controls, with
no dose effect [One-way ANOVA, subchronic: F(2, 27) = 5.57,
p = 0.009; chronic: F(2, 27) = 8.89, p = 0.001; Figure 1F and
Supplementary Table 2]. No change in the step-through latency
time was observed following acute treatment [One-way ANOVA,
F(2, 27) = 0.26, p = 0.773]. Similarly, in the ORMT, mice acutely
exposed to thinner spent significantly more time exploring
the novel object compared to the familiar one, behaving as
control mice [One-way ANOVA, F(2, 27) = 0.46, p = 0.636;
Figure 1G]. Following chronic treatment, mice spent nearly
equal time exploring the familiar and novel objects (Figure 1G),
with a statistically significant difference when compared to
control mice [One-way ANOVA, F(2, 27) = 12.62, p = 0.001;
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FIGURE 1 | Behavioral dysfunctions in adult mice following thinner inhalation. (A) Experimental design: mice were exposed for two sessions/day 8 h apart for 1 day

(acute), 6 weeks (subchronic), or 12 weeks (chronic); treatments were followed by the behavioral tests, conducted starting from 24h after the last inhalation. (B) Time

of immobility measured during tail suspension test. (C) Climbing and immobility time calculated during forced swim test. (D) Ratio of time spent into center of the

arena in the open field test over the total time spent in the arena. (E) Ratio of time spent in the open arms over the total time spent in both the open and enclosed

arms in the elevated plus maze test. (F) step-through latency measured in step-through inhibitory avoidance test. (G) Ratio of time spent exploring the novel object

over the total time spent exploring both objects. Error bars indicate SEM (n = 10 per group). Bonferroni post-hoc, *p < 0.05, **p < 0.01, and ***p < 0.001 refer to the

control vs. treated groups comparison.

Supplementary Table 2], which spent more time exploring
the novel object. Interestingly, the subchronic treatment also
induced a significant effect in the ORMT [One-way ANOVA,
F(2, 27) = 4.67, p = 0.018], although limited to the higher
concentration used (Figure 1G and Supplementary Table 2).
Overall, our findings indicate that long term repeated exposure to
thinner negatively impacts on cognitive functions, whereas acute
thinner inhalation has no major effect on the tested behavioral
performances.

Chronic Paint Thinner Exposure Affects the
Proliferative Activity of Neural
Stem/Progenitor Cells in the Hippocampal
DG

A growing number of data correlate emotional and cognitive
abnormalities with dysfunction of the hippocampal dentate gyrus
(DG), including impaired generation of new DG neurons (Yun
et al., 2016). Indeed, the adult DG is endowed with continuous
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generation of new neurons that play a role in memory, mood,
pattern separation and reward (Jessberger et al., 2009; Noonan
et al., 2010; Denny et al., 2014; Hill et al., 2015; Danielson et al.,
2016). Adult born neurons originate from proliferation of neural
stem/progenitor cells within the sub-granular zone (SGZ) of
the DG (Aimone et al., 2014). Notably, genesis and integration
of new neurons in this region are dynamically regulated by
both environmental and physiological factors (Van Praag et al.,
1999; Kempermann, 2011, 2015). To assess the impact of thinner
inhalation on DG neurogenesis in adult mice, we first evaluated
the number of cells expressing Ki67, an endogenous marker
of cell proliferation that labels SGZ stem/progenitor cells in
the cell cycle but not in the resting phase (von Bohlen und
Halbach, 2011), in animal treated with 600 ppm compared to
controls. Our data show that chronic exposure to thinner, but not
subchronic or acute treatment, reduces the density of Ki67+ cells,
indicating impaired DG stem/progenitor proliferation (Student’s
t-test, p < 0.05; Figures 2A,B). Importantly, analysis of the DG
granule cell volume among the different experimental groups
revealed no statistically significant differences between treated
(T) and control (C) animals (acute: C = 0.336 ± 0.023 mm3,
T = 0.351 ± 0.010 mm3; subchronic: C = 0.352 ± 0.045 mm3;
T = 0.356 ± 0.029 mm3; chronic: C = 0.418 ± 0.069 mm3;
T= 0.407± 0.035 mm3; Student’s t-test, all at p > 0.05).

Interestingly, no changes in the number of cells positive for
the mitotic marker PH3 (von Bohlen und Halbach, 2011) were
found within the SGZ of chronically treated mice (Student’s t-
test, p = 0.33; Figure 2C), and the percentage of Ki67 positive
cells co-expressing PH3 showed an increase in chronically
treated compared to control mice (Student’s t-test, p < 0.05;
Figures 2D,E). On the whole, these data suggest a possible
shortening of the cell cycle of DG progenitors. To further
analyze proliferation of neural stem/progenitor cells we applied
a single pulse BrdU protocol in which animals received an
injection of BrdU the day after the last thinner exposure and
were perfused 24 h later (Figures 2F,G). After chronic treatment
exposure we found decreased density of newborn BrdU+ cells
by 46% (Student’s t-test, p < 0.05), indicating a net reduction in
progenitor proliferation. In line with the Ki67 data, no difference
was observed in the density of BrdU+ cells in acutely and
subchronically treated mice (Figure 2F).

Chronic/Subchronic Thinner Exposure
Impairs Survival of DG Newborn Neurons
We next sought to assess the impact of thinner exposure on
DG newly generated neurons. To this aim we used NeuroD1
as a marker to label early cells of the neuronal lineage
(i.e., neural committed progenitors, neuroblasts, and immature
neurons; Gao et al., 2009), and doublecortin (DCX), which
labels immature neurons in the SGZ and granule cell layer
(GCL) of the DG (von Bohlen und Halbach, 2011). We found
a net reduction in NeuroD1+ cells in chronically treated
mice (Student’s t-test, p < 0.01; Figures 3A,B). Interestingly
enough, a statistically significant decrease was also observed
following subchronic treatment (Student’s t-test, p < 0.01;
Figures 3A,B), while no changes were found in acute treatment

(Student’s t-test, p = 0.40; Figures 3A,B). Quantification of
DCX-immunostaining confirmed the same pattern, with both
subchronic and chronic treatments effective in reducing the
amount of neuronal progenitors and newborn neurons (Student’s
t-test, p < 0.05; p < 0.01, respectively; Figures 3C,D), and no
effect for acute treatment (Student’s t-test, p= 0.44).

While a decreased number of newborn neurons in chronically
treated mice could be the direct consequence of the reduced
stem/progenitor proliferation described above (Figure 2), the
results in the subchronic group clearly point to a survival effect
that could also partly contribute to the outcome of the chronic
treatment. To further evaluate the survival of neurons generated
under thinner treatment we labeled a pool of newborn cells
by multiple BrdU injections over 1 week, starting from the
beginning of the subchronic treatment and on week 6 for the
chronic treatment (Figure 4A). In both cases, animals were
analyzed at 5 weeks post-BrdU injections. Our data show a
significant decrease in the total number of BrdU+ cells both in
the subchronic (Student’s t-test, p < 0.05; Figures 4B,C) and in
the chronic (Student’s t-test, p < 0.01; Figures 4B,C) groups,
further supporting a defective survival of adult born neurons.
By triple staining for BrdU, the late post-mitotic neuron marker
NeuN and the glial marker GFAP (Figures 4D–D”; von Bohlen
und Halbach, 2011) we found that, as for control animals, also in
the treated groups the large majority of BrdU+ cells were double
positive for NeuN, while only a minority were GFAP+ with
a typical astrocytic-like morphology (Figure 4E). Moreover, no
radial-glial like cells were observed among the BrdU+/GFAP+
population. These results indicate that the proportion between
neurogenesis and astrogliogenesis is not altered by thinner
exposure.

Next, to examine whether thinner inhalation treatments
trigger programmed cell death, we evaluated the number of
apoptotic cells in theDG by counting the cells expressing caspase-
3 (Figure 5). A 3-fold significant increase in DG apoptotic cells
was found in both subchronic and chronic groups compared
to controls (Student’s t-test, p < 0.01; p < 0.05, respectively),
while no differences were observed after acute thinner inhalation
(Student’s t-test, p = 0.34). All these apoptotic cells belong to the
neuronal lineage, being either DCX+, NeuN+, or DCX/NeuN
double+ (Figures 5B,C). By comparing the caspase-3+ cells
that were positive for each marker or co-express both markers
in treated vs. control mice (Figure 5C), we show that the
amount of caspase-3+ cells expressing NeuN, but negative
for DCX, remains nearly unaltered in treated mice, while
an expansion was observed in caspase-3/DCX double+ cells
(Figure 5C), suggesting that increased cell death due to thinner
inhalation mostly involves newly born neuroblasts and immature
neurons.

Molecular Correlates of Behavioral and
Cellular Alterations in Mice Exposed to
Chronic/Subchronic Paint Thinner
Inhalation
Proliferation and survival of neural stem/progenitor cells and
newly born neurons are tightly regulated within the hippocampal
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FIGURE 2 | Chronic thinner exposure reduces neural stem/progenitor cell proliferation in the adult DG. (A) Mean of cell density of Ki67+ cells within the hippocampal

DG following acute, subchronic and chronic thinner exposure. (B) Representative confocal images of coronal DG sections with DAPI nuclear counterstain (blue)

showing Ki67+ cells in red, in control and 600 ppm-treated animals following chronic treatment. (C) Mean of cell density of PH3+ cells within the hippocampal DG

following chronic thinner exposure. (D) Percentage of double-labeled PH3+/Ki-67+ cells among Ki-67+ cells following chronic thinner exposure and in control

animals. (E) Representative confocal images of the DG showing a nucleus double stained for Ki-67 (red) and PH3 (white) with DAPI counterstaining in blue. (F) Mean

of cell density of BrdU+ cells within the hippocampal DG following acute, subchronic, and chronic thinner exposure (analysis at 24 h after BrdU injection). (G)

Representative confocal images showing BrdU+ cells (magenta) with DAPI counterstaining in blue, in control and 600 ppm-treated animals following chronic

treatment. Error bars indicate SEM (n = 4–5 per group). Student’s t-test, *p < 0.05 refers to the control vs. treated groups’ comparison. Scale bar: 50µm in (B,G);

15µm in insets; 25µm in (E).

neurogenic niche (Kempermann, 2015). In this context, we chose
to analyze the expression of the brain derived neurotrophic
factor (BDNF) and the glutamate N-Methyl-D- aspartic acid
receptor (NMDAr), that play well established cooperative
regulatory roles in adult hippocampal neuroplasticity (Duman
and Voleti, 2012; Begni et al., 2017). We first analyzed by
quantitative real-time PCR the transcripts for BDNF in the
hippocampi of mice following subchronic and chronic thinner
inhalation (Figure 6A). A significant decrease in the BDNF
mRNA expression was evident in thinner-exposed mice after
chronic inhalation (Student’s t-test, p = 0.004; Figure 6A),
while no statistically significant differences were found in the
subchronic group (Student’s t-test, p = 0.41). In addition,
no changes were observed in the mRNA expression of the
BDNF receptors TrkB and p75 (Student’s t-test, TrkB: chronic
p= 0.15; subchronic p= 0.21; p75: chronic p= 0.37; subchronic
p = 0.72; Figures 6B,C). We next investigated the expression
of NMDAr subunits NR1, NR2A, and NR2B (Figures 6D–F).
All subunits showed significantly decreased levels of mRNA
expression in mice chronically exposed to thinner, as compared
to control mice (Student’s t-test, NR1: p = 0.03; NR2A: p = 0.04;

NR2B: p = 0.04; Figures 6D–F). Although the relative mRNA
expression following subchronic treatment appeared to be lower
in average compared to controls, here the differences did
not reach statistically significant values (Student’s t-test, all at
p > 0.05).

The cAMP response element-binding protein (CREB) is one
of the best studied transcription factors acting downstream of
BDNF signaling (Reichardt, 2006) and regulating both BDNF and
NMDAr expression (Carlezon et al., 2005). We thus focused on
CREB protein levels and phosphorylation to further investigate
the effect of chronic paint thinner exposure on hippocampal
function (Figure 6G). Notably, in treated mice we found a
25% reduction in CREB protein expression (Student’s t-test,
p = 0.04; Figure 6H) and a nearly 50% decrease in the level of
its phosphorylated form (Student’s t-test, p = 0.005; Figure 6I).
Moreover, the pCREB/CREB average ratio was higher in control
than in treated mice, although this difference does not reach
statistical significance (Figure 6J, Student’s t-test, p = 0.17),
it suggests that thinner treatment negatively influences CREB
signaling not only by reducing its expression but possibly also
inhibiting its phosphorylation. The observed changes in mRNA
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FIGURE 3 | Subchronic and chronic thinner exposures affect neurogenesis in the adult DG. (A) confocal images of DG sections stained in yellow for NeuroD1 with

DAPI counterstaining (in blue) in control and 600 ppm-treated mice following acute, subchronic and chronic inhalation. (B) Mean of cell density of NeuroD1+ neurons

within the hippocampal DG in acute, subchronic and chronic groups. (C) confocal images of DG sections stained in red for DCX with DAPI counterstaining (in blue) in

control and 600 ppm-treated mice following acute, subchronic and chronic inhalation. (D) DCX+ cell density within the hippocampal DG in acute, subchronic, and

chronic groups. Error bars indicate SEM (n = 5 per group). Student’s t-test, *p < 0.05 and **p < 0.01 refer to the control vs. treated groups’ comparison. Scale bar:

50µm in (A,C).

expression for BDNF andNMDAr, together with the reduction in
CREB expression/phosphorylation (Figures 6H–J) can underlie
altered hippocampal functions, including the observed alteration
in DG neurogenesis and behavior following long term thinner
inhalation.

DISCUSSION

Abuse of inhalants is a worldwide issue, with a higher incidence
among poor/marginalized communities, affecting people of all
ages and leading to significant health and psychosocial outcomes.
Inhalants comprise different groups of chemicals, including
volatile anesthetics, nitrous oxide, alkyl nitrites, and volatile
solvents, the last being the most commonly abused class of

inhalants (Beckley and Woodward, 2013). While toluene is by
large the solvent that received much attention in basic research
studies (Cruz et al., 2014), here, to reproduce the synergistic
effects of the mixture of different aromatic hydrocarbons found
in common sources of abused solvents (e.g., spray, paint thinner,
petroleum), we exposed adult mice to paint thinner inhalation
following a previously established experimental design (Fifel).
We characterized the effects of thinner exposure on mice at
the behavioral, cellular and molecular levels, focusing on the
hippocampus, and particularly on the dentate gyrus (DG).
Indeed, neurogenesis is maintained in the adult DG where it
plays an important role in hippocampal-mediated functions (Yun
et al., 2016). In spite of the large body of literature supporting
dysfunctions of cortical and subcortical brain regions (e.g.,
nucleus accumbens and ventral tegmental area) as a consequence
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FIGURE 4 | Subchronic and chronic thinner exposures impair survival of DG newborn neurons without altering the balance between neurogenesis and

astrogliogenesis in the adult DG. (A) Experimental design: controls and 600 ppm-treated mice received multiple BrdU injections over 1 week, starting from the

beginning of the subchronic treatment and on week 6 for the chronic treatment; animals were analyzed at 5 weeks survival post-BrdU injection in both cases. (B)

Representative confocal images of the DG stained for BrdU (magenta), with DAPI counterstaining (in blue) in control and 600 ppm-treated mice (subchronic and

chronic treatments). (C) BrdU+ cell density in subchronic and chronic groups. (D) Representative confocal image of triple staining for BrdU (magenta), GFAP (white),

and NeuN (green). Insets in (D) are displayed at higher magnification with re-slicing in (D’,D”), and show a cell double-labeled for BrdU and GFAP (D’) and a cell

double-labeled for BrdU and NeuN (D”). (E) Cell density of double labeled cells for BrdU/GFAP and BrdU/NeuN among the BrdU+ cell population in subchronic and

chronic groups. Error bars indicate SEM (n = 3–4 per group). Student’s t-test, *p < 0.05 and **p < 0.01 refer to the control vs. treated groups’ comparison. Scale bar:

50µm in (B,D); 15µm in insets (D’,D”).

of volatile solvents exposure (Beckley and Woodward, 2013),
data on the effects of volatiles on the hippocampus are only
fragmentary.

The effects of acute (i.e., single-day exposure) and
prolonged (i.e., subchronic and chronic) thinner inhalation
on hippocampal-related functions in adult mice were initially
assessed through behavioral tests for depression (i.e., TST and
FST), anxiety (i.e., OFT and EPMT), learning and memory (i.e.,
SPAT and ORT). While previous studies have shown that acute

inhalant exposure on adult animals results in various alterations
in hippocampal-related behaviors immediately after treatment
(Páez-Martínez et al., 2003; Lo et al., 2009; Fifel et al., 2014),
our data clearly showed that 24 h after acute thinner exposure
none of the tested behaviors were affected, suggesting no lasting
change in the hippocampal system. Accordingly, we reported
normal levels of progenitor proliferation (Ki67+ and BrdU+

cell densities) and newborn neuron generation (NeuroD1+ and
DCX+ cell densities) in the DG of acutely treated mice.
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FIGURE 5 | Enhanced apoptosis of DG newborn neurons following subchronic and chronic thinner inhalation. (A) Caspase-3+ cell density within the hippocampal

DG in acute, subchronic and chronic groups in control and 600 ppm-treated mice. (B) Representative confocal image of the DG of a chronically treated animal labeled

for Caspase-3 (white), DCX (red), and NeuN (green). Inset in (B) is displayed at higher magnification with re-slicing in (B’) and shows a caspase-3/DCX double positive

cell, negative for NeuN. (C) Relative proportions of DCX+, NeuN+, and DCX/NeuN+ cells among the total number of Caspase-3+ cells in acute, subchronic and

chronic groups. Error bars indicate SEM (n = 5 per group). Student’s t-test, *p < 0.05 and **p < 0.01 refer to the control vs. treated groups’ comparison. Scale bar:

50µm in (B); 15µm in insets (B’).

In contrast, in a previous study, reduced Ki67+ and DCX+

cells in hippocampal DG were observed in mice acutely treated
with an intraperitoneal injection of toluene (500 mg/kg) and
analyzed 24 h and 4 days later (Seo et al., 2010), supporting in this
case impaired neurogenesis after acute treatment. Altered DG
neurogenesis in these mice was associated to a depression-like
behavior and impaired memory functions assessed in the TST,
FST, contextual fear conditioning and ORT, 24 h and 4 days after
treatment (Seo et al., 2010). However, at such short survival time
a direct causal link between altered neurogenesis and change in

hippocampal-related behavior is unlikely, considering the time
needed for a newborn neuron to functionally integrate into the
hippocampal circuit (i.e., 3–4 weeks; Aimone et al., 2014).

Decreased hippocampal neurogenesis was also found in rats,
following acute high-level toluene inhalation (i.e., exposure to
7000 ppm for 4 h; Yoon et al., 2015). Although we cannot exclude
that the use of paint thinner instead of toluene could possibly
partly justify the absence of a neurotoxic effect in the acute
treatment performed in our study, the route of administration
andmost importantly the dose/duration of inhalant exposure, are
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FIGURE 6 | Reduced BDNF, NMDA receptor subunits and CREB protein expression/phosphorylation in adult hippocampus following chronic thinner inhalation. (A–F)

Relative mRNA expression of BDNF (A), TrkB (B), p75 (C), NR1 (D), NR2A (E), and NR2B (F) in subchronic and chronic groups. The relative quantifications

(expressed as −211Ct) were obtained by quantitative real-time PCR and data were normalized to the geometric average of two endogenous housekeeping genes

(TBP and UbC). (G) Western blot panels showing pCREB and CREB protein levels in hippocampus of chronically exposed mice to 0 and 600 ppm of thinner. As

negative and positive control of CREB phosphorylation, neuronal progenitors expressing ErbB4 (Fornasari et al., 2016), untreated or treated for 15min with 10 nM

soluble Neuregulin1, were used. Molecular mass standards are expressed in kilodaltons (kDa). (H–J) The protein levels of CREB (H) and pCREB (I) determined by

using GAPDH as an internal control in chronic groups. Each data point was normalized to the control (0 ppm). CREB phosphorylation was normalized also to the total

amount of the protein (for each sample the ratio between the phosphorylated band and the total protein was calculated) and the results are shown in the graphic (J).

Error bars indicate SEM (n = 5 per group). Student’s t-test, *p < 0.05 and **p < 0.01 refer to the control vs. treated groups’ comparison.

likely to play a major role in the effect of inhalants and to explain
the observed discrepancy.

Accordingly, in the subchronic treatment, in which mice
were exposed to thinner daily for a period of 6 weeks, signs of
depressive-like behavior start to emerge in parallel to significant
alterations in memory/learning related functions as assessed
in the SPAT and ORT. These findings confirm our previous
data (Fifel et al., 2014) and are in agreement with another
study in rats showing cognitive deficits in the SPAT and
Morris water maze following a 45 days-long thinner exposure
treatment (Baydas et al., 2005a,b). In line with these behavioral
data, adult DG neurogenesis significantly decreased in the
subchronic group where we observed a reduction in both neural
committed progenitors/neuroblasts (i.e., NeuroD1+ cells) and
immature neurons (i.e., NeuroD1 and DCX+ cells), as well as
a deficit in DG newborn cell survival (i.e., BrdU long term
study) compared to controls. Moreover, we demonstrated that

subchronic thinner inhalation selectively triggers programmed
cell death in immature newborn neurons (i.e., DCX+ cells)
having no effects on hippocampal mature granule cell survival
(i.e., NeuN+ cells) and on the proliferative capacity of DG
progenitors. This highlight a major difference with a previous
study (Seo et al., 2010), in which inhibition of hippocampal
neurogenesis occurs without significant induction of apoptosis
and is mainly associated to decreased proliferation in the DG
upon a single high-dose injection of toluene. Thus, supporting
the involvement of distinct cellular/molecular mechanisms
underlying the detrimental effects of solvent exposure in the two
experimental sets, with our design being a more reliable model
for inhalant abuse.

Notably, we found that a chronic treatment, implying 12
weeks of daily thinner inhalation, induced depression-like
behaviors (i.e., TST and FST) and significant impairments in
learning/memory functions (i.e., SPAT and ORT), suggesting
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a progressive worsening of the inhalant effects with time
of exposure. In addition, the results revealed an anxiolytic
effect (i.e., OFT and EPMT) due to chronic thinner exposure.
Considerable evidence indicates that anxiety and memory are
closely linked processes (Beuzen and Belzung, 1995; Ribeiro
et al., 1999; Podhorna and Brown, 2002); the mean anxiety
level is known to facilitate efficient learning on a conditioned
passive avoidance reflex, while high and low levels lead to
suppression of memory. Therefore, based on our results, we
cannot exclude a possible impact of the anxiolytic effect on
the associative learning alterations observed in treated mice.
Although to our knowledge this is the first study assessing such
a prolonged period of inhalant exposure on animal behaviors,
several clinical reports indicate that chronic inhalant exposure
in humans produces an altered personality with significant signs
of depression, anxiety, and cognitive impairment (Maruff et al.,
1998; Cairney et al., 2002; Chouanière et al., 2002; Grant et al.,
2004; Perron and Howard, 2009). In line with the subchronic
group, also chronically treated mice showed impaired adult DG
neurogenesis. Moreover, in addition to the reduced survival
of DG newborn neurons, in this group we also observed a
significant decrease in DG progenitor proliferation. Further
studies are needed to clarify possible alterations induced by
chronic thinner inhalation on cell cycle dynamics that might
eventually produce aberrant neural stem/progenitor cell division
with long-term effect on behavior. Additionally, we found that
the expression levels of BDNF and NMDA receptors, which
are critically involved in regulating adult neurogenesis, synaptic
plasticity, and memory formation (Aimone et al., 2014; Begni
et al., 2017), are downregulated following chronic treatment.
Specifically, chronic inhalant exposure induces reduced BDNF
expression, without changing the expression levels of its
receptors TrkB and P75. However, while no significant changes
were found in the subchronic group, BDNF and TrkB were
previously reported to be overexpressed in mice exposed
to toluene (i.e., 500 ppm) for 6 h a day in subchronic
treatments (Win-Shwe and Fujimori, 2010). On the same line,
although our data clearly indicate a downregulation in NMDA
receptor subunits NR1, NR2A, and NR2B following chronic
treatment, previous studies reported increased expression of
NMDA NR2B subunit in mice chronically exposed to low
(50 ppm) toluene concentration (Ahmed et al., 2007). A
synergistic effect of the mixture of substances composing paint
thinner might underlie the observed reduction in hippocampal-
plasticity related molecules that is not observed for toluene
exposure alone. Alternatively, these contradictory results could
be due to a dose-dependent effect. Activation of postsynaptic
NMDA receptor triggers complex downstream signaling events,
including cAMP response-element binding protein (CREB)-
dependent gene transcription, which is a critical regulator of

essential developmental steps in adult neurogenesis and memory
formation (Merz et al., 2011). Moreover, CREB acts downstream
of BDNF signaling (Reichardt, 2006) and regulate in turn both
BDNF and NMDA receptor expression (Carlezon et al., 2005).
Interestingly, we showed that chronic treatment also reduces
CREB expression/phosphorylation.

Taken together, our findings add new insights in
understanding the neurobiological basis for solvent abuse,
supporting the notion that adult DG neurogenesis and more
generally hippocampal neuroplasticity are selective targets of
the negative effects induced by prolonged inhalant exposure and
play a role in the behavioral dysfunctions associated to inhalant
abuse.
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