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Increasing evidence indicates that the phase pattern and power of the low frequency
oscillations of brain electroencephalograms (EEG) contain significant information during
the human cognition of sensory signals such as auditory and visual stimuli. Here, we
investigate whether and how the letters of the alphabet can be directly decoded from
EEG phase and power data. In addition, we investigate how different band oscillations
contribute to the classification and determine the critical time periods. An English letter
recognition task was assigned, and statistical analyses were conducted to decode the
EEG signal corresponding to each letter visualized on a computer screen. We applied
support vector machine (SVM) with gradient descent method to learn the potential
features for classification. It was observed that the EEG phase signals have a higher
decoding accuracy than the oscillation power information. Low-frequency theta and
alpha oscillations have phase information with higher accuracy than do other bands. The
decoding performance was best when the analysis period began from 180 to 380 ms
after stimulus presentation, especially in the lateral occipital and posterior temporal scalp
regions (PO7 and PO8). These results may provide a new approach for brain-computer
interface techniques (BCI) and may deepen our understanding of EEG oscillations in
cognition.

Keywords: brain-computer interface, support vector machine (SVM), human brain, theta-band oscillation, visual
cortex

INTRODUCTION

The past decade has witnessed great developments in brain-computer interfaces (BCls), aiming
to help severely physically impaired patients interact with the external world through tasks such
as typing letters of the English alphabet on a computer for communication. Studies have applied
stimulus-evoked brain electroencephalogram (EEG) or electrocorticography (ECoG) signals,
especially event-related potentials (ERPs) with P300 responses (Zhang et al., 2013) and steady-state
visually evoked potentials (SSVEP) (Won et al., 2014; Nezamfar et al., 2016), to discriminate
stimulus characteristics such as letters. There is increasing evidence that the frequency-related
phase pattern and power of neural oscillations may code significant sensory information relevant to
human perception of the external world, especially in low-frequency bands (Luo and Poeppel, 2007;
Schyns et al., 2011; Wang et al., 2012; ten Oever and Sack, 2015). Luo et al. (Luo and Poeppel, 2007)
demonstrated that the phase pattern of theta-band (5-8 Hz) activities from the human auditory
cortex contains information used to discriminate spoken sentence signals. Their findings indicated
a approximately 200 ms time window (approximately 5 Hz within the theta rhythm) that may be
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critical for discrete perceptive processes. Subsequent phase-
decoding studies in audio perception have observed that a similar
oscillation frequency range (3~7Hz) is dominant in spoken
sentence recognition (Luo and Poeppel, 2007; Howard and
Poeppel, 2010; Wang et al., 2012; Ng et al., 2013; ten Oever
and Sack, 2015). Ng et al. (2013) demonstrated that stimuli can
be discriminated by the firing rates and phase patterns but not
by the oscillation amplitude. Another recent study presented
evidence that syllables with varying visual-to-auditory delays are
preferably processed at different oscillatory phases (ten Oever
and Sack, 2015). Wang et al. (2012) employed the scalp tangential
electric field and the surface Laplacian operator around the
auditory cortical area to improve the recognition rate of English
phonemes. They built a complicated bootstrap-based method
that achieved 53% accuracy for all eight phonemes and showed
that phase sequences performed better. also revealed that changes
in the amplitude (Worden et al., 2000; van Dijk et al., 2008)
and phase (Vanrullen et al., 2011) of ongoing alpha activities
(9-12Hz) several hundred milliseconds before a stimulus can
modulate the visual discrimination level. In fact, more recent
evidence suggests that decreased alpha power may be tightly
correlated to the increase in the visual baseline excitability level,
which may serve to improve task performance (Lange et al., 2013;
Iemi et al., 2017).

The above studies suggest the importance of the frequency,
phase, and amplitude of slow oscillatory activities in object
representation and categorization (Fries et al., 2007; Schyns et al.,
2011). For example, the oscillatory power of various frequency
bands may serve to modulate sensory excitability and attention
(Klimesch, 1999; Engel et al., 2001; van Dijk et al., 2008), while
oscillatory phase patterns across theta and gamma bands may be
engaged in information processing, visual attention and working
memory (Lisman and Idiart, 1995; Siegel et al., 2009; Heusser
etal., 2016).

In this study, we examined the possibility of employing
EEG phase and power signals to discriminate input stimulus
for a brain-computer interface (BCI) approach. We chose the
English alphabet as the visual stimulus because it is a “model”
stimulus in BCI research. Based on the above experimental
studies (Luo and Poeppel, 2007; van Dijk et al., 2008; Busch et al.,
2009; Canolty and Knight, 2010; Schyns et al., 2011; VanRullen
and Macdonald, 2012; Wang et al., 2012; ten Oever and Sack,
2015; Watrous et al., 2015; Heusser et al., 2016; Tomassini
et al., 2017), which presented evidence on how the oscillatory
parameters (phase, power, and frequency) may code visual and
auditory information, we hypothesize that information from the
visual presentation of different letters in the English alphabet
may be encoded in EEG low-frequency phase patterns. Phase
decoding and statistical machine-learning analysis may be a
novel method, in addition to the traditional ERP method, for
discriminating visualized letters. This may be of great benefit for
the development of BCI techniques. In addition, it is believed
that visual information first flows through the primary visual
cortex and then up to higher levels such as V3/4 TEO and TE,
which is called the ventral pathway in object recognition tasks
(Tanaka, 1996; Kriiger et al., 2013). The ventral pathway was
thought to be particularly important for reading, including word

and letter recognition (Price and Devlin, 2011). Therefore, we
questioned whether there was a classification accuracy difference
between the scalp occipital and scalp tempo-occipital regions. To
examine the above issues, a simple BCI protocol was designed in
which subjects watched randomly selected letters on a computer
monitor. EEG data were collected from each subject, and an
analysis was applied to determine whether visual letter stimuli
could be discriminated based on the EEG phase pattern and
power amplitude.

MATERIALS AND METHODS

Subjects

Fourteen right-handed students from Shanghai Fudan University
were recruited by providing monetary compensation. Right-
handedness was determined using the Edinburgh handedness
inventory (Oldfield, 1971). All subjects (nice males and five
females, mean age 25.4, range: 21-32) had normal color vision,
corrected visual acuity and no history of neurological or
psychiatric problems. This study was approved and supervised
by the Ethics Committee of the School of Life Sciences at Fudan
University (No. 290). All participants signed written informed
consent.

EEG Recordings and Experimental Design
The EEG data were recorded with a 500 Hz sampling rate
in a sound-proof room using a 64-channel actiCHamp Brain
Products recording system (Brain Products GmbH, Inc., Munich,
Germany) relative to a Cz reference signal. The ground electrode
was placed on the Fz electrode. The impedance levels were
maintained below 10 kohm.

The stimuli were presented using a pre-programmed e-prime
protocol. Five lowercase letters, “a” “e,” “I “0,” and “t” were
chosen as the letters to be visually presented on the computer
screen. The letter “t” was chosen to exclude pronunciation
peculiarity because the remaining four letters were vowels. The
letters were in white Times New Roman font and presented on
an approximately 12 cm*12 cm black background, in a field of
view (FOV) of 6.88 degrees. The subjects sat one meter away
from a 23-inch screen. The screen was adjusted as high as the
height of the seated subject so that the subjects could keep their
eyes horizontal. The subjects were directed to focus on the screen
and not to move their heads. When a letter was presented, the
subjects were directed to read it silently without mouth action.
This was intended to keep the subject focused and to avoid
any myoelectric artifacts. The participants were instructed to
minimize eye movements during the visual presentation and to
fixate on the center.

Figure 1 presents the experimental protocol. In each trial, a
randomly displayed letter appeared on the screen for 1s and was
followed by a 3-s blank interval. Before the appearance of the
letter, the subjects were directed to focus their eyes on a white
cross on the screen for 1s. In the study, the subject watched
five letters appear individually randomly for 450 trials. The 450
trials were divided into three blocks, with each block containing
150 trials. At the beginning of each block, an instruction was
presented on the screen, and the program was paused until the
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window began 100 ms before the appearance of the letter and ended 500 ms later.

FIGURE 1 | Experimental procedure and data processing. (A) Letters were shown randomly in the center of the screen in white on a black background. The letters
were approximately 12 cm*12 cm. The letters were presented for 1 s, followed by a 3-s resting period. Before presentation of the letter, a white cross was shown on
the screen for subjects to maintain eye fixation. (B) Training sets were extracted from filtered EEG power/phase signals with a fixed window length of 200ms. The

EEG fitered power/phase signal (per trial)

B

Channel 63

Channel 2

Channel 1

|
700ms

subject pressed the “enter” button to continue. In each block, the
letters randomly appeared 150 times, with each letter for 30 times.
Between each block, the subject had a short break and then chose
when to continue the next study block. It took approximately
60 min to finish three blocks. Between each block, the recording
was paused, and the electrode conductance was examined. The
mean of the successful trials used for analysis is 351 £ 55 (mean
and SD) over all subjects.

Data Preprocessing Analysis
Data preprocessing analysis was performed using EEGLAB
(Delorme and Makeig, 2004) and included bandpass filtering
(0.5-220Hz), epoch extraction locked to the onset of the
letters (=500 to 1,000 ms) and baseline correction (—500 to
0ms). To avoid confusion, we called these data “wide-band
data” to differentiate them from the later narrow-band filtered
data such as the alpha band EEG data. Signal artifacts were
removed in two steps. First, the data were visually inspected,
and epochs containing artifacts such as extremely high-amplitude
electrode cable movement-induced fluctuations were rejected.
Second, epochs containing typical eye movements and eye-
blink artifacts that occurred during the first 800 ms after the
onset of the letters were rejected. An independent component
analysis (ICA) was applied to decompose the EEG data. After
decomposition, 63 time-sequence data of component activations
were obtained that corresponded to 63 recording channels for
each subject. These component activations were recognized as
EEG activity or non-brain artifacts by visual inspection of their
scalp topographies, time courses, and frequency spectra. The
artifact components related to heart beats, temporal muscle
movement, eye movements and eye blinks were removed. The
criteria for categorizing component activations as EEG activity
included the following: (1) spectral peak(s) at typical EEG
frequencies and (2) similar responses across each trials; i.e., an
EEG response should not occur in a small number of trials
only (Delorme and Makeig, 2004). Based on these criteria, the
component activations representing non-brain artifacts were
removed (the removed ICAs are 11.07 + 8.62, mean and SD,
for 14 subjects), and the EEG data were reconstructed from the
remaining component activations.

We then employed the Hilbert transform to convert the
real-time artifact-cleaned EEG sequence into a complex time
sequence. Each complex number has amplitude and angle

information. We derived the amplitude sequence A(t) and phase
sequence P(t) separately. Then, we applied machine-learning
analysis based on the amplitude or phase sequence data. The
formula for the Hilbert transform is presented here:

+00

Y() = H(x(t)) = f x(t) # -

—00

1
dt
-7

Hilbert transformation converts the raw real signal into an
imaginary counterpart, and these two parts make a complex
signal. The power sequence is defined as the magnitude of this
complex signal, and the phase sequence is its phase angle.
Moreover, delta (1-4Hz), theta (4-8 Hz), alpha (8-14 Hz),
beta (14-30 Hz), and gamma (30 Hz above) band oscillations are
five typical rhythms observed in the cortex and are thought to be
closely related to cognition processes (Kahana et al., 2001; Colgin
et al., 2009; Fries, 2015). Additionally, the gamma oscillation
can be further divided into low-gamma (30-50 Hz) and high-
gamma (50-150 Hz) oscillations. To investigate the functional
role of these oscillations in letter classification performance,
the original epoched EEG response was filtered into these six
bands using a Kaiser window linear phase FIR filter in the
MATLAB FDA toolbox. The stop bands were set to attenuate the
signal magnitude at —30 dB with a 1Hz edge band. A Hilbert
transformation was then applied to the filtered data.

Multi-class Classification Analysis and
Gradient Ascent Approach

Five-class classification was employed to discriminate the five
letters and to investigate the possibility that the EEG phase
pattern or power pattern could be used as a feature in EEG-
based BCL. A supervised machine-learning algorithm, LIBSVM,
a library for support vector machine (SVM) classifiers (Chang
and Lin, 2011), was used and implemented in the MATLAB
toolbox. The classifications were quinary with a chance level of
20 percent, and the results of these quinary predictions were
evaluated electrode by electrode. The Gaussian function was used
as the nonlinear transform function in the SVM classifier, and its
critical parameter sigma was determined using a gradient ascent
approach, which is similar to the steepest descent algorithm,
in which the parameter is adaptively adjusted according to
the changes in classification accuracy to ensure that it can be
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maximized. According to previous research (Schyns et al., 2011),
visual stimuli-evoked EEG responses were most informational in
the occipital and occipital-temporal cortices. Therefore, the focus
was on these 17 electrode sites: P7, P5, P3, P1, Pz, P2, P4, P6,
P8, PO7, PO3, POz, PO4, PO8, O1, Oz, and O2. The additional
methodological steps encompassing the computational strategy
for validating the classification results (cross-validation and
shuttered label training sets) are described below.

Cross-Validation Approaches and
Shuffled-Label Training Sets

Cross-validation of the multiclass classification analysis was
conducted to obtain robust estimates of the discrimination
accuracies and to test the generalization ability of our classifier.
In this study, a 30-fold cross-validation approach was adopted.
The EEG signal sets were randomly divided into 30 parts, and 29
parts were chosen to train the SVM, which was subsequently used
to test the remaining set to obtain the discrimination accuracy
(Please note that there are total 450 trials corresponding to
five letters for one subject. The 450 trials were divided into 30
parts, with each part contains 15 trials for five letters). This
procedure was repeated 30 times, averaging each repetition’s
accuracy to obtain the final accuracy. To exclude the artificial
classification effect caused by the adoption of the SVM classifier
and to estimate the validity of the classification result, the
labels that indicated the letter for each trial were randomly
shuffled 100 times to form 100 random label-training sets. A
multiclass classification analysis with a 30-fold cross-validation
approach was used on these random label-training sets, and a
random label training result ensemble was obtained. In each
turn, a subject was randomly selected and the labels of the
letters was randomly shuffled. After that, we chose the highest
classification accuracy across the electrodes. And then we did this
process one-hundred times. Which means we had 100 random-
labeled accuracies. We called this a random-label classification
accuracies ensemble. A Kolmogorov-Smirnov test (K-S test) was
conducted on this ensemble to determine whether the ensemble
satisfies a supposed distribution, such as a norm distribution,
and if so, to determine its mean value and variance. Finally, the
statistical significance was calculated (p < 0.0013, three sigma
standard) based on the mean and variance of this permuted
accuracy.

For comparisons of classification accuracy difference between
phase and power groups data of 17 electrodes with 12
subjects, we have performed two-way anova analysis and
then performed all the pairwise comparisons using Tukey-
Kramer’s multiple compare method (Specifically, we first applied
[p,~,stats]=anova2(data,12) in Matlab. Data is a 24*17 matrix,
with the first 12 lines are power accuracy values from 12 subjects,
while lines from 13 to 24 are phase accuracy values from 12
subjects; and 17 corresponds to 17 electrodes. Then we have
performed multiple comparison with: C = multcompare(stats)
in Matlab, default is Turkey-Kramer method). Tukey-Kramer
Multiple comparison method is one of the best methods for
all-possible pairwise comparisons of group means, to determine
which are significantly different from which others. Multiple

comparison procedure was performed for significant analysis of
pairwise comparison results.

To understand the analysis procedure in a clear way, please see
the flowchart Figure S2.

RESULTS

Classification Accuracy for Wide-Band

EEG Phase and Power Sequences

The power and phase sequences were both 1,500 ms (starting at
—500 ms before the appearance of “letter” and stopping at the
end of “letter”), and a short 200 ms portion (starting at the 100th
ms after the appearance of “letter”) was selected for classification
accuracy analysis. The reason starting at the timing of 100th ms
is based on the following analysis result.

The timing of the appearance of a “letter” is set as Oth ms.
Using this Oth ms timing as the starting point, we chose the
sequence of different sizes of time window to examine where
the valuable information is started to be encoded. The tested
time period is from 0 to 600 ms with time step equal to 2 ms.
We observed that the classification accuracy is around chance
level for the time period <100 ms, while the accuracy increased
rapidly to a 31% high value as the time period was increased
to 200 ms, and then fluctuated to reach a saturation level when
the time period was further increased to 600 ms (see Figure S1).
This analysis suggests that the the EEG sequence <100th ms may
not contain valuable information. Therefore, in the following,
the classification accuracy values were obtained by training a
SVM classifier using 200 ms EEG power/phase sequences that
started at the 100th millisecond after presentation of a letter. The
mean and variance of the classification accuracy of each of the
17 electrodes for all 12 subjects are shown in Figure 2A (data
for the remaining 2 subjects without significant classification
power are shown separately in Figure S3). The highest accuracy
was 46.61% (chance level of 20%) for a wide-band (0.5-220 Hz)
EEG phase sequence (Figure2A). The EEG phase sequence
in 17 electrodes of 12 subjects (28.42 £ 3.21, mean £ SD)
showed significantly higher correct rates than the EEG power
sequence (22.89 # 3.02, mean + SD) at a p < 10~ confidence
level (two way ANOVA analysis with Tukey-Kramer multiple
comparison correction conducted in MATLAB). This implies
that the EEG phase portion contains more information than EEG
power portion. Multiple comparison procedure was performed
for significant analysis of pairwise comparison results, and PO8
was observed to have significantly higher accuracies than P1, P2,
P5, Pz (0.01 < P < 0.05) while no significant difference was
observed between any pair of accuracy values of other electrodes
for phase sequences. The confidence interval was determined
using the variance of a fully random shuffled label training
set classification accuracy. Figure 2B shows the normplot figure
for random label training set classification results. The Y axis
indicates the logarithm of the cumulative density function
(CDF). The regression linear fitting analysis suggests that the
classification accuracy values <29% are mainly from a normal
distribution (K-S test p = 0.038). The mean was 23.81%, and
the variance was 1.76%; thus, the three-sigma level was 29.09%.
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FIGURE 2 | Classification results and accuracy topography. (A) Mean classification accuracies across 12 subjects in 17 electrodes. The error bar indicates the upper
and lower limit of the accuracy. The performance of the EEG phase and power portions are represented in purple and green, respectively. The red dashed line
represents the three-sigma level above the chance level. (B) Normplot figure for random label training set classification results. The Y axis indicates the logarithm of the
cumulative density function (CDF). If a sample set originates from a normal distribution, it will be linear. (C) Accuracy topography for the EEG power portion. The small
black dots represent electrodes. Accurate rates at other sites were determined using the MATLAB Triangle interpolation function. (D) Accuracy topography for the
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This value was set as the confidence interval with a one-tail
confidence level P = 0.0013 (see red dashed line in Figure 2A).
We observed that 12 of the 14 subjects with 450-trial tests had
significant classification power above the three-sigma level, with
29.09% accuracy in at least one electrode; further, 8 subjects had
three electrodes, and seven subjects had five powerful electrodes
that showed significant classification power >29.09%. We also
conducted phase and power decoding analyses of the data from
the 2 subjects who did not have electrode data with significant
classification effects (see Figure S3). The highest accuracy for
these subjects was only 29% for the phase classification (Figures
S3A,B) and 27% for the power classification (Figure S3C). The
mean accuracy value of the phase decoding for all 17 electrodes
for the 12 subjects was 28.42 £ 3.21 (mean £ SD) and 27.71 £+
3.45 for all 14 subjects. Hence, the following results analysis were
mainly based on the 12 subjects. The analysis of the 2 subjects
with no significant effects are shown separately in Figures S3, S4.

As is shown in Figures 2C,D for the averaged spectrum
of 12 subjects with at least 1 electrode with significant
classification power, the relatively high classification accuracy

appeared in electrodes placed in the left and right posterior
regions.

Different EEG Frequency Bands and

Period-Specific Classification Results
To examine the critical period for classification, a shifting 200
ms-long window (from —100 to 500 ms, 40 ms per step) was
applied to the frequency-filtered power and phase time-courses
to extract the training and test sets. We observed that the
discrimination accuracy within the first 100 ms period after the
presentation of a letter is always approximately equal to chance,
while most of the valuable decoded information is in the first
half-second period (100-600 ms) after the stimuli’s presentation
(see Figures 3, 4). Hence, our analysis suggested that starting at
the 100th millisecond mark after the presentation of a letter may
result in a higher classification power than analysis starting from
0ms after the presentation of a letter (van Gerven et al., 2013;
Watrous et al., 2015).

The training and classification processes were employed on
these frequency- and time-specific phase signal and power sets
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FIGURE 3 | Time-frequency classification significance diagram and bands comparison. (A) Classification significance for the EEG phase portion in different bands and
time periods. for the 12 subjects shown in Figure 2. Each small block represents a 200 ms training set. For a particular band and time period, the highest accuracy
among all 17 electrodes was chosen and its corresponding P-value was calculated. The X ticks indicate each periods midpoint, from 0 to 600 ms. (B) Comparison of
the EEG phase portion classification performance for all bands for the selected optimal time period. One star corresponds to a P < 0.05 significance level for the
related two bands, and three stars corresponds to P < 0.001. (C) Classification significance for the EEG power portion in different bands and time periods.

(D) Comparison of the classification performance of the EEG power portion of all bands.
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FIGURE 4 | Accuracy topography of time series. Three special sets, the EEG theta power, the theta phase and the alpha phase, were selected for plotting as they
had significantly stronger classification power than the others. The EEG theta phase signals clearly had the best performance with long-lasting classification power, the
larger useful area, and the highest accuracy rate.
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to calculate the mean accuracy over 12 subjects in which we
obtained significant results in the previous analysis step. A 2-
dimensional accuracy matrix was obtained with the X ticks
representing the medial time point of each shifting window
and the Y ticks representing all six bands. The classification
accuracies were transformed into their P-value representations.
The P value was calculated as the probability that the frequency-
filtered power and phase time-courses” accuracy rate can occur
from a norm distribution that we obtained from the shuffled
label training sets. For a higher accuracy rate, a smaller P-
value would be obtained. A denary logarithm of 1/P was
calculated and chosen as the presentation of the classification
performance for illustration purposes. We next compared each
frequency band’s performance. We selected the best performing
time block for each band. Figures 3A,C shows the calculated
classification significance as a function of time for six bands.
Using the calculation, the best performing time block was chosen
based on the highest classification significance level for each
frequency band, and the corresponding accuracy value was
obtained for the same time block. Then, we applied the MATLAB
ANOVA toolbox to examine whether these six bands’ signals had
significantly different classification performance. The EEG phase
signal and power signal portions were treated separately.

The phase and power information in different EEG oscillatory
band frequencies that contribute to the classification were
also studied. Figure 3A shows the results of the calculation
of the classification significance based on the EEG phase
signal, and Figure 3B shows a quantification of its classification
performance for the 12 subjects who had significant classification
power (data for the remaining 2 subjects without significant
classification power are shown in Figure S4). The X ticks
represent the mid-time point of each shifting 200-ms-long
window, which started at 0 ms and ended at 600 ms. As shown
in Figure 3A, the higher the logarithm value, the higher the
accuracy rate it represents. We also calculated the classification
significance and performance values based on the EEG power
information (Figure 3C). For both the EEG power and the phase
coding performance, the theta frequency band showed higher
classification performance than did the remaining five bands,
and the crucial time period began at 60ms to 580 ms (with
a middle time point of 160-480ms). We found that for theta
band, phase part and power part had no significant difference
(MATLAB ttest2, P = 0.89). While in alpha band, phase sequence
had a significantly higher accuracy than its power counterpart
(ttest2, P = 0.0341). Also the beta band performed differently
(P < 0.001).

For both the theta and the alpha frequency bands, the
significance and performance levels are generally relatively lower
in the power coding than the phase coding (Figure 3C). The
highest accuracy appeared in the period from 220 to 420 ms for
phase coding at the theta band and at 180 to 380 ms for the alpha
band.

Figures 3B,D shows the calculated classification accuracy for
different frequency bands based on EEG oscillatory phase and
power components. The EEG rhythmic frequencies significantly
influenced the classification accuracy [Fs. o) = 22.64, P < 107°
MATLAB ANOVAL]. Figure 3B shows that, for EEG phase

coding, there was no significant difference in classification
between the theta (36.70 £ 4.43, mean =+ SD) and alpha bands
(35.4 & 4.21), but there was a significant difference between the
alpha (35.40 =+ 4.21) and beta bands (30.74 % 4.32) (p = 0.0037,
ANOVAL1) for the 12 subjects. Figure 3D shows that, for power
coding, the EEG theta band (35.08 £ 5.32) accuracy was
significantly higher than the alpha band (31.67 & 4.29) accuracy
and that the alpha band accuracy was significantly higher than
that of the other four frequency bands. The remaining four bands
did not show a significant classification effect. In addition, if the
data analysis includes the two non-significant subjects, the phase
decoding accuracy value for the theta band for all 14 subjects
was 35.50 = 5.08, which was slightly lower than the 36.70 & 4.43
result for the 12 subjects.

Accuracy Topology Map for Shifting Time
Window Data

Based on our current decoding methods, we would like
to examine the spatial-temporal distribution of classification
accuracy values. Here, we focus on the alpha and theta bands
because they showed significantly high classification accuracy
(Figures 3B,D). The accuracy values from the 12 subjects were
averaged and represented in color (see Figure 4). Figure 4 shows
the classification accuracy map derived from both phase and
power information in the alpha and theta bands for the 17
electrodes as a function of time.

Unlike the results shown in Figure 2D, there was no strong
accuracy lateralization for right hemisphere electrodes, only
slightly longer lasting classification power (e.g., the alpha band
phase signal from 260 to 460 ms and the theta band phase signal
from 300 to 500 ms). The classification power of electrode PO7
had faded but was still in electrode PO8). Interestingly, electrodes
01, 02, and O3 also achieved very high accuracy rates, as PO7
and PO8 did in the theta band phase signal, but presented low
values in the alpha band. This difference implies that the theta
and the alpha signals may play distinct roles in recognition and
have different origins (Fries, 2015).

The classification power in all 17 electrodes clearly faded after
380 ms, and the accuracy decreased to a chance level. Therefore,
the remaining topographic maps are not shown.

DISCUSSION

Comparison with Existing BCl Methods
and Other Phase Coding Research

This study revealed that the phase patterns and power in the
theta and alpha bands may contain valuable information about
the input stimulus features. This valuable temporal phase coding
approach was confirmed with a conclusion consistent with
the most recent investigations into decoding other visual and
auditory signals in multiple behavior and cognition tasks (Luo
and Poeppel, 2007; Schyns et al., 2011; Vanrullen et al.,, 2011;
Wang et al, 2012; ten Oever and Sack, 2015). In addition,
decoding of phase and power sequences in different frequency
bands suggests different classification powers. Decoding the
phase patterns in theta and alpha oscillations provided relatively
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higher discrimination accuracy than did the delta, beta and
gamma band oscillations. Previous studies suggested that the
ventral occipital-temporal (vOT) cortex is involved in the
perception of visually presented objects and written words
(Dahaene, 1995; Price and Devlin, 2011; Matsuo et al., 2015).
Our decoding analysis showed a higher classification power
for electrodes placed in occipital-temporal regions compared
to other regions, although we should keep in mind that EEG
electrodes do not necessarily pick up activity directly under the
electrodes. These results provide more evidence to support EEG
phase coding in visual perception. Spatially distributed electrodes
may encode different preferred stimulus features in this process.

The method used here is not as general as the classic existing
BCI methods such as SSVEP and P300 (Zhang et al., 2013;
Nezamfar et al, 2016). It also relies on the training of an
SVM classifier. The traditional BCI approach often conducts the
decoding process in real time. In our approach, we first collected
a sufficient amount of EEG response data to input stimuli
and then performed the training and decoding processes. In
future research, we would expect the faster computer speeds and
improved algorithms to allow this decoding approach to occur in
real time. In addition, compared with existing BCI approaches,
our approach is more reliant on subjects. The performance varied
greatly between subjects, similar to the ERD/ERS approach.
This implies that we may train the subject in future research
to improve the classification performance as in some ERD/ERS
research.

Although few studies focus on an EEG phase decoding
approach and its performance is not sufficient to evoke more
attention, the phase decoding method showed a promising
prospect for decoding human brain activities using the mass
electromagnetic field. As suggested recently (Panzeri et al., 2015,
2016), this new method and other related methods can be used
extensively to improve BMIs, and its performance may be further
improved by more sophisticated designs.

Our experimental results are consistent with a previous
phase decoding investigation related to an emotional face
discrimination EEG experiment (Schyns et al., 2011). Almost
similar spatially located electrodes in the theta frequency band
and a similar critical time window were obtained. This may
suggest a similar cortical pathway involved in the visualization
process of alphabet letters and human faces. This similarity
also appeared in human fMRI recording (Dehaene and Cohen,
2011). However, in contrast to the face recognition process, our
experimental results might include an auditory coding effect in
addition to the visualization process. Participants were asked to
sit quietly without vocalizing the letters, however, they might read
the visualized letters with imaginary pronunciation during the
alphabet letter visualization task. The imaginary pronunciation
sound duration and intensity might be involved in evoking
EEG theta oscillations in the temporal cortex (Luo and Poeppel,
2007; Howard and Poeppel, 2010; Wang et al., 2012; Ng et al.,
2013; ten Oever and Sack, 2015) and enhancing psychoacoustic
sensitivity (Goswami et al., 2011). Additional experiments must
be conducted to identify how much decoded information is
purely derived from the visualization process and how much is
from an imaginary spoken process. Different from the method

of Schyns et al. (2011), we trained an SVM to perform the
classification. The merit of this approach is that it may have a
potential BCI application, although the present method cannot
distinguish how and to what extent the characteristics of the
stimuli are encoded into the EEG oscillation phase patterns that
might be limited by the spatial and temporal resolution of the
EEG signals. Because SVM and other machine-learning methods
are a type of black box, more detailed analytical methods and
experimental designs must be used in future research to examine
the potential value and limitations of this approach.

How low frequency oscillatory phases represent information
in visual perception remains an open issue. In audio perception,
the evidence indicates that theta oscillation is a mimic to the
input speech envelope (Giraud and Poeppel, 2012; Gross et al.,
2014). In this case, the peak (phase zero) of the oscillation may
represent a high amplitude of speech envelope, and the trough
(phase ) is related to the quietness.

In addition, recent studies observed that different neuronal
oscillations are not intendent and isolated (Canolty et al., 2006).
They can interact with each other to modulate oscillation
amplitude and phase patterns, resulting in a cross-frequency
coupling effect. The cross-frequency coupling may include
several interactions, such as phase synchronization, amplitude
co-modulation and phase-amplitude coupling (PAC). PAC is
believed to reflect neural coding of signals within the local
microscale and macroscale networks of the brain (Canolty
and Knight, 2010). There is increasing experimental evidence
suggesting that PAC may provide more useful information
for decoding of object categories (Watrous et al, 2015;
Jafakesh et al, 2016), which need to be deeply studied in
future once high quality data of EEG or ECoG recording is
available.

CONCLUSION

Our experimental results provide strong evidences to confirm
that the frequency, phase patterns and power information of
cortical oscillation parameters contain important information
about stimulus features. First, we found that decoding EEG
phase patterns brings higher discrimination accuracy values than
decoding EEG power portion. Second, frequency range and
cortical spatial location are critical in decoding. We observed
that phase patterns of the theta and alpha rhythms recorded
in the occipital scalp visual and temporal regions contain
more rich information that is valuable for decoding different
input visual stimuli compared to other regions. EEG power
sequences in the theta oscillation showed a significantly higher
discrimination rate than did the chance level, although its
classification performance was slightly lower than EEG phase
pattern. Decoding the EEG phase and power sequence in
the much lower frequency delta band or much higher beta
and gamma frequency bands does not result in significant
discrimination rates. Third, timing is important. Most of
the valuable decoded information is within the first half-
second period (100-600ms) after the stimuli’s presentation,
and this information is hardly captured by the functional
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magnetic resonance imaging technique (with a time resolution
of approximately 1s).

In sum, our experimental results support that low-frequency
cortical oscillations are actively involved in coding sensory
information. Directly decoding the phase and power sequences
of EEG signals in the theta band may have great potential
in brain-computer interface applications for English alphabet
letter discrimination. Although the present EEG study showed
that electrodes sited in the occipital scalp visual and temporal
regions had higher accuracy rates and always reached the
peak first, future research with combined EEG and functional
MRI experiments may provide better spatial resolution in
distinguishing the precise cortical locations in visual stimulus-
encoding sites.
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