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Here we present an application of an EEG processing pipelineustomizing EEGLAB and
FieldTrip functions, speci cally optimized to exibly antyze EEG data based on single
trial information. The key component of our approach is to @ate a comprehensive
3-D EEG data structure including all trials and all particgmts maintaining the original
order of recording. This allows straightforward access to gbsets of the data based
on any information available in a behavioral data structun@matched with the EEG data
(experimental conditions, but also performance indicata; such accuracy or RTs of
single trials). In the present study we exploit this structe to compute linear mixed
models (LMMs, using Imer in R) including random interceptsral slopes for items. This
information can easily be read out from the matched behaviai data, whereas it might not
be accessible in traditional ERP approaches without substaial effort. We further provide
easily adaptable scripts for performing cluster-based penutation tests (as implemented
in FieldTrip), as a more robust alternative to traditionahanibus ANOVAs. Our approach
is particularly advantageous for data with parametric wiih-subject covariates (e.g.,
performance) and/or multiple complex stimuli (such as worgl faces or objects) that vary
in features affecting cognitive processes and ERPs (such aword frequency, salience
or familiarity), which are sometimes hard to control experientally or might themselves
constitute variables of interest. The present dataset wasecorded from 40 participants
who performed a visual search task on previously unfamiliazbjects, presented either
visually intact or blurred. MATLAB as well as R scripts are pvided that can be adapted
to different datasets.

Keywords: EEG, EEGLab, Linear mixed models, cluster-based pe  rmutation tests, processing pipeline

INTRODUCTION

If | do something 100 times, will every time be the same? If Isifpéruits as apples and pears, how
does the appearance of a particular fruit in uence how easilgn entify it as one or the other?
How does my experience in classifying apples and pears shape inydsponses to this task? How
does variability in neural responses relate to variabilitipéhavior?

Addressing such questions is facilitated by recent developsnan statistical and signal
processing methods, paralleled by the emergence of open smait®xes implementing those
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methods. In many disciplines, ANOVAs, comparing meansTABLE 1 | Comparison of methods.
between conditions at the level of participant averages are

. . ANOVA Regression LMM
now complemented by regression-based methods, such as linea
mixe_d quels (LMMS'_ e'g'Ba_ayen _et_al" gom&stim_ating Dependent By condition and Single trials Single trials
manipulation-related trial-by-trial variations in behavri and  variable format  participant averages
neural correlates. Open source toolboxes, such as EEGLARdictors Only categorical Categorical and Categorical and
(Delorme and Makeig, 2004 allowing for exible, easy and continuous continuous
transparent access to the data, facilitate the applicatioructi s Random intercept Yes Not standard ~ Yes
methods to psychophysiological dat@gmbacher et al., 2006; Per participant
Dimigen et al., 2011 Crossed random  No No Yes
effects
Random slopes No No Yes
WHY CHANGE A WINNING TEAM?
LIMITATIONS OF TRADITIONAL
AVERAGING APPROACHES AND ANOVA, regression and linear mixed models (LMMs). LMMs,
SOLUTIONS like regression and ANOVA, are based on the general linear

model (for an overview, se&olker, 2008 In addition to

Typically, after preprocessing (re-referencing, ocularection, estimating regression weights (or contrasts) at the grewel—
Itering, segmentation, baseline correction, and artifac xed e ects—they also estimate systematic variance between
rejection) EEG data are averaged within conditions andndividuals—andom e ects To put it simply, they jointly
participants, and these averages are then analyzed for meastimate group e ects and individual di erences—the lattéen
di erences between conditions and their interactions usingconsidered nuisance in experimental approach@so(ibach,
repeated measures ANOVAs. Averaging serves to extract tH€57. Fixed e ects include the interceplbq in regression terms),
event-related potential (ERP) from background activity. SThi often the grand mean across all participants and conditions
traditional averaging approach has several limitations. Onélepending on contrast settings), and e ect estimates foheac
of these limitations is related to the implicit assumption tha predictor (i.e., experimental condition or covariate) and G
every participant's average has the same quality and that tleteraction terms. Random e ects provide estimates for the
same number of observations constitutes each of thosege®ra variance of these e ects. Not formally parameters of the model
In practice EEG datasets often do not meet this assumptioBest Linear Unbiased Predictors (BLUPS) are also provided that
even when equal numbers per cell are experimentally plannedstimate how each participant (or item) systematically &arie
Di erences in performance accuracy and artifact rejectionfrom those group level estimateBgayen et al., 2008Thus, for
during EEG-data processing inevitably result in unequakach speci ed random e ect, BLUPS are individual participants'
numbers of trials contributing to individual averages with estimates of those e ects relative to the group estimate ande
participants and conditions. These unequal contributiong ar read out from the model (examples for BLUPS will be provided
not considered in traditional ANOVA approaches, where evenin brackets along with the explanation of the corresponding
participants average has the same weight in all conditions. i erent random e ects). Random e ects include as a minimum
second limitation is related to the implicit assumption thatrandom interceptshat is how much individuals di er from the
experimental manipulations yield uniform e ects across allgroup intercept (the group level P3 component might have an
participants and items. Random variance (individual di eresc amplitude of 4.2mV, but R.F.'s mean amplitude might be 6.3
or variance across items) in e ect sizes are not taken intonV [C2.1mV], while M.M.s is 2.7mV [ 1.5mV] and R.A.R's
account. In reality, participants and items may vary subsédiyt is 3.6mV [ 0.6 mV]). These can also be specied for items,
in their e ect sizes, which can lead to biases in group-leveallowing the dependent variable to vary between di erent stim
estimates. The most severe limitation of the averaging amproa (e.g., the P3 component to di erent apples and pears might
is its dependency on discrete factor levels and its resultingary depending on how prototypical a given item is for the
inability to test for parametric e ects. Splitting continuous respective category). When random e ects are estimated ftir bo
variables into categorical variables reduces statigtimaer and  individuals and items, that is referred to as crossed rand@tte
might conceal nonlinear e ects with results critically depémg ~ (Baayen et al., 200&inally, random e ects can be speci ed for
on the range in which variables were sampled and the wagxperimental e ects—asandom slopesoth by-subject or by-
the variables were splitCohen, 1983; MacCallum et al., 2002;item. These estimate to which degree experimental e ects vary
Baayen, 2004Furthermore, splitting and the required matching between individuals or items (e.g., R.F. might show a stronger
of other variables may result in a selection of unusual maler e ect of an uncertainty manipulation compared to the group
(Hauk et al., 2006 mean while M.M. might show a smaller e ect). Accounting

As demonstrated bgmith and Kutas (2015zas an alternative for these additional sources of variance provides more byledia
to averaging, ERPs can be estimated using regression presedugroup-level estimateB@rr et al., 2013; Matuschek et al., 2017
and in fact the averaging method is merely a special cadmit these variations might as well be exploited to investigate
of the least squares method underlying regressidable 1  how individual di erences in experimental e ects relate to bac
provides an overview of the commonalities and di erences obther (random e ect correlationsliegl et al., 201)) With these
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features, LMMs are a powerful tool to overcome the limitations These are just a few selected examples meant to illustrate the
of traditional averaging approaches in ERP research (see abov@otentials of this approach. They are certainly not the onlylgts
First, LMMs—performed on single trials—take all data intoapplying LMMs, and other regression based approaches have
account and are robust to unequal numbers of observationseen applied and for example been combined with computational
per cell and even missing valueBirfheiro and Bates, 2000 modeling (e.g.Cavanagh et al., 2012; Fischer and Ullsperger,
They are therefore suitable for unbalanced designs, etgrew 2013; Collins and Frank, 20).6
participants' behavior determines the number of observation
(Frober et al., 2007 Second, random slopes provide a means u " “ .
to estimaterandomvariance in e ect sizes while computing the THE "WHAT" TO THE "HOW™:
xed group e ect, yielding more robust estimates and avoidingDETERMINING TIME WINDOWS AND
Type | errors Barr et al., 2013; Matuschek et al., 20Third, in ~ REGIONS OF INTEREST
contrast to the many observations of limited discrete santplin
points of the independent variable required by the averagin@€hoosing a statistical approach is only one decision researche
approach, regression based approaches with fewer observatidra/e to make. Another, and perhaps more di cult decision is
of discrete values across a larger value range have larger powhat data to apply this approach to. EEG data are incredibly
and allow for the test of nonlinear relationshipSd¢hen, 1983; rich. In the present dataset, we have 65 channels and 1s of
MacCallum et al., 2002; Baayen, 200%Fo illustrate, when time series at each of those, summing up to 26,000 data points
investigating the e ect of reward on feedback related potdsti to be potentially analyzed (the 200 ms baseline excluded). This
in order to obtain reliable ERPs for each type of reward on@wumber is not unusual for EEG experiments. Thus, determining
would need at least 30 trials of each reward magnitude. On thihe right time-windows and regions of interest (ROIs) to test
other hand, in a regression-based approach, on the same bvergtoup-level e ects is a challenge. Even with clear hypotheses
number of trials, reward could be varied continuously from aon which ERP components will be a ected by the experimental
given low to a given high reward, and linear, but also quadmt  manipulations, the selection is not trivial, because laec
cubic e ects of reward across that range could be testedrier and topographical distributions can vary to a certain degree
etal., 2016a across studies. The problem is amplied when new e ects
To summarize, single-trial regression-based approaches aaee explored and there is no substantial previous literatare t
equivalent to the averaging approach with regard to estingatinhelp develop direct hypotheses on the nature of those e ects
ERPs &mith and Kutas, 201)aFurther, LMMs as an extension (e.g., time course or spatial distribution). Especially in face
of standard regressions help account for some of the problents the replication crisis, shing expeditions that might yield
posed for the application of ANOVAs, such as unequakome, but in the worst-case spurious e ects, should be avoided
observations per cellP(nheiro and Bates, 20Q0variability in  (for a detailed discussion, séeick and Gaspelin, 20).70ne
e ect sizes across individualBérr et al., 2013; Matuschek et al., statistically robust way to determine suitable time windoand
2017 and items Baayen et al., 20)8as well as unbalanced electrode sites are cluster-based permutation tests (CBBT)
designsftrober et al., 200)7We will next explore some examples implemented in FieldTrip {laris and Oostenveld, 20R7In a
where the advantages of LMMs (as an instance of the regressiontshell, this approach tests the null hypothesis that obgema
based approach) were successfully exploited to investigate ERRor di erent conditions are drawn from the same distributiome
LMMs were rst applied to EEG data in 201Rifsel, 2011; are therefore exchangeable. Therefore, if observingaimiécts
Dimigen et al., 201)] their application to psychophysiological under random assignment of condition labels is highly ualik
data was proposed long before th&agiella et al., 2000In  (less than 5% of the permutations show them), this hypothesis
the psycholinguistic domain, LMMs are widely used, followings rejected and the observed condition e ect is considered
the maxim that “words are people, too” (R. Kliegl, personakigni cant (Maris, 2004, 2002 The cluster-based procedure
communication) in the sense that, just like people, theyfurther makes use of the EEG property that observations on
vary in a myriad of characteristicéimsel (2011)investigated adjacent sites and time points are often correlated, because
the e ects of a variety of such characteristics, e.g., seimanta real e ect most likely a ects multiple electrodes similarly
richness and imageability on ERPs related to word processingnd persists across several tens to hundreds of milliseconds
while controlling for variables well known to aect word (or sampling points). While in other approaches this violates
processing, such as word length and word frequency andssumptions of statistical independence, here this property is
crossed random e ectsDimigen et al. (2011)used LMMs exploited to identify spatio-temporal clusters. Samples with
to control for word and sentence characteristics and crdssepositive and negative-values (retrieved from simpletests at
random e ects in sentence reading with simultaneous EE&ach sensor-sample pair) exceeding a threshold (@g.0.05
and eye tracking, showing e ects of gaze duration, wordaccording to parametric test) are clustered separately. THedad
predictability and frequency on N400 amplitude. Since, LMMg-values of sampling points within each cluster form the cluster-
have been applied in active reading, to ERRr(irumpf level statistics. The largest (absolute) value from thastelu
et al., 201p and in the time-frequency domainKornrumpf level statistic is then compared to the permutation distributi
et al.,, 201), in the motor learning domain Kromer et al., of maximal cluster statistics. That permutation distributids
2016a,p and in the area of cognitive controlF(ober et al., created by randomly assigning condition labels and runrtimg
2017. same test many times (e.g., 1,000 times), retrieving thermar
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cluster statistics every time. If the maximum cluster stidi  was applied to the original stimuli. Manual responses and RTs
from the real data is larger than 95% of the maximum clustewere registered using custom-made response buttons.
statistics in the permutation distribution, then the null pgthesis
that the two conditions are sampled from the same distribatio Procedure and Design
is rejected. To temporally and spatially locate the e ect, alParticipants performed a visual search task while EEG was
(absolute) cluster level statistics larger then the 95ticgmtile recorded. After a short practice block participants performed
(for a D 0.05) of the permutation distribution are then taken 1920 trials of the visual search task, organized in 5 blocks
to be signi cant under the assumption that no cluster statist separated by self-paced breaks. Each trial started with the
exceeds this critical value. The major advantage of this a@mpro presentation of a xation cross at the center of the screen,
is that it does not require knowledge or assumptions about théollowed by the search display after 1s. The search display
underlying unknown distributions and that it reduces a larg consisted of 11 identical objects and one deviant, and was
guantity of comparisons down to one statistical test, redgci presented for 200 ms, followed by a xation cross. Participants
Type | error probability while maintaining sensitivity. A déled indicated whether the deviant object was on the left or right
description of the procedure and mathematical demonstratibn side of the display by pressing a button with their corresponding
its correctness are provided aris and Oostenveld (2007) hand's index nger Figure 2). Within a search display all stimuli
were visually similar (either light or dark stimulus ground
presented either intact or blurred. Trials ended with thepasse
THE PRESENT STUDY or after a time out of 2 s after search array onset. Prior to &t t
Fession, participants had acquired knowledge about the @bjec

The goal of the present study is to facilitate the application o Maier et al., 201} which will not be investigated here.

regression-based methods on single-trial ERP data by proyidi
example code covering the whole process from data cleaning I‘-‘Electrophysiological Recording and
statistical analysis with LMMs. Thus, we present an applicaticr){ll\nal ses

of a processing pipeline integrating (1) EEG-data processi g y

with EEGIab Delorme and Makeig, 2004or data cleaning, PE% df‘ta fwere6;e‘2’r;’:dci‘5i|”9tbrgi” vision tr‘;c‘?rdetr ('Zrag‘
structuring and plotting, (2) applying cluster-based permidat roducts) from gIAgLl electrodes mounted In standar

tests as implemented in FieldTrip/@ris and Oostenveld, 20p7 eltfactrodedcaps_ (Eaiic?r%) W'th_a lsggg“ng rate 0253%;‘23’ and
for data screening and ROI selection, and (3) single-triakdas referenced against Al. The vertica was recorde wt

- left eye (101).
LMM analyses using the Ime4 package foERies et al., 2015b . .
An overview of the processing pipeline is showrFigure 1 EEG data analysis was conducted using Matlab (R2016a,

The data were obtained using a visual search task, in whicI\P4|ath\/\/Orks Inc.) anq the EEGlab toolbox (Version 13_6_5b;
participants indicated the location of a deviant object inraglar Delorme and Makeig, 2004 EEG .df"“a were rg-referenced
array of newly learned objects (left or right). Search asrayto average reference an_d Al activity was retnevet_j. chlar
were either presented intact or blurred, manipulating percaptu artifacts were corrected with surrogate data bas_ed on |Qda1 .
certainty. Besides typical analyses of manipulation e ects oft® movements recorde_d separately and obtained using Brain
ERPs, here we link single-trial estimates of behavior andaleu Electric Source Analysis (BESA 6.0) softwafte (et al.,
correlates of decision-making—particularly N2 and P3b _t02002). The corected data were Hered (0.5Hz low cut o

demonstrate how the presented pipeline can also be employed O(i 40Hz h'gh. cuto )dThess dsteps were perforrr(njefcé{ﬁ%smg
investigate brain-behavior relationships. All data andsrcan Sagreprocltes.smg.m.. (Tane ata v(\;ebre selgmente i
be downloaded from https://osf.io/hdxvb. to ms relative to stimulus onset and baselines were dedec

to the prestimulus interval. Segments containing artifaloence
values 150mV or gradients larger than 50V were invalidated

METHODS and thereby excluded from further analysis. All trials of al
.. participants were combined in a 3D matrix (channels, time
Participants points, trials by participants), which forms the basis for attfier

The nal sample comprised 40 participants (8 male) with appp analyses (FO2_epoching_structuring.m).
mean age of 23.82 yeaBD 5.07). Participants gave informed - -

consent and received course credits for their participation. Analyses
_ ] Behavioral data processing and statistical analyses otlaar th
Apparatus and Stimuli CBPT were conducted using R-Studio (Version 3.R1Core

Stimuli were presented on a 4/3 ®BenQ monitor with a Team, 201} Trials in which the deviant was on the center-top
resolution of 1280 x 1024 using Presentation (Neurobelaliio or center-bottom positions and therefore hard to assign thesi
Systems, Berkeley, USA) at a viewing distance of 60 cm. $timthe left or right visual eld, and miss trials were excludedrfro
consisted of eight rare, unfamiliar objects presented orghtli all analyses. Accuracy was analyzed with generalized linear
blue square producing an equal stimulus size of 2i3ual angle mixed models (GLMMs), tting a binomial model Kolker,

for each object stimulus. Each stimulus array containeddj@ats  2009. For the linear mixed models (LMM) analyses of reaction
(all either intact or blurred) arranged in a circle (diamef@ 12 times (RTs) and ERPs, we further excluded trials with incdrrec
visual angle). For blurred stimuli, a Gaussian lter (sigd0) responses. LMMs and GLMMs were computed with the Ime4
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4 N
Preparing data frame 5 ; : 3 :
FOO Reading in log files, making data frame (creating new variables,
(line 1-133) adjusting variable types), outlier correction, export for EEG analysis
\ D4
4 A
EEG preprocessing
FO1 Re-referencing (average reference), ocular correction (BESA), filtering
\ J/
4 N
Setting up EEG matrix Segmentation, baseline correction, artifact detection, invalidation of
FO2 artifact trials, combining all participants’ data to one 3D matrix
(electrodes, time points, trials*participants)
\ 9%
4 N
CBPT - - . .
Condition and participant wise aggregation of data (FO3) for cluster
FO3/F04 . Ny .
based permutation testing in fieldtrip (FO4)
\ /
4 N
Export : : —y o "
F05 Generating 2D matrix (electrodes by trials*participants) by aggregating
across relevant sampling points and export for statistical analysis in R
\ /
4 A
ERP curves and topos
FO6 Visualization of condition-differences in ERP curves and topographies
\ J
4 N
Analysis and Figures . .
F0O LMM analyses of behavioral variables and ERP components,
(line 134 - end) visualization of effects
L AN J

FIGURE 1 | Flow chart of the different parts of the processing pipelineScript names are reduced to their numbers for simplicity.

package Bates et al., 201pland p-values with the ImerTest troubles when using multiple predictors. Single trial infortioa
package, using Satterthwaite approximation for degrees &r CBPT and plotting was exported to Matlab in the same
freedom. RTs were modeled using perceptual certainty (inta@nalysis script, FOO0_behavioral_data_and_LMM_analyses.R.
vs. blurr) and deviant position (right vs. left visual eld) aed  CBPT were performed using FieldTrip (Version 20170701) in
e ects. As random e ects we modeled random intercepts forFO4_permutation tests.m based on aggregated data obtained
participants (variance in individual means across all cands, with FO3_prep_permutation_tests.m. Relevant time windows
e.g., variance in average response time or ERP magnitude) aofithe single trial EEG data, as determined using CBPT were
object pairs (variance in means across stimuli, e.g., veeianthen exported for single trial LMM analyses using FO5_export.m
in average response times across stimuli), as well as randdisee section electrophysiology in results for specic time
slopes for the predictors (estimates the variance in the e eavindows and regions of interest). ERP data were plotted using
of a given manipulation across individuals or items). RandonF06_plotting.m. Fixed e ects structures of LMMs and GLMMs
e ects not supported by the data, that is explaining zero vaancwere reduced stepwise by excluding non-signi cant inteiacti
according to singular value decomposition were excluded téerms/predictors and compared using anova ratio tests until
prevent overparameterizationBétes et al., 201paFor all the respectively smaller model explained the data signi gantl
predictors we applied sliding dierence contrasts, thus theworse than the larger model (signi car2-test). We further
resulting estimates can be interpreted as the di erence bettwe compared and report AIC (Akaike Information Criterion) and
subsequent factor levels (level 2 minus level 1, e.g.,tintaBIC (Bayesian Information Criterion), tindices that aresller
minus blurred). The advantage of this contrast is that thedx for better tting models. Compared to AIC, BIC implements a

e ect intercept (group-level mean) is estimated as the grandtronger penalty for model complexity (number of parameters).
average across all conditions (e.g., the empirical grougklevSigni cant interactions would be followed up by running mdde
mean), rather than the mean of a baseline condition, as fowith factors constituting the interaction within each othe
example for the default treatment contrast, which can caust obtain estimates for the comparison within each level of
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4 ~— or '

& &
& o Intact Blurred
— > —
Fixation: -~ + -
1000 ms & e
& &
& &
Visual search +

array: 200 ms

Fixation: until reaction,
max 1800 ms

FIGURE 2 | Trial schematic. After a 1s xation cross, a circular visualearch array of 12 objects was shown. Participants indicatedvhether the deviant object was on
the left or the right side. Trials with the deviant in the toprabottom row were not analyzed.

the respective other factor. Note that for this procedure to bdREML) deviance. We report these metrics in line with the
accurate, these models need to be specied identically to thdocumentation inKliegl et al. (2013)

original model except for the nesting. For comparison, we also We followed up the signi cant interaction by running
provide code to obtain these with the di smeans function from additional models with the two factors nested within eachesth

the ImerTest package. to obtain the e ects of one factor at each level of the other
factor, respectively. For accuracy, the model with deviantjoosi

RESULTS nested within perceptual certainty revealed a signi cantidet/
position e ect for blurred o D 0.41,p < 0.001), but not intact

Behavior stimuli (b D 0.22,p D 0.085). Nesting perceptual certainty within

Hit rates and reaction times are displayedRigure 3. Reduced deviant position, we obtained signi cant e ects for both, tigh D
perceptual certainty impaired performance, decreasing hésat 1.05,p< 0.001) and rightl§ D 0.86,p < 0.001) deviant position.
and increasing reaction times. Hit rates were further highehe  In RTs, there was no signi cant deviant position e ect for eithe
right compared to the left visual eld. In both hit rates and KT blurred o D 6.57,p D 0.067) or intact stimulilp D 2.86,
we observed signi cant perceptual certainty by deviant positi p D 0.418). When nesting perceptual certainty within deviant
interactions. Model estimates are summarizedétle 2 position, perceptual certainty e ects were signi cant for thedt|
The upper part of the table displays the xed e ects for the(b D 35.80,p < 0.001) and righti§ D 32.08,p D 0.001)
GLMM (left, accuracy) and LMM (right, RTs). GLMM estimates deviant position.
are log-ratios and LMM estimates can be read out directly in For comparison, we ran standard repeated measures ANOVA
milliseconds. Note that in these analyses we only use catajo and regression on the RT data (cf. FOO for detailed outputs
predictors with two factor levels each applying sliding di ecen of those analyses). The ANOVA showed only a main e ect
contrasts, thus the estimates refer to the di erences in nsearnof perceptual certainty, while the regression showed signitca
(or changes in log-ratios in response types for GLMMs) betweemain e ects for both perceptual certainty and deviant position.
factor levels (or conditions). The bottom part of the tableWe compared AICs and BICs of regression and LMM to
summarizes the random e ects, providing standard deviationsissess relative t to the data and the LMM had smaller, hence
as estimates of the variance in each component (Participamore favorable t indices than the regression (AIC: 565152
and Item are random intercepts, respectively and indenteds. 578335, BIC: 565249 vs. 578379). To see what drives the
components below are the corresponding random slopes fati erence between LMMs and regression, we ran two additional
perceptual uncertainty and deviant position), and goodness dfMMs: one omitting the random e ect for items and one with
t estimates log likelihood and restricted maximum liketibd random intercepts per participant only, omitting random slopes.
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FIGURE 3 | Hit rates and reaction times by deviant position and perceptal certainty. Error bars depict 95% con dence intervals (CI)

TABLE 2 | Effects of perceptual certainty on performance contingentn deviant position.

Variable Accuracy Reaction time
b SE z-value p-value b SE t-value p-value
Intercept 3.31 0.19 17.45 <0.001 rkk 469.85 9.93 47.34 <0.001 ok
PCi-b 0.96 0.14 6.92 <0.001 okk 33.94 5.98 5.68 <0.001 okk
DPr-1| 0.32 0.11 2.76 0.006 *x 4.72 3.42 1.38 0.174
PC: DP 0.19 0.09 2.17 0.030 * 3.71 1.65 2.26 0.024 *
Variance components SD Goodness of t SD Goodness of t
Participants 0.89 Log likelihood -9963 53.01 Log likelihod 281084
PC 0.35 REML deviance 19926 14.30 REML deviance 562168
DP 0.52 16.61
Stimulus 0.49 21.20
PC 0.45 21.89
DP 0.22 8.10
Residual 89.57

PC, Perceptual Certainty (intact — blurred); DP, Deviant Position (righ left). ***p < 0.001, **p < 0.01, *p < 0.05.

Both models still showed signi cant interactions of percegdtu to signi cant e ects, however, similar to the RT models, the
certainty and deviant position. The main e ect of deviantregression underestimated the standard errors. Furthé€ A
position emerged as a trend in the model without crossed ramdo and BIC for the GLMM were smaller than those for the
e ects and became signi cant when omitting random slopes. Thdogistic regression (AIC: 19958 vs. 21938, BIC: 20100 93421
standard error of that e ect dropped from 3.42 in the original indicating that the GLMM ts the data better. Again, we stepavis
model to 2.69 in the model without crossed random e ects toomitted random e ects in the GLMM and standard errors of the
0.86 in the model with random intercept for participants only, estimates approached those in the logistic regression (adibiso
which is how the small e ect yielded signi cance. Thus, the LMMAIC and BIC).
was more sensitive than the ANOVA and more speci c than the
ordinary regression. Electrophysiology

For accuracy, ANOVA is not the appropriate test, so we onfCBPTs comparing mean amplitudes over the epoch 0-800 ms
ran a logistic regression in comparison. The logistic regioes  revealed that the blurred and intact stimulus conditionsed2d
on accuracy yielded the same results as the LMM with regarsigni cantly. As shown inFigure 4, di erences started around
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FIGURE 4 | Results of the CBPT on the main effect of perceptual certaigt(blurr—intact). Electrodes that are part of clusters with-values< 0.05 are highlighted in the
corresponding time windows.

100ms after stimulus onset and remained throughout theN2 Amplitude

whole epoch. Three clusters underlay the signi cant di erenc To test the eects of our experimental manipulation on
From 116 ms on, the blurred condition evoked more positiveN2 amplitude, we regressed perceptual certainty, deviant
amplitudes at central, parietal and frontocentral electraites position and their interaction on N2. The model estimates are
(p D 0.002). Furthermore, two clusters with lower amplitudessummarized inTable 3 and can be read out directly as mean
in the blurred compared to the intact condition were obseryveddi erences inmV for main e ects. Note that the N2 is a negative
between 124 and 594 ms at parietal and occipital electrqu®s ( component; so negative estimates correspond to an increase in
0.002) and between 640 and 800 ms at frontal and frontockntramplitude and positive estimates to a decrease in amplitude.
electrodes D 0.008). Here we limit the follow-up analyses to  Figure 5 shows the topographies separately for blurred and
the fronto-central N2 between 250 and 350 ms (FC1, FC2, C1, Antact stimuli in the left and right visual eld, as well as the
C2), as well as the centro-parietal P3b/CPP (CP3, CP1, CRz, CHi erence between blurred and intact stimuli in the left anidint
CP4, P3, Pz, P4, PO3, POz, PO4) between 400 and 550 ms. Tisal eld, respectively. The time course at Cz is visualized i
fronto-central N2 typically peaks between 200 and 300 ms aniigure 6.

is thought to re ect fast signaling of task relevant infortizen We observed a signi cant main e ect of perceptual certainty,
and is modulated by conict, task engagement and surprisevith a reduced N2 for blurred compared to intact stimuli.
(Ullsperger et al., 20)4The centro-parietal P3b is proposed to Further, N2 amplitude was signi cantly reduced for the right
re ect evidence accumulation with regard to response select compared to the left deviant position. Finally, we observed a
(Twomey et al., 20)%and peaks around the time of the responsesigni cant interaction between perceptual certainty and idew

in perceptual decision-making tasksl(sperger et al., 20)4 position.

Frontiers in Neuroscience | www.frontiersin.org 8 February 2018 | Volume 12 | Article 48



Fromer et al. Single Trial-Based EEG Analyses with LMM

TABLE 3 | Effects of perceptual certainty and deviant position on N2 mplitude.

Variable b SE t-value p-value
Intercept 3.42 0.32 10.69 <0.001 il
PCi-b 0.87 0.12 7.57 <0.001 okk
DPr-1| 0.31 0.08 3.71 <0.001 ok
PC: DP 0.24 0.09 2.60 0.009 *x
Variance SD Goodness of t
components
Participants 1.91 Log likelihood 131736

PC 0.48 REML deviance 263471

DP 0.44
Stimulus 0.41

PC 0.30
Residual 4.81

PC, Perceptual Certainty (intact — blurred); DP, Deviant Position (righ left).
**p < 0.001, *p < 0.01.

To follow up this interaction, we computed models with the
factors nested within each other. Those revealed a signi ca
e ect of perceptual certainty for the righto(D 0.77,p <
0.001), and the left deviant positiolo © 1.01,p < 0.001).
The descriptively larger e ect estimate for the left targetipos,
consistent with behavioral ndings, suggests that the e ett
perceptual certainty was stronger when the deviant was predent
in the left visual eld than when it was presented in the right
visual eld. Testing deviant position e ects nested withirubled _ _ )

. . ) L. . .. FIGURE 5 | Topographies in the N2 time range (250-350 ms) for intact and
and intact Stlmu“’ we observed a signi cant deviant pOSﬂtIO blurred stimuli in the left and right visual eld, as well as spective difference
e ectforintact (0 D 0.43p< 0.001), but only a trend for blurred | topographies. ROI electrodes are highlighted.
stimuli (b D 0.19,p D 0.051). Note that these comparisons ca
alternatively be obtained using the di smeans function dfet
ImerTest package.

We ran ANOVA and regression for comparison. The resultswhile there is no group level e ect of deviant position, there ar
are comparable across methods (see FOO for detailed outputsgliable individual di erences in this e ect, which might rect
Comparing AICs and BICs, again suggests a better tof the LMMili erences in the use of top-down information for decision-
compared to the regression (AIC: 263499 vs. 270239, BIC22636making. The reduced model including xed and random e ects

vs. 270282). estimates is summarized rable 4
Comparing the results of ANOVA, regression and LMM, all
P3b methods converged to the same results. However, comparing t

We next tested the e ects of our experimental manipulationsjndices, LMMs again suggested to better account for the data
perceptual certainty and deviant position, on P3b amplitude. Théhan ordinary regression (AIC: 257536 vs. 275627, BIC: £2b76
model revealed a signi cant main e ect of perceptual certajnty vs. 275654).

that is P3b amplitude was reduced for blurred compared to

intact stimuli. Topographies for blurred and intact stimuis  Brain Behavior Relationship

well as the dierence are displayed Figure 7 and the time  So far, we established that showing blurred vs. intact ¢bjiec
course is visualized ifrigure 8 There was no signi cant main visual search a ects performance, N2, and P3b. Furthermore,
e ect of or interaction with deviant position. We therefore N2 and behavior are jointly aected by deviant position in
reduced the model step-wise, rst excluding the non-sigaint  interaction with perceptual certainty. Next, we tested wieeth
interaction and then excluding deviant position altogether behavior varies as a function of N2 and P3b amplitudes.

Model comparison favored the reduced model with perceptual We tested the joint e ects of N2 and P3b on accuracy and
certainty only,1 X(22) D 0.79,p D 0.673 LAIC D 3,1BIC RTs, regressing their centered amplitudes, perceptual ogytai

D 20). However, note that we maintained random slopesnd deviant position on accuracy and RTs. For these analyses,
for deviant position for participants, as removing this vagan we divided all single trial amplitudes by 10, as Ime4 suggested
component signi cantly decreased model t. This indicatést  rescaling of the variables to support model identi abilityhds,
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FIGURE 6 | ERP images and average ERPs at electrode C£Left and Right) Show color-coded amplitudes for all trials of blurr and intet, respectively. Trials are
sorted according to RTs, marked as a black line(Center) Average ERPs by perceptual certainty and visual eld.

FIGURE 7 | Topographies in the P3b time window (400-550 ms) for intactrad blurred stimuli, as well as the difference topography. RCelectrodes are marked as dots.

FIGURE 8 | ERP images and average ERPs at electrode P£Left and Right) Show color-coded amplitudes for all trials of blurr and intet, respectively. Trials are
sorted according to RTs, marked as a black line(Center) Average ERPs by perceptual certainty.

the estimates from these analyses relate to amplitude changesThere was no main e ect of N2 on accuracy, but a signi cant
of 10 mV. For accuracy, the full model including all predictors interaction of N2 and deviant position. To follow up on this
and their interactions revealed no signi cant 3-way inteians e ect, we computed a nested model to obtain estimates of N2
or 4-way interaction, also, there were no signi cant intetians e ects separately for left and right deviant positions. While
of perceptual certainty with deviant position or N2. Exclusimin ~ for the left deviant positionjarger N2 amplitudes signi cantly
these interaction terms did not signi cantly decrease mlotle  related to higher detection likelihoodh@© 0.13,pD 0.022), for

1 X(27) D 2.60,p D 0.920, and t indices were smaller for the the right deviant position, there was no signi cant assaoiat—
reduced model{ AIC D 11,1BICD 73). Model estimates if anything, smaller N2 tended to predict higher detection
are summarized ifable 5 likelihood (b D 0.11,p D 0.086). Accuracy further increased
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with increasing P3b amplitude. Nested models to follow up theroposing a scaling of P3b amplitude with choice con dence
signi cant interactions of P3b with perceptual certainty and(Boldt and Yeung, 20)5and the interpretation of P3b as
deviant position, respectively, showed signi cant P3b e ectse ecting evidence accumulationJ(lsperger et al., 2014; Murphy
for intact (b D 0.82,p < 0.001) and blurred stimulil D et al.,, 2015; Twomey et al.,, 201%e further observed a
0. 57,p < 0.001), as well as deviants in the ldft D 0.80, signi cantinteraction of N2 and P3b, that is, accuracy ieased
p < 0.001) and right visual eldif D 0.59,p < 0.001). The more strongly with P3b when N2 was smaller. The logistic
overall e ect of P3b amplitude on accuracy and the interactiorregression we ran in comparison obtained similar results alver
with perceptual certainty are consistent with previous nding with the exception that it did not show a signi cant interacti
of P3b and perceptual certainty. Again, t indices were smalle
for the GLMM compared to the logistic regression (AIC: 17454
vs. 19143, BIC: 17638 vs. 19222). We ran additional GLMMs,
TABLE 4 | Effects of perceptual certainty and deviant position on P3lamplitude. sequentially omitting random e ects per item and random
slopes, to see what produces the dierence between the two
Variable b SE t-value p-value methods. The estimate decreased when omitting the crossed
random structure and was no longer signi cant in the model

20 0. 8.2 0.00 . X . ;
'mercept 4 ot ! <0001 with random intercept per participants only. Thus this e ect
PCi-b 1.17 0.17 6.67 <0.001 . ) .
was revealed when controlling for variance in e ects across
Variance SD Goodness of t participants. o
components In the full model on RTs we observed no signi cant 2-way
or higher order interactions between perceptual certaintg an
Participants 317 Log likelihood 128756 N2, so we excluded those, which did not signi cantly reduce
PC 0.53 REML deviance 257513 model t, 1 X26 D 7.13,p D 0.309, and t indices were smaller
bP 0.46 for the reduced model (AIC D 5, 1BIC D 57). RTs
Stimulus 059 signi cantly decreased with increasing N2 amplitude. Thisce
pC 0.59 was signi cant for deviants in the lefto(D 16.73,p < 0.001),
Residual 4.49 and the right visual eld b D 9.36,p < 0.001), as revealed with
PC, Perceptual Certainty (intact — blurred); DP, Deviant Position (righ left). nes_t(:_'\d models tq follow up th'e |_nteract|_on of N2 Wlth_ deviant
*p < 0.001. position. The partial e ects of this interaction on RTs, as ieved

TABLE 5 | Joint effects of N2 and P3b amplitude, perceptual certaintyand deviant position on performance.

Accuracy Reaction time

Variable b SE z-value p-value b SE t-value p-value
Intercept 3.35 0.19 17.5 <0.001 il 470.00 9.23 50.92 < 0.001 ok
PCi-b 0.94 0.13 6.93 < 0.001 bl 30.14 5.43 5.55 <0.001 ok
DPr-I 0.30 0.11 2.81 < 0.001 bl 6.15 3.59 1.71 0.093
N2 0.01 0.04 0.31 0.758 13.04 2.26 5.77 <0.001 ok
P3 0.69 0.05 13.82 < 0.001 ok 32.23 0.94 34.30 <0.001 ok
PC:P3 0.25 0.09 2.69 0.007 ki 6.78 1.78 3.81 <0.001 ok
DP:P3 0.21 0.09 2.37 0.018 * 1.38 1.80 0.76 0.444
N2:P3 0.18 0.07 2.46 0.014 * 8.23 1.48 5.54 <0.001 ok
DP:N2 0.24 0.08 2.86 0.004 o 7.37 1.74 4.24 <0.001 ok
DP:N2:P3 - - - - 6.72 2.62 2.57 0.010 *
Variance components SD Goodness of t SD Goodness of t
Participants 0.92 Log likelihood 8706 49.92 Log likelihood 256820

PC 0.40 REML deviance 17413 14.62 REML deviance 513641

DP 0.42 18.63

N2 - 13.02
Stimulus 0.47 19.04

PC 0.40 19.33

DP 0.24 7.46
Residual 86.60

PC, Perceptual Certainty (intact — blurred); DP, Deviant Position (righ left). ***p < 0.001, **p < 0.01, *p < 0.05.
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FIGURE 9 | Relationship between N2 amplitude and reaction time for lefind FIGURE 10 | Relationship between centered P3b amplitude and RTs for
right deviant position. Predicted partial effects were comuted with the remef blurred and intact stimuli. Predicted partial effects wereomputed with the
package in R, the regression line is retrieved from a locahgar model t to the remef package in R, the regression line is retrieved from adal linear model t
data points for illustration. to the data points for illustration.

using remef Hohenstein and Kliegl, 20)4are displayed in © ect became signi cant, as in the regression. Further omgt
Figure 9. random slopes per participant rendered the 3-way interaction to
Moreover, we observed signi cantly shorter RTs for largel P3 @ hon-signi cant trend. However, even in the random intepte
amplitudes. This e ect was signi cant for blurreb® 35.62, ©only model, we did not obtain a signi cant deviant position by
p< 0.001) and intact stimulifD 28.84p< 0.001), as obtained P3b interaction, suggesting that this e ect in the regress®
with a nested model to follow up the interaction. This e ect is Produced by random intercept variance (note that even in the
visualized inFigure 10 regression the estimate is only 3.49, which is very smal eve
In additon to these eects we observed signicantthough its twice the size of the LMM estimate).
interactions of N2 and P3b, as well as a signicant 3-way 10 summarize, using single trial based LMM analyses, we
interaction with deviant position. The N2 by P3b interaction obtained mostly comparable results to ANOVA and regression.
Suggests a Stronger RT decrease with P3b amp"tude increéé/@en results di ered, LMMs were more sensitive than ANOVAs
when N2 amplitude is smaller (less negative). This intecacti and both more sensitive and more specic than regressions.
was signicant for left b D 11.59,p < 0.001) and right The brain behavior analyses were further only applicable with
deviants b D 486'p D 0015)’ as revealed by a nested modeﬁingle trial ERPs and hence LMMs and regression. Here, Using
These e ects, visualized iRigure 11, suggest complementary continuous predictors, as for categorical predictors in thieeo
mechanisms underlying successful performance re ectedan Nanalyses, LMMs outperformed ordinary regression.
and P3b. While both support faster performance, N2 amplitude
seems to relate more tightly to the extraction of perceptual
information, while P3b appears to relate more to the use oD|SCUSSION
integration of given information for decision-making.
A regression ran as comparison obtained signi cant e ectsThe present study illustrates the advantages of single tasét
for all terms except for the 3-way interaction, in contrastthe analyses of EEG and behavioral data. As we could show, the
LMM, the deviant position e ect and the deviant position by ERP components meaningfully and di erentially relate to trial-
P3b Interaction were signi cant. Moreover, t indices favat  by-trial variations in behavior beyond variability causég
LMM over regression (AIC: 513694 vs. 527163, BIC: 513929 vaur experimental manipulations. This would not have been
527258). Again, to follow up the di erences between regogssi revealed using a traditional averaging approach. Therefange
and LMM results, we reduced the random structure of the LMM.the present analyses are of exploratory nature, they highlight
When omitting crossed random e ects, the deviant positionthe exibility of single-trial-based approaches in generadan
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FIGURE 11 | Interaction effects on RT(Left) Interaction of P3b and N2 amplitude on RT(Right) Interaction of P3b and N2 amplitude on RT by deviant positionn
both panels, P3b amplitude is color-coded. Note that ERPs a centered and amplitudes are divided by ten. Random effectand the xed effect of perceptual
certainty were removed using remef.

demonstrate the applicability of our processing pipeline inobjective thresholds over investigator-dependent subjectata

particular. cleaning procedures (that might sometimes be more accurate
) and sometimes less), others might want to use a dierent
(When) Should You Use This Approach? preprocessing routine and only use some of the other parts of

Why would you use complicated single-trial based LMM analysehe pipeline. The modular way the pipeline is set up allows for
of ERP data in simple orthogonal designs? As outlined in theexibly swapping components for other approaches.
introduction, ERP data often lack equal observations per, cell
and individual di erencesin e ectsizes, potentially biasipgup ~ Limitations
estimates, are overlooked in averaging approaches. Fuathé, While the present approach circumvents some of the problems of
well established in psycholinguistics, di erent stimuli caary in  traditional averaging approaches, it is still subject to osheuch
characteristics unrelated to the experimental manipulatitimat  as component overlap. Speci cally, and a problem of all methods
might confound the e ects of interest. As outlined Baayen applying statistical tests of multiple variables on local ERP
et al. (2008)this is not only true for words, but all naturalistic distributions (e.g., mean amplitude at a ROI or peak amplitudes)
stimuli randomly drawn from a large population, such as objectsthe statistically observed e ects are not necessarily Oisteid
faces, artifacts or scenes. Thus, LMMs with crossed randothe way the ERP component of interest is. Statistically rediabl
e ects would bene t every study using naturalistic stimuli. e ects might as well stem from a spatially overlapping di erent
While so far this pipeline has only been used for the analysdsRP component (C. B. Holroyd, 2015, personal communication).
of distinct time windows Eromer et al., 2016a,b; Frober et al.,For LMM analyses, a simple proof of principle is to run the
2017, the resulting data structure also allows for multiple rebu nal model on all electrodes and to plot the topography of the
regression on multiple time points to analyze the time courke oxed e ects estimates to visually examine whether they shioev t
e ects (Hauk et al., 2006, 2009; Fischer and Ullsperger, 013expected distribution. More sophisticated approaches, in the ti
However, bear in mind that only LMMs simultaneously accountdomain on a single electrode rather than in the spatial domain a
for random e ects and might as well be conducted at multiplea given time window, have been describedSyith and Kutas
time points and electrodes. However then, robust estimate®015b)
of Type | error need to be assessed. Statistical signi cance While the cluster based permutation approach is not subject
for LMMs can also be estimated using Markov chain Monteto this limitation, its present implementation is only applicabl
Carlo (MCMC) sampling, which would be more appropriate for to categorical variables with few factor levels. For sirngeand
multiple comparisonsHaayen et al., 2008 determining relevant time windows and recording sites,sthi
Experimenters are encouraged to use parts of this pipelingroblem could be circumvented by constructing median splits
according to their needs and personal taste. For instancée wh for parametric variables of interest and testing the main ¢sec
we prefer procedures other than ICA for ocular correction andbased on those categorical factors. However, as discussed i
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the introduction, this approach reduces statistical power anlAUTHOR CONTRIBUTIONS
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