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Here we present an application of an EEG processing pipelinecustomizing EEGLAB and
FieldTrip functions, speci�cally optimized to �exibly analyze EEG data based on single
trial information. The key component of our approach is to create a comprehensive
3-D EEG data structure including all trials and all participants maintaining the original
order of recording. This allows straightforward access to subsets of the data based
on any information available in a behavioral data structurematched with the EEG data
(experimental conditions, but also performance indicators, such accuracy or RTs of
single trials). In the present study we exploit this structure to compute linear mixed
models (LMMs, using lmer in R) including random intercepts and slopes for items. This
information can easily be read out from the matched behavioral data, whereas it might not
be accessible in traditional ERP approaches without substantial effort. We further provide
easily adaptable scripts for performing cluster-based permutation tests (as implemented
in FieldTrip), as a more robust alternative to traditional omnibus ANOVAs. Our approach
is particularly advantageous for data with parametric within-subject covariates (e.g.,
performance) and/or multiple complex stimuli (such as words, faces or objects) that vary
in features affecting cognitive processes and ERPs (such asword frequency, salience
or familiarity), which are sometimes hard to control experimentally or might themselves
constitute variables of interest. The present dataset was recorded from 40 participants
who performed a visual search task on previously unfamiliarobjects, presented either
visually intact or blurred. MATLAB as well as R scripts are provided that can be adapted
to different datasets.

Keywords: EEG, EEGLab, Linear mixed models, cluster-based pe rmutation tests, processing pipeline

INTRODUCTION

If I do something 100 times, will every time be the same? If I classify fruits as apples and pears, how
does the appearance of a particular fruit in�uence how easily I can identify it as one or the other?
How does my experience in classifying apples and pears shape my brain responses to this task? How
does variability in neural responses relate to variability in behavior?

Addressing such questions is facilitated by recent developments in statistical and signal
processing methods, paralleled by the emergence of open sourcetoolboxes implementing those
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methods. In many disciplines, ANOVAs, comparing means
between conditions at the level of participant averages are
now complemented by regression-based methods, such as linear
mixed models (LMMs, e.g.,Baayen et al., 2008) estimating
manipulation-related trial-by-trial variations in behavior and
neural correlates. Open source toolboxes, such as EEGLAB
(Delorme and Makeig, 2004), allowing for �exible, easy and
transparent access to the data, facilitate the application of such
methods to psychophysiological data (Dambacher et al., 2006;
Dimigen et al., 2011).

WHY CHANGE A WINNING TEAM?
LIMITATIONS OF TRADITIONAL
AVERAGING APPROACHES AND
SOLUTIONS

Typically, after preprocessing (re-referencing, ocular correction,
�ltering, segmentation, baseline correction, and artifact
rejection) EEG data are averaged within conditions and
participants, and these averages are then analyzed for mean
di�erences between conditions and their interactions using
repeated measures ANOVAs. Averaging serves to extract the
event-related potential (ERP) from background activity. This
traditional averaging approach has several limitations. One
of these limitations is related to the implicit assumption that
every participant's average has the same quality and that the
same number of observations constitutes each of those averages.
In practice EEG datasets often do not meet this assumption
even when equal numbers per cell are experimentally planned.
Di�erences in performance accuracy and artifact rejection
during EEG-data processing inevitably result in unequal
numbers of trials contributing to individual averages within
participants and conditions. These unequal contributions are
not considered in traditional ANOVA approaches, where every
participant's average has the same weight in all conditions. A
second limitation is related to the implicit assumption that
experimental manipulations yield uniform e�ects across all
participants and items. Random variance (individual di�erences
or variance across items) in e�ect sizes are not taken into
account. In reality, participants and items may vary substantially
in their e�ect sizes, which can lead to biases in group-level
estimates. The most severe limitation of the averaging approach
is its dependency on discrete factor levels and its resulting
inability to test for parametric e�ects. Splitting continuous
variables into categorical variables reduces statisticalpower and
might conceal nonlinear e�ects with results critically depending
on the range in which variables were sampled and the way
the variables were split (Cohen, 1983; MacCallum et al., 2002;
Baayen, 2004). Furthermore, splitting and the required matching
of other variables may result in a selection of unusual materials
(Hauk et al., 2006).

As demonstrated bySmith and Kutas (2015a), as an alternative
to averaging, ERPs can be estimated using regression procedures
and in fact the averaging method is merely a special case
of the least squares method underlying regression.Table 1
provides an overview of the commonalities and di�erences of

TABLE 1 | Comparison of methods.

ANOVA Regression LMM

Dependent
variable format

By condition and
participant averages

Single trials Single trials

Predictors Only categorical Categorical and
continuous

Categorical and
continuous

Random intercept
per participant

Yes Not standard Yes

Crossed random
effects

No No Yes

Random slopes No No Yes

ANOVA, regression and linear mixed models (LMMs). LMMs,
like regression and ANOVA, are based on the general linear
model (for an overview, seeBolker, 2008). In addition to
estimating regression weights (or contrasts) at the group level—
�xed e�ects—they also estimate systematic variance between
individuals—random e�ects. To put it simply, they jointly
estimate group e�ects and individual di�erences—the latter often
considered nuisance in experimental approaches (Cronbach,
1957). Fixed e�ects include the intercept (b0 in regression terms),
often the grand mean across all participants and conditions
(depending on contrast settings), and e�ect estimates for each
predictor (i.e., experimental condition or covariate) and speci�ed
interaction terms. Random e�ects provide estimates for the
variance of these e�ects. Not formally parameters of the model,
Best Linear Unbiased Predictors (BLUPS) are also provided that
estimate how each participant (or item) systematically varies
from those group level estimates (Baayen et al., 2008). Thus, for
each speci�ed random e�ect, BLUPS are individual participants'
estimates of those e�ects relative to the group estimate and can be
read out from the model (examples for BLUPS will be provided
in brackets along with the explanation of the corresponding
di�erent random e�ects). Random e�ects include as a minimum
random intercepts, that is how much individuals di�er from the
group intercept (the group level P3 component might have an
amplitude of 4.2mV, but R.F.'s mean amplitude might be 6.3
mV [C2.1 mV], while M.M.'s is 2.7mV [� 1.5 mV] and R.A.R's
is 3.6 mV [� 0.6 mV]). These can also be speci�ed for items,
allowing the dependent variable to vary between di�erent stimuli
(e.g., the P3 component to di�erent apples and pears might
vary depending on how prototypical a given item is for the
respective category). When random e�ects are estimated for both
individuals and items, that is referred to as crossed random e�ects
(Baayen et al., 2008). Finally, random e�ects can be speci�ed for
experimental e�ects—asrandom slopes, both by-subject or by-
item. These estimate to which degree experimental e�ects vary
between individuals or items (e.g., R.F. might show a stronger
e�ect of an uncertainty manipulation compared to the group
mean while M.M. might show a smaller e�ect). Accounting
for these additional sources of variance provides more reliable
group-level estimates (Barr et al., 2013; Matuschek et al., 2017),
but these variations might as well be exploited to investigate
how individual di�erences in experimental e�ects relate to each
other (random e�ect correlations;Kliegl et al., 2010). With these
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features, LMMs are a powerful tool to overcome the limitations
of traditional averaging approaches in ERP research (see above):

First, LMMs—performed on single trials—take all data into
account and are robust to unequal numbers of observations
per cell and even missing values (Pinheiro and Bates, 2000).
They are therefore suitable for unbalanced designs, e.g., where
participants' behavior determines the number of observations
(Fröber et al., 2017). Second, random slopes provide a means
to estimaterandomvariance in e�ect sizes while computing the
�xed group e�ect, yielding more robust estimates and avoiding
Type I errors (Barr et al., 2013; Matuschek et al., 2017). Third, in
contrast to the many observations of limited discrete sampling
points of the independent variable required by the averaging
approach, regression based approaches with fewer observations
of discrete values across a larger value range have larger power
and allow for the test of nonlinear relationships (Cohen, 1983;
MacCallum et al., 2002; Baayen, 2004). To illustrate, when
investigating the e�ect of reward on feedback related potentials,
in order to obtain reliable ERPs for each type of reward one
would need at least 30 trials of each reward magnitude. On the
other hand, in a regression-based approach, on the same overall
number of trials, reward could be varied continuously from a
given low to a given high reward, and linear, but also quadratic or
cubic e�ects of reward across that range could be tested (Frömer
et al., 2016a).

To summarize, single-trial regression-based approaches are
equivalent to the averaging approach with regard to estimating
ERPs (Smith and Kutas, 2015a). Further, LMMs as an extension
of standard regressions help account for some of the problems
posed for the application of ANOVAs, such as unequal
observations per cell (Pinheiro and Bates, 2000), variability in
e�ect sizes across individuals (Barr et al., 2013; Matuschek et al.,
2017) and items (Baayen et al., 2008), as well as unbalanced
designs (Fröber et al., 2017). We will next explore some examples
where the advantages of LMMs (as an instance of the regression
based approach) were successfully exploited to investigate ERPs.

LMMs were �rst applied to EEG data in 2011 (Amsel, 2011;
Dimigen et al., 2011), their application to psychophysiological
data was proposed long before that (Bagiella et al., 2000). In
the psycholinguistic domain, LMMs are widely used, following
the maxim that “words are people, too” (R. Kliegl, personal
communication) in the sense that, just like people, they
vary in a myriad of characteristics.Amsel (2011)investigated
the e�ects of a variety of such characteristics, e.g., semantic
richness and imageability on ERPs related to word processing,
while controlling for variables well known to a�ect word
processing, such as word length and word frequency and
crossed random e�ects.Dimigen et al. (2011)used LMMs
to control for word and sentence characteristics and crossed
random e�ects in sentence reading with simultaneous EEG
and eye tracking, showing e�ects of gaze duration, word
predictability and frequency on N400 amplitude. Since, LMMs
have been applied in active reading, to ERPs (Kornrumpf
et al., 2016) and in the time-frequency domain (Kornrumpf
et al., 2017), in the motor learning domain (Frömer et al.,
2016a,b) and in the area of cognitive control (Fröber et al.,
2017).

These are just a few selected examples meant to illustrate the
potentials of this approach. They are certainly not the only studies
applying LMMs, and other regression based approaches have
been applied and for example been combined with computational
modeling (e.g.,Cavanagh et al., 2012; Fischer and Ullsperger,
2013; Collins and Frank, 2016).

THE “WHAT” TO THE “HOW”:
DETERMINING TIME WINDOWS AND
REGIONS OF INTEREST

Choosing a statistical approach is only one decision researchers
have to make. Another, and perhaps more di�cult decision is
what data to apply this approach to. EEG data are incredibly
rich. In the present dataset, we have 65 channels and 1s of
time series at each of those, summing up to 26,000 data points
to be potentially analyzed (the 200 ms baseline excluded). This
number is not unusual for EEG experiments. Thus, determining
the right time-windows and regions of interest (ROIs) to test
group-level e�ects is a challenge. Even with clear hypotheses
on which ERP components will be a�ected by the experimental
manipulations, the selection is not trivial, because latencies
and topographical distributions can vary to a certain degree
across studies. The problem is ampli�ed when new e�ects
are explored and there is no substantial previous literature to
help develop direct hypotheses on the nature of those e�ects
(e.g., time course or spatial distribution). Especially in face
of the replication crisis, �shing expeditions that might yield
some, but in the worst-case spurious e�ects, should be avoided
(for a detailed discussion, seeLuck and Gaspelin, 2017). One
statistically robust way to determine suitable time windows and
electrode sites are cluster-based permutation tests (CBPT)as
implemented in FieldTrip (Maris and Oostenveld, 2007). In a
nutshell, this approach tests the null hypothesis that observations
for di�erent conditions are drawn from the same distribution and
are therefore exchangeable. Therefore, if observing similar e�ects
under random assignment of condition labels is highly unlikely
(less than 5% of the permutations show them), this hypothesis
is rejected and the observed condition e�ect is considered
signi�cant (Maris, 2004, 2012). The cluster-based procedure
further makes use of the EEG property that observations on
adjacent sites and time points are often correlated, because
a real e�ect most likely a�ects multiple electrodes similarly
and persists across several tens to hundreds of milliseconds
(or sampling points). While in other approaches this violates
assumptions of statistical independence, here this property is
exploited to identify spatio-temporal clusters. Samples with
positive and negativet-values (retrieved from simplet-tests at
each sensor-sample pair) exceeding a threshold (e.g.,p < 0.05
according to parametric test) are clustered separately. The added
t-values of sampling points within each cluster form the cluster-
level statistics. The largest (absolute) value from that cluster
level statistic is then compared to the permutation distribution
of maximal cluster statistics. That permutation distribution is
created by randomly assigning condition labels and runningthe
same test many times (e.g., 1,000 times), retrieving the maximum

Frontiers in Neuroscience | www.frontiersin.org 3 February 2018 | Volume 12 | Article 48

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Frömer et al. Single Trial-Based EEG Analyses with LMM

cluster statistics every time. If the maximum cluster statistic
from the real data is larger than 95% of the maximum cluster
statistics in the permutation distribution, then the null hypothesis
that the two conditions are sampled from the same distribution
is rejected. To temporally and spatially locate the e�ect, all
(absolute) cluster level statistics larger then the 95th percentile
(for a D 0.05) of the permutation distribution are then taken
to be signi�cant under the assumption that no cluster statistic
exceeds this critical value. The major advantage of this approach
is that it does not require knowledge or assumptions about the
underlying unknown distributions and that it reduces a large
quantity of comparisons down to one statistical test, reducing
Type I error probability while maintaining sensitivity. A detailed
description of the procedure and mathematical demonstrationof
its correctness are provided inMaris and Oostenveld (2007).

THE PRESENT STUDY

The goal of the present study is to facilitate the application of
regression-based methods on single-trial ERP data by providing
example code covering the whole process from data cleaning to
statistical analysis with LMMs. Thus, we present an application
of a processing pipeline integrating (1) EEG-data processing
with EEGlab (Delorme and Makeig, 2004) for data cleaning,
structuring and plotting, (2) applying cluster-based permutation-
tests as implemented in FieldTrip (Maris and Oostenveld, 2007)
for data screening and ROI selection, and (3) single-trial based
LMM analyses using the lme4 package for R (Bates et al., 2015b).
An overview of the processing pipeline is shown inFigure 1.

The data were obtained using a visual search task, in which
participants indicated the location of a deviant object in a circular
array of newly learned objects (left or right). Search arrays
were either presented intact or blurred, manipulating perceptual
certainty. Besides typical analyses of manipulation e�ects on
ERPs, here we link single-trial estimates of behavior and neural
correlates of decision-making—particularly N2 and P3b —to
demonstrate how the presented pipeline can also be employed to
investigate brain-behavior relationships. All data and scripts can
be downloaded from https://osf.io/hdxvb/.

METHODS

Participants
The �nal sample comprised 40 participants (8 male) with a
mean age of 23.82 years (SDD 5.07). Participants gave informed
consent and received course credits for their participation.

Apparatus and Stimuli
Stimuli were presented on a 4/3 1700 BenQ monitor with a
resolution of 1280 x 1024 using Presentation (Neurobehavioral
Systems, Berkeley, USA) at a viewing distance of 60 cm. Stimuli
consisted of eight rare, unfamiliar objects presented on a light
blue square producing an equal stimulus size of 2.7� visual angle
for each object stimulus. Each stimulus array contained 12 objects
(all either intact or blurred) arranged in a circle (diameter D 12�

visual angle). For blurred stimuli, a Gaussian �lter (sigmaD 10)

was applied to the original stimuli. Manual responses and RTs
were registered using custom-made response buttons.

Procedure and Design
Participants performed a visual search task while EEG was
recorded. After a short practice block participants performed
1920 trials of the visual search task, organized in 5 blocks
separated by self-paced breaks. Each trial started with the
presentation of a �xation cross at the center of the screen,
followed by the search display after 1 s. The search display
consisted of 11 identical objects and one deviant, and was
presented for 200 ms, followed by a �xation cross. Participants
indicated whether the deviant object was on the left or right
side of the display by pressing a button with their corresponding
hand's index �nger (Figure 2). Within a search display all stimuli
were visually similar (either light or dark stimulus group),and
presented either intact or blurred. Trials ended with the response
or after a time out of 2 s after search array onset. Prior to the test
session, participants had acquired knowledge about the objects
(Maier et al., 2014), which will not be investigated here.

Electrophysiological Recording and
Analyses
EEG data were recorded using brain vision recorder (Brain
Products) from 64 Ag/AgCl electrodes mounted in standard
electrode caps (Easycap) with a sampling rate of 500 Hz, and
referenced against A1. The vertical EOG was recorded below the
left eye (IO1).

EEG data analysis was conducted using Matlab (R2016a,
MathWorks Inc.) and the EEGlab toolbox (Version 13_6_5b;
Delorme and Makeig, 2004). EEG data were re-referenced
to average reference and A1 activity was retrieved. Ocular
artifacts were corrected with surrogate data based on individual
eye movements recorded separately and obtained using Brain
Electric Source Analysis (BESA 6.0) software (Ille et al.,
2002). The corrected data were �ltered (0.5 Hz low cut o�
and 40 Hz high cuto�). These steps were performed using
F01_preprocessing.m. Cleaned data were segmented from� 200
to 800 ms relative to stimulus onset and baselines were corrected
to the prestimulus interval. Segments containing artifacts, hence
values� 150mV or gradients larger than 50mV were invalidated
and thereby excluded from further analysis. All trials of all
participants were combined in a 3D matrix (channels, time
points, trials by participants), which forms the basis for all further
ERP analyses (F02_epoching_structuring.m).

Analyses
Behavioral data processing and statistical analyses other than
CBPT were conducted using R-Studio (Version 3.1.1;R Core
Team, 2014). Trials in which the deviant was on the center-top
or center-bottom positions and therefore hard to assign to either
the left or right visual �eld, and miss trials were excluded from
all analyses. Accuracy was analyzed with generalized linear
mixed models (GLMMs), �tting a binomial model (Bolker,
2008). For the linear mixed models (LMM) analyses of reaction
times (RTs) and ERPs, we further excluded trials with incorrect
responses. LMMs and GLMMs were computed with the lme4

Frontiers in Neuroscience | www.frontiersin.org 4 February 2018 | Volume 12 | Article 48

https://osf.io/hdxvb/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Frömer et al. Single Trial-Based EEG Analyses with LMM

FIGURE 1 | Flow chart of the different parts of the processing pipeline. Script names are reduced to their numbers for simplicity.

package (Bates et al., 2015b) and p-values with the lmerTest
package, using Satterthwaite approximation for degrees of
freedom. RTs were modeled using perceptual certainty (intact
vs. blurr) and deviant position (right vs. left visual �eld) as�xed
e�ects. As random e�ects we modeled random intercepts for
participants (variance in individual means across all conditions,
e.g., variance in average response time or ERP magnitude) and
object pairs (variance in means across stimuli, e.g., variance
in average response times across stimuli), as well as random
slopes for the predictors (estimates the variance in the e�ect
of a given manipulation across individuals or items). Random
e�ects not supported by the data, that is explaining zero variance
according to singular value decomposition were excluded to
prevent overparameterization (Bates et al., 2015a). For all
predictors we applied sliding di�erence contrasts, thus the
resulting estimates can be interpreted as the di�erence between
subsequent factor levels (level 2 minus level 1, e.g., intact
minus blurred). The advantage of this contrast is that the �xed
e�ect intercept (group-level mean) is estimated as the grand
average across all conditions (e.g., the empirical group-level
mean), rather than the mean of a baseline condition, as for
example for the default treatment contrast, which can cause

troubles when using multiple predictors. Single trial information
for CBPT and plotting was exported to Matlab in the same
analysis script, F00_behavioral_data_and_LMM_analyses.R.
CBPT were performed using FieldTrip (Version 20170701) in
F04_permutation tests.m based on aggregated data obtained
with F03_prep_permutation_tests.m. Relevant time windows
of the single trial EEG data, as determined using CBPT were
then exported for single trial LMM analyses using F05_export.m
(see section electrophysiology in results for speci�c time
windows and regions of interest). ERP data were plotted using
F06_plotting.m. Fixed e�ects structures of LMMs and GLMMs
were reduced stepwise by excluding non-signi�cant interaction
terms/predictors and compared using anova ratio tests until
the respectively smaller model explained the data signi�cantly
worse than the larger model (signi�cantX2-test). We further
compared and report AIC (Akaike Information Criterion) and
BIC (Bayesian Information Criterion), �t indices that are smaller
for better �tting models. Compared to AIC, BIC implements a
stronger penalty for model complexity (number of parameters).
Signi�cant interactions would be followed up by running models
with factors constituting the interaction within each other
to obtain estimates for the comparison within each level of
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FIGURE 2 | Trial schematic. After a 1 s �xation cross, a circular visual search array of 12 objects was shown. Participants indicatedwhether the deviant object was on
the left or the right side. Trials with the deviant in the top or bottom row were not analyzed.

the respective other factor. Note that for this procedure to be
accurate, these models need to be speci�ed identically to the
original model except for the nesting. For comparison, we also
provide code to obtain these with the di�smeans function from
the lmerTest package.

RESULTS

Behavior
Hit rates and reaction times are displayed inFigure 3. Reduced
perceptual certainty impaired performance, decreasing hit rates
and increasing reaction times. Hit rates were further higher in the
right compared to the left visual �eld. In both hit rates and RTs
we observed signi�cant perceptual certainty by deviant position
interactions. Model estimates are summarized inTable 2.

The upper part of the table displays the �xed e�ects for the
GLMM (left, accuracy) and LMM (right, RTs). GLMM estimates
are log-ratios and LMM estimates can be read out directly in
milliseconds. Note that in these analyses we only use categorical
predictors with two factor levels each applying sliding di�erence
contrasts, thus the estimates refer to the di�erences in means
(or changes in log-ratios in response types for GLMMs) between
factor levels (or conditions). The bottom part of the table
summarizes the random e�ects, providing standard deviations
as estimates of the variance in each component (Participant
and Item are random intercepts, respectively and indented
components below are the corresponding random slopes for
perceptual uncertainty and deviant position), and goodness of
�t estimates log likelihood and restricted maximum likelihood

(REML) deviance. We report these metrics in line with the
documentation inKliegl et al. (2013).

We followed up the signi�cant interaction by running
additional models with the two factors nested within each other
to obtain the e�ects of one factor at each level of the other
factor, respectively. For accuracy, the model with deviant position
nested within perceptual certainty revealed a signi�cant deviant
position e�ect for blurred (b D 0.41,p < 0.001), but not intact
stimuli (b D 0.22,p D 0.085). Nesting perceptual certainty within
deviant position, we obtained signi�cant e�ects for both, left (bD
1.05,p < 0.001) and right (b D 0.86,p < 0.001) deviant position.
In RTs, there was no signi�cant deviant position e�ect for either
blurred (b D � 6.57,p D 0.067) or intact stimuli (b D � 2.86,
p D 0.418). When nesting perceptual certainty within deviant
position, perceptual certainty e�ects were signi�cant for the left
(b D � 35.80,p < 0.001) and right (b D � 32.08,p D 0.001)
deviant position.

For comparison, we ran standard repeated measures ANOVA
and regression on the RT data (cf. F00 for detailed outputs
of those analyses). The ANOVA showed only a main e�ect
of perceptual certainty, while the regression showed signi�cant
main e�ects for both perceptual certainty and deviant position.
We compared AICs and BICs of regression and LMM to
assess relative �t to the data and the LMM had smaller, hence
more favorable �t indices than the regression (AIC: 565152
vs. 578335, BIC: 565249 vs. 578379). To see what drives the
di�erence between LMMs and regression, we ran two additional
LMMs: one omitting the random e�ect for items and one with
random intercepts per participant only, omitting random slopes.
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FIGURE 3 | Hit rates and reaction times by deviant position and perceptual certainty. Error bars depict 95% con�dence intervals (CI).

TABLE 2 | Effects of perceptual certainty on performance contingenton deviant position.

Variable Accuracy Reaction time

b SE z-value p-value b SE t -value p-value

Intercept 3.31 0.19 17.45 <0.001 *** 469.85 9.93 47.34 <0.001 ***

PC i - b 0.96 0.14 6.92 <0.001 *** � 33.94 5.98 � 5.68 <0.001 ***

DP r - l 0.32 0.11 2.76 0.006 ** � 4.72 3.42 � 1.38 0.174

PC: DP � 0.19 0.09 � 2.17 0.030 * 3.71 1.65 2.26 0.024 *

Variance components SD Goodness of �t SD Goodness of �t

Participants 0.89 Log likelihood -9963 53.01 Log likelihood � 281084

PC 0.35 REML deviance 19926 14.30 REML deviance 562168

DP 0.52 16.61

Stimulus 0.49 21.20

PC 0.45 21.89

DP 0.22 8.10

Residual 89.57

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left).***p < 0.001, **p < 0.01, *p < 0.05.

Both models still showed signi�cant interactions of perceptual
certainty and deviant position. The main e�ect of deviant
position emerged as a trend in the model without crossed random
e�ects and became signi�cant when omitting random slopes. The
standard error of that e�ect dropped from 3.42 in the original
model to 2.69 in the model without crossed random e�ects to
0.86 in the model with random intercept for participants only,
which is how the small e�ect yielded signi�cance. Thus, the LMM
was more sensitive than the ANOVA and more speci�c than the
ordinary regression.

For accuracy, ANOVA is not the appropriate test, so we only
ran a logistic regression in comparison. The logistic regression
on accuracy yielded the same results as the LMM with regard

to signi�cant e�ects, however, similar to the RT models, the
regression underestimated the standard errors. Further, AIC
and BIC for the GLMM were smaller than those for the
logistic regression (AIC: 19958 vs. 21938, BIC: 20100 vs. 21974),
indicating that the GLMM �ts the data better. Again, we stepwise
omitted random e�ects in the GLMM and standard errors of the
estimates approached those in the logistic regression (and sodid
AIC and BIC).

Electrophysiology
CBPTs comparing mean amplitudes over the epoch 0–800 ms
revealed that the blurred and intact stimulus conditions di�ered
signi�cantly. As shown inFigure 4, di�erences started around
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FIGURE 4 | Results of the CBPT on the main effect of perceptual certainty (blurr–intact). Electrodes that are part of clusters withp-values< 0.05 are highlighted in the
corresponding time windows.

100 ms after stimulus onset and remained throughout the
whole epoch. Three clusters underlay the signi�cant di�erence:
From 116 ms on, the blurred condition evoked more positive
amplitudes at central, parietal and frontocentral electrodesites
(p D 0.002). Furthermore, two clusters with lower amplitudes
in the blurred compared to the intact condition were observed,
between 124 and 594 ms at parietal and occipital electrodes (p D
0.002) and between 640 and 800 ms at frontal and frontocentral
electrodes (p D 0.008). Here we limit the follow-up analyses to
the fronto-central N2 between 250 and 350 ms (FC1, FC2, C1, Cz,
C2), as well as the centro-parietal P3b/CPP (CP3, CP1, CPz, CP2,
CP4, P3, Pz, P4, PO3, POz, PO4) between 400 and 550 ms. The
fronto-central N2 typically peaks between 200 and 300 ms and
is thought to re�ect fast signaling of task relevant information
and is modulated by con�ict, task engagement and surprise
(Ullsperger et al., 2014). The centro-parietal P3b is proposed to
re�ect evidence accumulation with regard to response selection
(Twomey et al., 2015) and peaks around the time of the response
in perceptual decision-making tasks (Ullsperger et al., 2014).

N2 Amplitude
To test the e�ects of our experimental manipulation on
N2 amplitude, we regressed perceptual certainty, deviant
position and their interaction on N2. The model estimates are
summarized inTable 3 and can be read out directly as mean
di�erences inmV for main e�ects. Note that the N2 is a negative
component; so negative estimates correspond to an increase in
amplitude and positive estimates to a decrease in amplitude.

Figure 5 shows the topographies separately for blurred and
intact stimuli in the left and right visual �eld, as well as the
di�erence between blurred and intact stimuli in the left and right
visual �eld, respectively. The time course at Cz is visualized in
Figure 6.

We observed a signi�cant main e�ect of perceptual certainty,
with a reduced N2 for blurred compared to intact stimuli.
Further, N2 amplitude was signi�cantly reduced for the right
compared to the left deviant position. Finally, we observed a
signi�cant interaction between perceptual certainty and deviant
position.
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TABLE 3 | Effects of perceptual certainty and deviant position on N2 amplitude.

Variable b SE t -value p-value

Intercept � 3.42 0.32 � 10.69 < 0.001 ***

PC i - b � 0.87 0.12 � 7.57 < 0.001 ***

DP r - l 0.31 0.08 3.71 < 0.001 ***

PC: DP 0.24 0.09 2.60 0.009 **

Variance
components

SD Goodness of �t

Participants 1.91 Log likelihood � 131736

PC 0.48 REML deviance 263471

DP 0.44

Stimulus 0.41

PC 0.30

Residual 4.81

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left).
***p < 0.001, **p < 0.01.

To follow up this interaction, we computed models with the
factors nested within each other. Those revealed a signi�cant
e�ect of perceptual certainty for the right (b D � 0.77, p <
0.001), and the left deviant position (b D � 1.01,p < 0.001).
The descriptively larger e�ect estimate for the left target position,
consistent with behavioral �ndings, suggests that the e�ectof
perceptual certainty was stronger when the deviant was presented
in the left visual �eld than when it was presented in the right
visual �eld. Testing deviant position e�ects nested within blurred
and intact stimuli, we observed a signi�cant deviant position
e�ect for intact (b D 0.43,p< 0.001), but only a trend for blurred
stimuli (b D 0.19,p D 0.051). Note that these comparisons can
alternatively be obtained using the di�smeans function of the
lmerTest package.

We ran ANOVA and regression for comparison. The results
are comparable across methods (see F00 for detailed outputs).
Comparing AICs and BICs, again suggests a better �t of the LMM
compared to the regression (AIC: 263499 vs. 270239, BIC: 263621
vs. 270282).

P3b
We next tested the e�ects of our experimental manipulations,
perceptual certainty and deviant position, on P3b amplitude. The
model revealed a signi�cant main e�ect of perceptual certainty,
that is P3b amplitude was reduced for blurred compared to
intact stimuli. Topographies for blurred and intact stimuli,as
well as the di�erence are displayed inFigure 7 and the time
course is visualized inFigure 8. There was no signi�cant main
e�ect of or interaction with deviant position. We therefore
reduced the model step-wise, �rst excluding the non-signi�cant
interaction and then excluding deviant position altogether.
Model comparison favored the reduced model with perceptual
certainty only,1 X2

(2) D 0.79,p D 0.673 (1 AIC D � 3, 1 BIC
D � 20). However, note that we maintained random slopes
for deviant position for participants, as removing this variance
component signi�cantly decreased model �t. This indicates that

FIGURE 5 | Topographies in the N2 time range (250–350 ms) for intact and
blurred stimuli in the left and right visual �eld, as well as respective difference
topographies. ROI electrodes are highlighted.

while there is no group level e�ect of deviant position, there are
reliable individual di�erences in this e�ect, which might re�ect
di�erences in the use of top-down information for decision-
making. The reduced model including �xed and random e�ects
estimates is summarized inTable 4.

Comparing the results of ANOVA, regression and LMM, all
methods converged to the same results. However, comparing �t
indices, LMMs again suggested to better account for the data
than ordinary regression (AIC: 257536 vs. 275627, BIC: 257641
vs. 275654).

Brain Behavior Relationship
So far, we established that showing blurred vs. intact objects in
visual search a�ects performance, N2, and P3b. Furthermore,
N2 and behavior are jointly a�ected by deviant position in
interaction with perceptual certainty. Next, we tested whether
behavior varies as a function of N2 and P3b amplitudes.

We tested the joint e�ects of N2 and P3b on accuracy and
RTs, regressing their centered amplitudes, perceptual certainty,
and deviant position on accuracy and RTs. For these analyses,
we divided all single trial amplitudes by 10, as lme4 suggested
rescaling of the variables to support model identi�ability. Thus,
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FIGURE 6 | ERP images and average ERPs at electrode Cz.(Left and Right) Show color-coded amplitudes for all trials of blurr and intact, respectively. Trials are
sorted according to RTs, marked as a black line.(Center) Average ERPs by perceptual certainty and visual �eld.

FIGURE 7 | Topographies in the P3b time window (400–550 ms) for intact and blurred stimuli, as well as the difference topography. ROI electrodes are marked as dots.

FIGURE 8 | ERP images and average ERPs at electrode Pz.(Left and Right) Show color-coded amplitudes for all trials of blurr and intact, respectively. Trials are
sorted according to RTs, marked as a black line.(Center) Average ERPs by perceptual certainty.

the estimates from these analyses relate to amplitude changes
of 10 mV. For accuracy, the full model including all predictors
and their interactions revealed no signi�cant 3-way interactions
or 4-way interaction, also, there were no signi�cant interactions
of perceptual certainty with deviant position or N2. Exclusionof
these interaction terms did not signi�cantly decrease model �t,
1 X2

(7) D 2.60,p D 0.920, and �t indices were smaller for the
reduced model (1 AIC D � 11,1 BIC D � 73). Model estimates
are summarized inTable 5.

There was no main e�ect of N2 on accuracy, but a signi�cant
interaction of N2 and deviant position. To follow up on this
e�ect, we computed a nested model to obtain estimates of N2
e�ects separately for left and right deviant positions. While
for the left deviant position,largerN2 amplitudes signi�cantly
related to higher detection likelihood (b D � 0.13,p D 0.022), for
the right deviant position, there was no signi�cant association—
if anything, smaller N2 tended to predict higher detection
likelihood (b D 0.11,p D 0.086). Accuracy further increased
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with increasing P3b amplitude. Nested models to follow up the
signi�cant interactions of P3b with perceptual certainty and
deviant position, respectively, showed signi�cant P3b e�ects
for intact (b D 0.82, p < 0.001) and blurred stimuli (b D
0. 57, p < 0.001), as well as deviants in the left (b D 0.80,
p < 0.001) and right visual �eld (b D 0.59,p < 0.001). The
overall e�ect of P3b amplitude on accuracy and the interaction
with perceptual certainty are consistent with previous �ndings

TABLE 4 | Effects of perceptual certainty and deviant position on P3bamplitude.

Variable b SE t -value p-value

Intercept 4.20 0.51 8.27 < 0.001 ***

PC i - b 1.17 0.17 6.67 < 0.001 ***

Variance
components

SD Goodness of �t

Participants 3.17 Log likelihood � 128756

PC 0.53 REML deviance 257513

DP 0.46

Stimulus 0.59

PC 0.59

Residual 4.49

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left).
***p < 0.001.

proposing a scaling of P3b amplitude with choice con�dence
(Boldt and Yeung, 2015) and the interpretation of P3b as
re�ecting evidence accumulation (Ullsperger et al., 2014; Murphy
et al., 2015; Twomey et al., 2015). We further observed a
signi�cant interaction of N2 and P3b, that is, accuracy increased
more strongly with P3b when N2 was smaller. The logistic
regression we ran in comparison obtained similar results overall
with the exception that it did not show a signi�cant interaction
of P3b and perceptual certainty. Again, �t indices were smaller
for the GLMM compared to the logistic regression (AIC: 17454
vs. 19143, BIC: 17638 vs. 19222). We ran additional GLMMs,
sequentially omitting random e�ects per item and random
slopes, to see what produces the di�erence between the two
methods. The estimate decreased when omitting the crossed
random structure and was no longer signi�cant in the model
with random intercept per participants only. Thus this e�ect
was revealed when controlling for variance in e�ects across
participants.

In the full model on RTs we observed no signi�cant 2-way
or higher order interactions between perceptual certainty and
N2, so we excluded those, which did not signi�cantly reduce
model �t, 1 X2

(6) D 7.13,p D 0.309, and �t indices were smaller
for the reduced model (1 AIC D � 5, 1 BIC D � 57). RTs
signi�cantly decreased with increasing N2 amplitude. This e�ect
was signi�cant for deviants in the left (b D 16.73,p < 0.001),
and the right visual �eld (b D 9.36,p < 0.001), as revealed with
nested models to follow up the interaction of N2 with deviant
position. The partial e�ects of this interaction on RTs, as retrieved

TABLE 5 | Joint effects of N2 and P3b amplitude, perceptual certaintyand deviant position on performance.

Accuracy Reaction time

Variable b SE z-value p-value b SE t -value p-value

Intercept 3.35 0.19 17.5 < 0.001 *** 470.00 9.23 50.92 < 0.001 ***

PC i - b 0.94 0.13 6.93 < 0.001 *** � 30.14 5.43 � 5.55 < 0.001 ***

DP r - l 0.30 0.11 2.81 < 0.001 *** � 6.15 3.59 � 1.71 0.093

N2 � 0.01 0.04 � 0.31 0.758 13.04 2.26 5.77 < 0.001 ***

P3 0.69 0.05 13.82 < 0.001 *** � 32.23 0.94 � 34.30 < 0.001 ***

PC:P3 0.25 0.09 2.69 0.007 ** 6.78 1.78 3.81 < 0.001 ***

DP:P3 � 0.21 0.09 � 2.37 0.018 * 1.38 1.80 0.76 0.444

N2:P3 0.18 0.07 2.46 0.014 * � 8.23 1.48 � 5.54 < 0.001 ***

DP:N2 0.24 0.08 2.86 0.004 ** � 7.37 1.74 � 4.24 < 0.001 ***

DP:N2:P3 – – – – 6.72 2.62 2.57 0.010 *

Variance components SD Goodness of �t SD Goodness of �t

Participants 0.92 Log likelihood � 8706 49.92 Log likelihood � 256820

PC 0.40 REML deviance 17413 14.62 REML deviance 513641

DP 0.42 18.63

N2 – 13.02

Stimulus 0.47 19.04

PC 0.40 19.33

DP 0.24 7.46

Residual 86.60

PC, Perceptual Certainty (intact – blurred); DP, Deviant Position (right – left).***p < 0.001, **p < 0.01, *p < 0.05.
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FIGURE 9 | Relationship between N2 amplitude and reaction time for left and
right deviant position. Predicted partial effects were computed with the remef
package in R, the regression line is retrieved from a local linear model �t to the
data points for illustration.

using remef (Hohenstein and Kliegl, 2014), are displayed in
Figure 9.

Moreover, we observed signi�cantly shorter RTs for larger P3b
amplitudes. This e�ect was signi�cant for blurred (b D � 35.62,
p< 0.001) and intact stimuli (bD � 28.84,p< 0.001), as obtained
with a nested model to follow up the interaction. This e�ect is
visualized inFigure 10.

In addition to these e�ects we observed signi�cant
interactions of N2 and P3b, as well as a signi�cant 3-way
interaction with deviant position. The N2 by P3b interaction
suggests a stronger RT decrease with P3b amplitude increase
when N2 amplitude is smaller (less negative). This interaction
was signi�cant for left (b D � 11.59,p < 0.001) and right
deviants (b D � 4.86,p D 0.015), as revealed by a nested model.
These e�ects, visualized inFigure 11, suggest complementary
mechanisms underlying successful performance re�ected in N2
and P3b. While both support faster performance, N2 amplitude
seems to relate more tightly to the extraction of perceptual
information, while P3b appears to relate more to the use or
integration of given information for decision-making.

A regression ran as comparison obtained signi�cant e�ects
for all terms except for the 3-way interaction, in contrast tothe
LMM, the deviant position e�ect and the deviant position by
P3b Interaction were signi�cant. Moreover, �t indices favored
LMM over regression (AIC: 513694 vs. 527163, BIC: 513929 vs.
527258). Again, to follow up the di�erences between regression
and LMM results, we reduced the random structure of the LMM.
When omitting crossed random e�ects, the deviant position

FIGURE 10 | Relationship between centered P3b amplitude and RTs for
blurred and intact stimuli. Predicted partial effects werecomputed with the
remef package in R, the regression line is retrieved from a local linear model �t
to the data points for illustration.

e�ect became signi�cant, as in the regression. Further omitting
random slopes per participant rendered the 3-way interaction to
a non-signi�cant trend. However, even in the random intercept
only model, we did not obtain a signi�cant deviant position by
P3b interaction, suggesting that this e�ect in the regression is
produced by random intercept variance (note that even in the
regression the estimate is only 3.49, which is very small even
though it's twice the size of the LMM estimate).

To summarize, using single trial based LMM analyses, we
obtained mostly comparable results to ANOVA and regression.
When results di�ered, LMMs were more sensitive than ANOVAs
and both more sensitive and more speci�c than regressions.
The brain behavior analyses were further only applicable with
single trial ERPs and hence LMMs and regression. Here, using
continuous predictors, as for categorical predictors in the other
analyses, LMMs outperformed ordinary regression.

DISCUSSION

The present study illustrates the advantages of single trial based
analyses of EEG and behavioral data. As we could show, the
ERP components meaningfully and di�erentially relate to trial-
by-trial variations in behavior beyond variability causedby
our experimental manipulations. This would not have been
revealed using a traditional averaging approach. Therefore,while
the present analyses are of exploratory nature, they highlight
the �exibility of single-trial-based approaches in general and
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FIGURE 11 | Interaction effects on RT.(Left) Interaction of P3b and N2 amplitude on RT.(Right) Interaction of P3b and N2 amplitude on RT by deviant position.In
both panels, P3b amplitude is color-coded. Note that ERPs are centered and amplitudes are divided by ten. Random effectsand the �xed effect of perceptual
certainty were removed using remef.

demonstrate the applicability of our processing pipeline in
particular.

(When) Should You Use This Approach?
Why would you use complicated single-trial based LMM analyses
of ERP data in simple orthogonal designs? As outlined in the
introduction, ERP data often lack equal observations per cell,
and individual di�erences in e�ect sizes, potentially biasinggroup
estimates, are overlooked in averaging approaches. Further,as is
well established in psycholinguistics, di�erent stimuli canvary in
characteristics unrelated to the experimental manipulations that
might confound the e�ects of interest. As outlined byBaayen
et al. (2008), this is not only true for words, but all naturalistic
stimuli randomly drawn from a large population, such as objects,
faces, artifacts or scenes. Thus, LMMs with crossed random
e�ects would bene�t every study using naturalistic stimuli.

While so far this pipeline has only been used for the analyses
of distinct time windows (Frömer et al., 2016a,b; Fröber et al.,
2017), the resulting data structure also allows for multiple robust
regression on multiple time points to analyze the time course of
e�ects (Hauk et al., 2006, 2009; Fischer and Ullsperger, 2013).
However, bear in mind that only LMMs simultaneously account
for random e�ects and might as well be conducted at multiple
time points and electrodes. However then, robust estimates
of Type I error need to be assessed. Statistical signi�cance
for LMMs can also be estimated using Markov chain Monte
Carlo (MCMC) sampling, which would be more appropriate for
multiple comparisons (Baayen et al., 2008).

Experimenters are encouraged to use parts of this pipeline
according to their needs and personal taste. For instance, while
we prefer procedures other than ICA for ocular correction and

objective thresholds over investigator-dependent subjective data
cleaning procedures (that might sometimes be more accurate
and sometimes less), others might want to use a di�erent
preprocessing routine and only use some of the other parts of
the pipeline. The modular way the pipeline is set up allows for
�exibly swapping components for other approaches.

Limitations
While the present approach circumvents some of the problems of
traditional averaging approaches, it is still subject to others, such
as component overlap. Speci�cally, and a problem of all methods
applying statistical tests of multiple variables on local ERP
distributions (e.g., mean amplitude at a ROI or peak amplitudes),
the statistically observed e�ects are not necessarily distributed
the way the ERP component of interest is. Statistically reliable
e�ects might as well stem from a spatially overlapping di�erent
ERP component (C. B. Holroyd, 2015, personal communication).
For LMM analyses, a simple proof of principle is to run the
�nal model on all electrodes and to plot the topography of the
�xed e�ects estimates to visually examine whether they show the
expected distribution. More sophisticated approaches, in the time
domain on a single electrode rather than in the spatial domain at
a given time window, have been described bySmith and Kutas
(2015b).

While the cluster based permutation approach is not subject
to this limitation, its present implementation is only applicable
to categorical variables with few factor levels. For screening and
determining relevant time windows and recording sites, this
problem could be circumvented by constructing median splits
for parametric variables of interest and testing the main e�ects
based on those categorical factors. However, as discussed in
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the introduction, this approach reduces statistical power and
assumes linear scaling of the e�ects under investigation, which
experimenters should bear in mind (Cohen, 1983; MacCallum
et al., 2002; Baayen, 2004). Further, CBPT as implemented here
operates on participant averages and therefore holds the same
problems as other approaches aggregating within subjects and
conditions �rst. Therefore, results from CBPT might di�er from
those obtained using LMMs with a better control of additional
sources of variance. Last but not least, the CBPT is rather
conservative in some cases, such as small, local e�ects (Luck and
Gaspelin, 2017). However, it can be a valuable tool to objectively
narrow down the amount of data to submit to further analyses
and thereby decreaseinvestigator degrees of freedomand the risk
of Type I errors. An extension of this approach to single-trial
based regression (possibly LMM) analyses would be a valuable
methodological contribution to robust e�ect estimation and
future research.

CONCLUSION

The present processing pipeline integrates open source toolboxes
for EEG data processing, EEGLAB (Delorme and Makeig, 2004)
and FieldTrip (Oostenveld et al., 2011), and statistical analyses,
lme4 (Bates et al., 2015b). It uses a single-trial regression based
approach, circumventing limitations of traditional averaging
approaches, while trying to maintain objectivity with regard
to what data the analyses are applied to and thereby reducing
investigator degrees of freedom. While some limitations remain,
we consider this approach a major improvement compared to
traditional ERP approaches and a good starting point for the
development of even better analysis tools.
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