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Convolutional Neural Networks (ConvNets) are a particular type of neural network often

used for many applications like image recognition, video analysis or natural language

processing. They are inspired by the human brain, following a specific organization of

the connectivity pattern between layers of neurons known as receptive field. These

networks have been traditionally implemented in software, but they are becoming more

computationally expensive as they scale up, having limitations for real-time processing

of high-speed stimuli. On the other hand, hardware implementations show difficulties

to be used for different applications, due to their reduced flexibility. In this paper,

we propose a fully configurable event-driven convolutional node with rate saturation

mechanism that can be used to implement arbitrary ConvNets on FPGAs. This node

includes a convolutional processing unit and a routing element which allows to build

large 2D arrays where any multilayer structure can be implemented. The rate saturation

mechanism emulates the refractory behavior in biological neurons, guaranteeing a

minimum separation in time between consecutive events. A 4-layer ConvNet with 22

convolutional nodes trained for poker card symbol recognition has been implemented in

a Spartan6 FPGA. This network has been tested with a stimulus where 40 poker cards

were observed by a Dynamic Vision Sensor (DVS) in 1 s time. Different slow-down factors

were applied to characterize the behavior of the system for high speed processing. For

slow stimulus play-back, a 96% recognition rate is obtained with a power consumption

of 0.85mW. At maximum play-back speed, a traffic control mechanism downsamples

the input stimulus, obtaining a recognition rate above 63% when less than 20% of the

input events are processed, demonstrating the robustness of the network.

Keywords: convolutional neural networks, neuromorphic vision, Address Event Representation (AER),

event-driven processing, neural network hardware, Reconfigurable Networks

1. INTRODUCTION

The concept of neuromorphic engineering was first proposed by Carver Mead back in the
1980s based on the analogy between the behavior of transistors biased in sub-threshold region
and the physics in biological neurons (Mead, 1989). This approach opened a new processing
paradigm which takes inspiration from the structure and operation of the human brain
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(Sterling and Laughlin, 2015): information encoded in spikes
(also called events) which are processed in parallel by massive
layers of neurons interconnected via synapses.

In recent years, the development of bio-inspired event-driven
neuromorphic Dynamic Vision Sensors (DVS) (Lichtsteiner
et al., 2008; Posch, 2011; Serrano-Gotarredona and Linares-
Barranco, 2013) provides a new and revolutionary way of
capturing visual scenes by the generation of flows of events
accurately representing the motion of real objects. In a DVS,
each pixel operates autonomously and sends an output event
(spike) whenever it senses a change of light greater than a preset
threshold. This way, a continuous flow of events with a high
temporal resolution (sub-microsecond) is obtained, representing
moving reality as it changes, without waiting to assemble or
scan artificial time-constrained frames. These flows of events can
be processed by Spiking Neural Networks (SNNs), performing
complex tasks like object tracking (Delbrück and Lang, 2013) or
shape recognition (Zhao et al., 2015).

A particular type of SNNs are the event-driven Convolutional
Neural Networks (ConvNets), where the interconnections
between layers of neurons do not follow an all-to-all pattern.
In a ConvNet, each neuron from layer i is connected only to
a subset of neurons in layer i + 1, known as projective field.
These projective fields can be represented by a 2D convolutional
kernel, and imply an important reduction in the amount of
synapse memory in a network, which facilitates its hardware
implementation. These Convolutional Neural Networks were
originally developed for frame-driven processing (LeCun et al.,
1989), training them with static images, although some methods
have been proposed to transform a frame-driven ConvNet into
an event-driven one implemented in software (Pérez-Carrasco
et al., 2013; Diehl et al., 2015), and other methods directly train
the event-driven networks with spikes(Orchard et al., 2015).
In the present work, we propose a hardware implementation
of event-driven ConvNets that can process visual information
from a DVS in real time, avoiding time-consuming software
approaches.

The current evolution of hardware neuromorphic platforms
tends to large-scale modular computing systems with increasing
numbers of neurons and synapses (Indiveri et al., 2011; Liu
et al., 2015; Furber, 2016). Some successful approaches are the
IBM TrueNorth (Merolla et al., 2014), the Stanford Neurogrid
(Benjamin et al., 2014), the Heidelberg BrainScaleS (Schemmel
et al., 2010) and the Manchester SpiNNaker (Furber et al., 2014).
These projects used different techniques to design hierarchically
scalable networks with multiple chips per board, and multiple
boards per rack, assembling systems with between 1 and 460
millions of neurons and between 1 and 460 billions of synapses,
obtaining power consumptions between 100mW and 50kW
(Furber, 2016).

In a previous work, we developed an event-driven
convolutional unit with 64 × 64 neurons in VLSI which
could be used to build larger arrays and implement arbitrary
ConvNets (Camuñas-Mesa et al., 2012). However, this approach
presented two important limitations: the excessive physical size
of a complex network, and the lack of a saturation mechanism
in the I&F neurons, which is necessary for a multi-layer

ConvNet.1 Zamarreño-Ramos et al. (2013) proposed a scalable
approach based on reconfigurable networks implemented
on FPGA to overcome the first limitation, presenting up
to 262 k neurons and 32 millions of synapses, including
routing capabilities in the convolutional nodes. (Pérez-
Carrasco et al., 2013) proposed an exact method to map the
saturation from a conventional frame-based description to
an event-driven system, and tested it in software. Recently,
rectifying non-saturating non-linearities like ReLUs (Rectified
Linear Units) have been proposed as an alternative to rate
saturation mechanism in frame-based systems (Cao et al.,
2015; Diehl et al., 2015). However, ReLUs are not a good
solution for spiking hardware implementations, because if a
neuron in a layer becomes excessively active it will generate a
large amount of spikes and can collapse the communication
network.

In this work, we designed a configurable convolutional unit
for FPGAs that can be used to build large-scale ConvNets,
including a programmable rate saturation mechanism that
reproduces the refractory period of biological neurons, allowing
to transform conventional frame-based networks into equivalent
event-driven implementations. This unit has been tested and
characterized for rate saturation period values between 50µs
and 51.2ms. This unit has been designed to assemble large
2D arrays (Zamarreño-Ramos et al., 2013), and a whole
ConvNet with 22 convolutional blocks trained for poker card
symbol recognition has been implemented in one Spartan6
FPGA. This network included 5 k neurons and 500 k synapses
within a single FPGA. More complex hierarchical structures
using larger FPGAs, and assembling multiple FPGAs in a
PCB and multiple PCBs in a rack, can potentially be used
to implement very large-scale Convolutional Neural Networks.
While other neuromorphic approaches are based on expensive
dedicated hardware, the proposed architecture allows for
implementing arbitrary ConvNets on cheap commercial FPGAs.
The implemented network was tested with a stimulus where 40
poker cards are observed by a DVS in 1 s time window. Different
slow-down factors were applied, from real time processing to 100
times slower, obtaining recognition rates as high as 96% with a
power consumption of 0.85mW.

The paper is organized as follows. Section 2.1 describes
the convolutional node in detail, with special emphasis on
the rate saturation mechanism, while Section 2.2 details
the complete ConvNet implemented for poker card symbol
recognition. Section 3 presents the experimental results obtained
for characterization of both the individual module and the
ConvNet, and, finally, these results are discussed in Section 4.

2. MATERIAL AND METHODS

This Section describes the proposed configurable convolutional
node in Section 2.1 (including details of its main operations

1Note that, if there is no non-linear saturation mechanism in a multi-layer

ConvNet, so that all convolutional operations are linear, one could collapse all

convolutions into a single one.
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in sections 2.1.1, 2.1.2, 2.1.3, and 2.1.4) and the ConvNet
implemented for recognition tasks in Section 2.2.

2.1. Configurable Convolutional Node
A generic event-driven Convolutional Neural Network
(ConvNet) follows the structure represented in Figure 1A, with
multiple layers of feature maps, including several convolutional
units in each layer. Each unit is formed by a bi-dimensional array
of neurons, and receives events from every unit in the previous
layer, applying different convolutional kernels depending on the
origin of the event, implementing a multi-kernel operation. The
aim of this work is to design a 2D array structure in hardware
formed by convolutional units which can efficiently implement
an arbitrary ConvNet, as illustrated in Figure 1B. For that, a
configurable network node is designed.

The block diagram of the network node is shown in Figure 2,
including a convolutional unit formed by a bi-dimensional
array (with configurable size) of I&F neurons, a router and a
configuration block. This node has been designed to assemble
large 2D arrays, where each node is directly connected to 4
other neighboring nodes through North, South, East and West
ports. Each of these ports carries bidirectional flows of events
(input and output). Internally, all input and output ports are
connected to a router, which sends each incoming event to
either the appropriate output port or the local convolutional
unit, depending on both the event header and the routing table,
according to the destination-driven protocol (Zamarreño-Ramos
et al., 2013). An internal configuration block receives commands
through a Serial Peripheral Interface (SPI) connection, and sends
them to the router or to the convolutional unit.

FIGURE 1 | Implementation of (A) a generic ConvNet with several layers of

feature maps using (B) a 2D array structure of convolutional units.

The convolutional unit designed in this work is fully
configurable, so that it can be used to implement different nodes
(each one with different properties) within complex multi-layer
networks. Figure 3 shows the details of the convolutional unit.
It computes the convolution of the input events eνin(t, x, y, p, k)
with a kernel wk(x, y), generating output events eνout(t, x, y, p),
where t is time, x and y are the spatial coordinates, p is the polarity
of the event, and k is the kernel id, as multi-kernel processing
is allowed. Input events are stored in an input FIFO, while the
controller block reads events from this input FIFO, processes
them using integrate and fire neurons (pixels), and writes output
events in an output FIFO, which sends them out to the next
module. A fullFIFO signal is generated when the output FIFO is
full in order to stop receiving more input events, allowing the
implementation of a flow control mechanism, which is described
later. The state of the convolution (the values of all pixels or
neurons) is stored in the Neuron Memory, while the Kernel
Memory stores all the kernel values and their corresponding
parameters: x- and y-size, and center shift, as shown in Figure 5B.
If the center shift is zero, the kernel will be applied to a
neighborhood of pixels where the one given by the address of the
input event is in the middle. A different value of this parameter
shifts the position of the kernel before being applied to the
pixels. Another memory is used to implement the refractory
period mechanism which is described later. The convolutional
unit receives configuration data through an SPI interface, which
is used to write the kernels (with their parameters) and the
parameters of the neuron controller (threshold, leakage, rate
saturation period).

The configurability of the convolutional unit includes some
parameters which have to be adjusted before the hardware
implementation, and some other parameters which can be
modified after implementation using the SPI interface, as they are
related to the training of the network.

Pre-implementation parameters are the following:

• Address space of input events: maximum values for x and
y accepted by the convolutional unit (xmax

in , ymax
in ). These

numbers will define the number of bits for xiin and yiin in the
input events.

• Address space of output events, which corresponds to the
number of pixels in the 2D array (xmax

out , y
max
out ). These numbers

will define the number of bits for xiout and yiout in the output
events.

• Size of the neuron memory. This parameter is given by nx ×
ny × nbits, where (nx, ny) represent the number of pixels in the
array and nbits the resolution of the register where their state is
stored.

• Size of the kernel memory. This memory is divided in 2
different blocks: 1) the block where the kernels weights are
stored, whose size is given by the maximum number of kernels
Nk, and the size of each kernel xmax

k
× ymax

k
; and 2) the

block where the kernels parameters are stored, being these
parameters the size of each kernel and the center shift. Only the
size of this whole memory is specified. The number of kernels
Nk will define the number of bits needed for the kernel id ki in
the input events.
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FIGURE 2 | Block diagram for the node designed to build 2D arrays.

FIGURE 3 | Block diagram for the convolutional unit. A controller block receives input events from an input FIFO, reads the pixels state and the convolutional kernel

from the corresponding memory blocks, and sends output events to an output FIFO. An SPI block receives configuration data. A specific memory block is used to

implement the rate saturation mechanism. A fullFIFO signal is generated by the output FIFO to implement the traffic control mechanism.

• Size of the rate saturation memory. This parameter is given by
nx×ny×nbits_TR , where (nx, ny) represent the number of pixels
in the array and nbits_TR the resolution of the register used to
implement the rate saturation mechanism, as described later.

• Range of the rate saturation period. This parameter (bTR)
selects the range of values available for the rate period TR,
establishing Tmin

R and Tmax
R . The exact value within this

range is specified after implementation using the SPI. The
programming of the rate period range is described in section
2.1.3.

Post-implementation parameters are:

• Threshold of the integrate and fire pixels. Although the pixel
values in theory should vary between −Th and Th, in practice
we work only with positive numbers, so the negative threshold
is set to 0, the positive value is set to 2×Th and the reset value
is Th.

• Leakage parameters: Tleak, which indicates the period of the
leakage pulses that are applied to all the pixels, andNleak, which
indicates the amplitude of the these pulses.
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• Rate saturation period (TR), the exact value within the
available range established before implementation.

• Kernel values and parameters: values which are written on the
kernel memory.

Figure 4 shows the typical state evolution of an integrate and
fire pixel, with reset value xreset = Th and positive threshold
2×Th. The state of the pixel is updated with a positive or negative
value each time a new event is processed. The decay of the pixel
state represents the global leakage. The rate saturation period TR

FIGURE 4 | Illustration of the evolution of a neuron while processing input

spikes, showing the global leakage effect (represented by blue segments) and

the rate saturation period limitation (indicated by red arrows). The state of the

neuron is updated with each input spike (increased with positive spikes and

decreased with negative ones). If the threshold is reached before TR, the

output spike is not generated until the rate saturation time is over.

imposes a limitation to the minimum time between consecutive
output spikes. In this example, the second output spike was not
generated when the pixel reached the threshold, but when the
rate saturation mechanism allowed for it. The following sections
describe in detail the behavior of the convolutional unit.

Concerning the router included in the network node shown
in Figure 2, it is based on the 2D structure represented in
Figure 1B, where each convolutional unit is identified by its (x, y)
coordinates. The router receives external events from the four
neighboring nodes and, based on its programmed routing table,
decides whether to send them to its local convolutional unit or
to other neighbor. In particular, we used a destination-driven
protocol, so the address of the destination node is written in
the routing header of each event, introducing a network layer
handled by the routers and transparent to the convolutional
units. When the router receives an external event, it reads the
addressing header and decides the output port to which the event
must be forwarded. If the destination address corresponds to the
node address, the event is sent to the local convolutional unit.
If this is not the case, it compares the destination address with
the present node address to decide the output port to which
the event must be forwarded, choosing the shortest path to the
destination in terms of number of hops. On the other hand,
when the router receives an event from the local convolutional
unit, it inserts a header indicating the destination node according
to the routing table. When that node is connected to several
destination nodes, the router clones the event as many times as
the number of destination nodes and writes each address in the
corresponding header. Further details about the router are given
in (Zamarreño-Ramos et al., 2013).

FIGURE 5 | Illustration of the convolutional operation. (A) Input event, where xi
in
and yi

in
are the spatial coordinates, pi

in
the polarity (positive or negative), and ki the

kernel id. (B) Position of kerneli inside the pixel array, centered on a pixel given by coordinates (xi
in
+ shiftx , y

i
in
+ shifty ). (C) Kernel parameters, where xmax

k
, ymax

k
represent the kernel size and shiftx , shifty indicate the position where the convolutional kernel is centered relative to the input event address, as shown in (B).
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2.1.1. Convolutional Operation
Every time a new incoming event arrives at the convolutional
unit, it is stored in the input FIFO, and as soon as there is at
least one event in the FIFO, the controller block performs the
following steps:

1. Read the event from the input FIFO, obtaining the address
(xiin, y

i
in), the polarity piin, and the kernel id ki, as shown in

Figure 5A.
2. Using the kernel id ki, access the kernel memory (in particular,

the parameters block, in Figure 5C) to read the size and
center shift of the indicated kernel. This information, together
with the event address, gives the coordinates of the pixels
which have to be updated with the kernel values, as shown in
Figure 5B. If all these coordinates are outside the pixels array,
discard the event.

FIGURE 6 | Rate saturation mechanism. (A) A pixel generates an output event

at t = t0, so no output events will be allowed until tlim = t0 + TR − 1t. The

pixel state reaches the threshold at t1 (< tlim), so it keeps the threshold state

until t2. (B) At t = t0, the future time tlim is calculated using the value in the

32− bit global counter. Only 8 bits of tlim are stored (t8b
lim

), given by bTR. (C)

The pixel reaches the threshold again at t = t1. As t1 < tlim, no output event

should be allowed. For that, t8b1 and t8b
lim

are compared.

3. Knowing the coordinates of the pixels affected by the
incoming event, calculate both the positions of the states of
these pixels in the neuron memory, and the positions of the
corresponding kernel weights in the kernel memory. This
operation is performed by the Address calculation block in
Figure 3.

4. One by one, read an individual pixel value (also called partial
sum, in CNN terminology) and kernel weight, and calculate
the addition of both of them. If the incoming event is negative
(piin = −1), invert first the kernel weight.

5. If the result of the addition is larger than the positive threshold
(positive event) or smaller than the negative one (negative
event), check the minimum period TR for that specific pixel.
If firing event is allowed, go to step 6. If not, update the new
pixel value (or partial sum) in the corresponding position of
the memory, and wait for the next input event. This missing
event will be sent out the first time this pixel receives an input
event after TR is over, introducing an error 1t that will be
compensated using the method described in section 2.1.3.

6. Generate an output event with address (x
j
out , y

j
out) and polarity

p
j
out , and write it in the output FIFO, reset the corresponding
pixel and update it in its memory position.

2.1.2. Global Leakage
In parallel with the convolution process described before, a global
leakage process runs continuously in the controller block. A
global 32-bit counter is increased with every clock cycle, until
it reaches the previously programmed value Tleak. This process
has the highest priority, and every time it reaches Tleak it cycles
through all the data stored in the Neuron Memory and decreases
all neuron values by Nleak if they are positive, and increases them
if they are negative, never crossing the reset value. This process
makes all neurons converge toward the reset value.

2.1.3. Rate Saturation Period Mechanism
The main novelty of this work is the hardware implementation
of a mechanism that emulates the refractory period property
of biological neurons. This property guarantees a minimum
separation in time (given by TR) between two consecutive spikes
generated by a single neuron.

Figure 6A illustrates how the neuron state is increased every
time a new input event arrives until it reaches the threshold. At
t = t0, an output event is generated and the neuron state is reset,
so the controller block reads the present time t0 in the 32 − bit
global counter (as shown in Figure 6B) and calculates the future
time when it will be allowed to generate an output spike again
tlim. This future time is given by tlim = t0 + TR − 1t, where t0
is the present time, TR the minimum rate period or refractory
time, and 1t is a small correction applied to the calculations
to compensate for frequency deviations. The calculation of this
1t is described at the end of this section, so for now we will
assume 1t = 0. At t = t1, the neuron reaches the threshold (see
Figure 6A), but it is not allowed to generate an output event, as
t1 < tlim. Therefore, the neuron keeps the threshold value until
t2, when a new input event is received and an output event is
finally generated (because t2 > tlim). Although this output event
should be generated ideally at tlim, we propose a computational
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simplification where the output event is not sent out until the
pixel receives another input event at t2. The error 1t introduced
by this simplification is compensated in the calculation of the
next tlim. A flag f1t is used to indicate whether this compensation
has to be applied or not.

The resolution of the global counter is 32 bits, so that is
also the size of tlim. The rate saturation period memory stores
information about tlim for each pixel in a register, resulting a size
of nx×ny×nbits_TR for this memory. If the whole tlim is stored for
each pixel, each memory register needs 32 bits and the memory
consumes a lot of resources. We propose to reduce the size of
this memory by a factor of 4, storing only 8 bits per pixel (t8b

lim
in

Figure 6B), from bTR to bTR − 7. The value of bTR is a parameter
that must be specified before implementation (7 ≤ bTR ≤ 31),
and it corresponds to the MSB (Most Significant Bit) of the rate
saturation periodTR. Therefore, the possible values ofTR that can
be programmed after implementation will be given by Tmin

R =

2bTR−7 and Tmax
R = 2bTR+1

− 1.

According to this strategy, 8 bits from tlim (t8b
lim

) are stored at
the register of the rate saturation period memory corresponding
to that specific pixel. After that, the next time this pixel reaches
the threshold, the controller block reads the time t1 in the 32−bit
global counter, extracts 8 bits from it (t8b1 , from bTR to bTR − 7,

as shown in Figure 6C) and compares it with t8b
lim

. If t8b1 > t8b
lim

, it
sends out the event; otherwise, it stores the threshold value in the
corresponding position of the neuron memory and waits for the
next incoming event. However, this mechanism can cause wrong
decisions, as the bits more significant than bTR are not compared
(it can happen that t8b1 < t8b

lim
while t1 > tlim due to overflow, so

an output event would be missed). In order to avoid this kind of
errors, a flag fof indicating overflow is used together with a refresh
mechanism. The use of this flag is described in Figure 7. Every
time the threshold is reached after updating the state of a pixel
with a new input event, the present value of the global counter
(t in Figure 7) is used to find out if it is allowed to send out an
event or not. For that, 8 bits from this counter (t8b) are compared
with the stored value of t8b

lim
. If t8b < t8b

lim
, the pixel is still under

the TR limitation, so its state is set to the corresponding threshold
value and the flag f1t is set to 1, meaning that a 1t correction
will be necessary. On the other hand, if t8b > t8b

lim
, the controller

block cannot be sure that TR time is really over until it checks the
overflow flag fof . If fof = 1, the pixel is still limited by TR, so the
threshold value is stored in the pixel’s state and f1t is also set to 1.
If fof = 0, the overflow flag is not active, so the event is sent out
while the pixel’s state is reset. After that, the value of the next tlim
is calculated, taking into account the value of 1t as the difference
between the current time and the previous tlim (as illustrated in
Figure 6A) when the flag f1t = 1, and resetting this flag. After
the calculation of the new tlim, the 8 bits t8b

lim
are stored in the

rate saturation mechanism memory, and if overflow is detected
during the calculation (t8b

lim
< t8b), the corresponding flag fof is

set to 1.
A global refresh mechanism is used to ensure the correct

behavior of the overflow flag fof , as described in Figure 8. A
refresh pulse is generated every time the global counter t reaches
the value trefresh = 2bTR+1

− 1 (all bits from bTR to b0 set to
1). When this happens, the controller block reads all fof flags

FIGURE 7 | Flow diagram describing the rate saturation period mechanism.

(one per pixel), and if fof = 1, it is set to 0, indicating that
overflow is not a problem anymore, while if fof = 0, it resets

t8b
lim

= 0, indicating that TR time is already over for that pixel.
Finally, the 1t correction applied to the calculation of tlim

is also illustrated in Figure 6A. When the first output event is
generated at t0, we assume 1t = 0. However, the second output
event occurs at t2, although it should have been generated at tlim.
Therefore, the event generated at t2 had been delayed by the rate
saturation mechanism, as indicated by the flag f1t = 1 described
before. In this case, the next tlim is not measured from t2, but from
the last tlim. In this particular example, after sending out the event
at t2, the next tlim would be calculated as tlim = t2 + TR − 1t2.
This correction is important to make sure that a neuron with
rate saturation period TR receiving an input train of events with
frequency fin higher than 1/TR will generate an output train of
events with average frequency given by fout = 1/TR. Without this
correction, fout would be smaller, as it would depend of the exact
arrival time of the input events. This 1t does not introduce any
error in the high temporal resolution of the events generated by
a DVS, it actually introduces a correction in the effective value
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of the maximum event frequency given by the rate saturation
period TR.

2.1.4. Traffic Control Mechanism
As shown in Figure 3, the convolutional unit activates a fullFIFO
signal when the output FIFO is full, and this signal is used to
implement a traffic control mechanism at the network level.
Considering that the network receives a flow of events from a
DVS using AER protocol, we implemented a mechanism which
drops input events whenever a node in the network has the

FIGURE 8 | Flow diagram describing the refresh mechanism associated to the

rate saturation period.

fullFIFO signal active. Instead of holding the acknowledge and
introducing artificial delays in the events flow, this mechanism
reduces dynamically the amount of input events while keeping
the spatio-temporal correlation between them. When the input
event rate is too high, the network subsamples the input event
flow, reducing the event rate as certain events are dropped.
However, the precise timing of the events which are actually
processed by the network is not altered. It is evident that
the information carried by the dropped events is lost, but the
information carried by the processed events is not modified by
the network traffic, so the spatio-temporal correlation between
them is kept.

The implemented traffic control mechanism introduces some
uncertainty in the network behavior, as event dropping depends
on each individual propagation delay inside the network, which
is not completely deterministic. This effect can cause slightly
different results when processing the same stimulus twice. We
compensate this by analyzing statistically the behavior of the
network after repeating each experiment up to 100 times, as
shown in Figure 14.

2.2. Convolutional Neural Network for
Recognition Tasks
As described in Section 2.1, the convolutional node has been
designed to assemble large 2D arrays in order to implement
event-driven Convolutional Neural Networks (ConvNets). As
an example, we implemented on FPGA the ConvNet described
by (Pérez-Carrasco et al., 2013) for high-speed poker symbol
recognition. The network is represented in Figure 9, and it
consists of 4 convolutional layers (named C1, C3, C5 and C6

FIGURE 9 | Schematic block diagram of the Convolutional Neural Network used for poker card symbol recognition. Yellow, red, green and purple boxes represent

convolutional layers, while pink boxes correspond to subsampling layers. Layer C1 extracts oriented edges, which are downsampled by S2. Those different edges are

combined by C3 and downsampled again by S4. Layer C5 obtains specific features that are combined by C6 to decide which of the four poker symbols is being

observed.
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in the figure) and 2 subsampling layers (named S2 and S4).
This figure shows that 22 convolutional modules are used to
implement the whole network: 6 modules with 28 × 28 pixels
in layer C1, 4 modules with 10 × 10 pixels in layer C3, 8
modules with 1 × 1 pixel in layer C5 and 4 modules with
1 × 1 pixel in layer C6. Subsampling layers S2 and S4 reduce
the address space by a factor 2, from 28 × 28 to 14 × 14
and from 10 × 10 to 5 × 5, respectively. This is done by
summing the events in each subsampling window of 2× 2 pixels
into a single pixel. A schematic block diagram of the hardware
implementation on FPGA is represented in Figure 10, where
all the modules are placed in an array of 6 × 4. The input
splitter sends the incoming events to all 6 blocks in column
1 (i, 1)i=1,...,6, while the output merger receives all events from
modules in column 4 (i, 4)i=1,...,6 and sends them out. The
internal routers in each module are programmed to reproduce
the connectivity of the network in Figure 9. Therefore, the
yellow modules in Figure 10 correspond to layer C1, the red
modules correspond to layer C3, the green blocks correspond
to layer C5, and the purple ones to layer C6. The two blue

FIGURE 10 | Schematic block diagram of the FPGA implementation of the

Convolutional Neural Network used for poker card symbol recognition. Yellow

modules represent layer C1, red modules correspond to layer C3, green

modules correspond to layer C5 and purple ones to layer C6. Blue modules

only include routing capabilities.

modules only include the router for communication purpose, as
no more convolutional modules are needed. Subsampling layers
S2 and S4 are implemented by shifting the bits in the parallel
buses between C1-C3 and between C3-C5, ignoring the Least
Significant Bit in both x- and y-coordinates. Therefore, all events
in each 2 × 2 subsampling window are summed into a single
pixel.

The aim of this work is the implementation of a given
ConvNet in a commercial FPGA, so we consider that the
network has already been trained. In the particular example
of ConvNet we use to illustrate our architecture, the network
was implemented and trained in software by Pérez-Carrasco
et al. (2013) in the frame domain using backpropagation,
mapping the obtained parameters to the equivalent event-driven
representation. Taking these parameters as a starting point, we
have mapped them to our specific implementation.

The mapping of the network parameters from the values
given by Pérez-Carrasco et al. (2013) (see row 1 in Table 1)
can be described as a two-stage procedure. First, the amplitude
parameters (kernel weights and convolution thresholds) and
the time parameters (rate saturation periods and leakage rates)
had to be adapted (scaled and rounded) to the hardware
implementation, and second, they had to be tuned to compensate
for the nonidealities of the hardware by using an optimization
algorithm. The original amplitude values were represented in
software using double-precision floating point numbers, while
the proposed hardware implementation uses 9-bit integers for the
neuron states (from 0 to 511). However, we compute negative
values by shifting reset state to Th, and using 0 and 2 × Th
as negative and positive thresholds, respectively. Although in
principle it would be possible to use a maximum value of
Th = 256, in practice it could cause overflow errors resulting
in numbers larger than 511. We avoid this problem by setting a
maximum value of Th = 128. Therefore, the first stage scales
up all thresholds to 128, while keeping the corresponding kernel
weights proportional for each layer. This change does not affect
the rate saturation period values, but it does affect the leakage
rate values as they are defined in Table 1. LRi is defined as
the ratio between the threshold value and the time it would
take to decrease it until the reset value for layer i. Therefore,
it also has to be scaled up with the threshold. The obtained
parameters are shown in row 2 of Table 1. This first stage of
the mapping is done automatically by a routine which reads all
the indicated network parameters, and scales and rounds their
values. However, the direct adaptation of these parameters does
not produce the same behavior in the network, as the hardware
implementation has some nonidealities that were not present

TABLE 1 | Network Parameters.

Version TR3
(ms)

TR5
(ms)

th1 th3 th5 th5 LR1

(s−1)

LR3

(s−1)

LR5

(s−1)

LR6

(s−1)

Pérez-Carrasco et al. (2013) 0.10 0.46 0.64 1.42 7.36 2.17 0.72 0.90 1.21 0.72

FPGA scaled 0.10 0.46 128 128 128 128 143.62 81.16 21.00 42.41

FPGA optimized 0.08 0.43 66 114 93 126 3,959.93 3,576.70 906.61 214.88
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in the software version. First of all, the network parameters
have a smaller precision on hardware. Additionally, there will
be some uncertainties in the hardware when two or more events
should arrive at a single node ideally at the same time. In those
cases, it is impossible to predict the order of processing the
events, so that will affect the result of the convolutions. Finally,
we implemented a traffic control mechanism in the network
using the fullFIFO signal shown in Figure 3. This mechanism,
as described in section 2.1.4, ignores the input events to the
whole network every time one single module activates the
fullFIFO signal, reducing the total amount of events processed
by the network, but maintaining the spatio-temporal correlation
among events. All these nonidealities change the behavior of the
network, so we used simulated annealing to optimize this set of
parameters. Each iteration sends the new values to the FPGA
and evaluates the network, finally obtaining the optimized values
shown in row 3 in Table 1.

In short, the mapping from the original network parameters
takes two stages. In the first one, a routine scales and rounds
the parameters automatically in a few seconds, while the
second one fine-tunes the parameters doing simulated annealing
and is much more time-consuming. The simulated annealing
algorithm was run in a PC, which for each iteration sends
the parameter values to the FPGA, sends a certain stimulus,
records the output events and evaluates the performance. The
stimulus used was part of a sequence of events obtained
from a DVS (Serrano-Gotarredona and Linares-Barranco, 2013)
which was observing a deck of 40 poker cards running in 1
second. In particular, we used the events corresponding to the
initial 20 symbols with a slow-down factor of 10. The event
rate of the real-time sequence was too high, so the number
of dropped events would not give a good optimization of
parameters. The simulated annealing algorithm needed 7421
iterations, which consumed around 10 h (the input stimulus
takes 5 s). The whole stimulus with 40 symbols was used
later on to characterize the network, as described in detail in
Section 3.2. By using this DVS data, the network is trained
to recognize specific temporal characteristics, so the temporal
parameters of the network (rate saturation periods and leakage
rates) are adapted to the speed of the training stimulus.
If the stimulus is accelerated or decelerated, the temporal
parameters have to be scaled according to this acceleration or
deceleration. Therefore, if the spatio-temporal correlation of the
data is modified, the performance of the network is affected
negatively.

The number of kernels used by this network, as shown in
Figure 9, is 94: 6 kernels (one per convolutional module) with
10× 10 weights each in layer C1, 24 kernels (6 per convolutional
module) with 5 × 5 weights each in layer C3, 32 kernels (4 per
convolutional module) with 5 × 5 weights each in layer C5, and
32 kernels (8 per convolutional module) with 1 single weight each
in layer C6. All kernel values were scaled and rounded versions
of those trained by (Pérez-Carrasco et al., 2013), where the first
layer corresponds to Gabor filters with different orientations to
extract edges, while the other layers are the result of training
with backpropagation and their shapes have no geometrical
meaning.

3. RESULTS

The experimental setup used to characterize both the isolated
convolutional node and the whole network is shown in Figure 11.
An AER data player board (Serrano-Gotarredona et al., 2009)
receives a list of AER events through a USB port and sends
the events out to the AER-node board (Iakymchuk et al., 2014),
where a Spartan6 FPGA is used to implement the different
processing systems. The AER-node board sends out events to
another board which communicates with a PC through a USB
port (Serrano-Gotarredona et al., 2009). A micro-controller in
the AER-node board also receives the configuration parameters
from a PC using a USB port and sends them to the FPGA through
an SPI interface.

3.1. Characterization of Convolutional
Node
For the initial tests, a single convolutional node was implemented
on the FPGA, like the one in Figure 2. The latency is measured
as the time necessary to receive an input event, process it, and
generate an output event, and it is given by the expression
Tevent = Trouterin + Tini + Tproc + Trouterout . When an incoming
event is received from another node, first the router compares
the event header with the local router address, and if both are the
same it sends the event to its local convolutional unit (Trouterin =

6 clk cycles). After the event is received by the local processor,
it compares the event address with the kernel parameters, and
it calculates all the operations that have to be done to calculate
the convolution (memory positions that have to be read for
both pixel and kernel values, portions of the kernel which fall
outside of the visual space of the module). We call this time Tini,
and it consumes 37 clk cycles. Tproc is the time spent doing the
convolution itself, and it is proportional to the size of the kernel
(16× sizekernel). Finally, assuming that after processing the whole
kernel it generates an output event, the router receives this event
from the local unit and sends it out to the next node (Trouterout =

4 clk cycles). Figure 12 represents the values measured for Tproc

for different square kernel sizes, being our clock frequency fclk =
50MHz (equivalent Tclk = 20 ns). The red trace in the figure

FIGURE 11 | Photograph of the experimental setup used to characterize the

convolutional network.
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FIGURE 12 | Left axis: Time spent by the convolutional module to process

one event for different square kernel sizes, with Tclk = 20 ns. Right axis:

Equivalent processing capabilities in Meps.

represents the equivalent computational capabilities in Meps
(Mega-events per second).

In order to characterize the rate saturation mechanism,
different values of TR were programmed covering the whole
desired working range (51.2ms, 12.8ms, 3.2ms, 800µs, 200µs,
100µs, 50µs). For each case, a 1 × 1 kernel with value 1 and a
threshold Th = 10 were configured. The input stimulus is a train
of events with fixed address and inter-spike interval following
a normal distribution with mean 1/fin and standard deviation
stdin = 10% of the mean. Therefore, if there was no refractory
limitation, the average frequency of the output train of events
would be fout = fin/10, with the same standard deviation.
Figure 13 shows fout vs. fin, where each trace corresponds to
a different value of TR. The error bars represent the standard
deviation of the measured output frequencies. Having a closer
look at the segment for TR = 51.2ms, there is a saturation
frequency fsat = 1/TR = 19.53Hz, so for values of fin <

Th × fsat = 195.3Hz there is a linear relationship, while larger
input frequencies produce saturation.

As TR decreases in Figure 13, the different traces reproduce
the same behavior, until the inter-spike interval becomes
comparable to the global refresh pulse applied by the rate
saturation mechanism.

3.2. Network Characterization
The convolutional neural network described in Section 2.2 was
implemented on the FPGA and tested using the experimental
setup shown in Figure 11. This network consists of 22
convolutional nodes distributed in 4 layers, with a total number
of 5, 116 neurons and 531, 232 synapses, and consumed 93% of
the available slices on the Spartan6 FPGA (21, 465 out of 23, 038).
Table 2 indicates the FPGA utilization in terms of slices, registers
and block RAMs for the whole network and four different nodes,
one corresponding to each convolutional layer. Tables 3–6 show

FIGURE 13 | Characterization of the rate saturation mechanism for one single

convolution pixel with kernel = 1 and th = 10. A train of input pulses with

average frequency fin and stdin = 10% is processed by the pixel, generating a

train of output pulses with average frequency fout and the std represented in

the figure. Each trace corresponds to a different value of TR.

TABLE 2 | FPGA utilization for the whole network and convolutional nodes.

Module # of slices # of registers # of block

RAMs

Network 21,465 38,451 202

Node in C1 769 1,529 4

Node in C3 2,010 1,892 5

Node in C5 738 1,715 3

Node in C6 538 1,350 2

TABLE 3 | Detailed FPGA utilization for a convolutional node in layer C1.

Module # of slices # of registers # of block

RAMs

Router 303 810 0

Convolutional unit 466 719 4

Address calculation block 195 107 0

Kernel memory 0 0 3

Neuron memory 0 0 1

SPI slave 16 55 0

FIFO in 19 29 0

FIFO out 11 16 0

further details for the different blocks inside each convolutional
node in layers C1, C3, C5, and C6, respectively.

This network was adapted from the one proposed by Pérez-
Carrasco et al. (2013) for poker card symbol recognition,
following the procedure described in Section 2.2. In order to
characterize this network, a sequence of events was reproduced
by the AER data player and sent to the FPGA. These events
were previously recorded using a Dynamic Vision Sensor (DVS)
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(Serrano-Gotarredona and Linares-Barranco, 2013) which was
observing a deck of 40 poker cards running in roughly 1 s.
The recorded events were pre-processed to track the symbols
and extract a 32 × 32 pixels window of the whole visual field
showing only the centered 40 symbols. This stimulus consists
of 174, 644 events with an exact duration of 950ms, which
corresponds to an average event rate of 184Keps (events per
second). When this stimulus is processed by this convolutional
neural network configured for symbol recognition, the total
traffic registered inside the network is formed by 3, 172, 361
events, which corresponds to an event rate of 3.34Meps. This
event rate is higher than the capabilities of the network, specially
limited by the event processing time in the first layer, where the
size of the convolutional kernels is 10 × 10. From Figure 12, we
can see that for a 10 × 10 kernel, one event requires a 32µs
processing time. This limitation is overcome by the traffic control
mechanism described in section 2.1.4. This mechanism discards

TABLE 4 | Detailed FPGA utilization for a convolutional node in layer C3.

Module # of slices # of registers # of block

RAMs

Router 379 963 0

Convolutional unit 1,631 929 5

Address calculation block 164 87 0

Kernel memory 0 0 3

Neuron memory 0 0 1

SPI slave 16 55 0

FIFO in 19 27 0

FIFO out 9 16 0

TABLE 5 | Detailed FPGA utilization for a convolutional node in layer C5.

Module # of slices # of registers # of block

RAMs

Router 477 1,252 0

Convolutional unit 261 463 3

Address calculation block 44 25 0

Kernel memory 0 0 3

SPI slave 16 55 0

FIFO in 18 25 0

FIFO out 11 16 0

TABLE 6 | Detailed FPGA utilization for a convolutional node in layer C6.

Module # of slices # of registers # of block

RAMs

Router 399 1,035 0

Convolutional unit 139 315 2

Kernel memory 0 0 2

SPI slave 14 55 0

FIFO in 15 18 0

FIFO out 10 16 0

input events whenever any convolutional block is in saturation
(fullFIFO active), implementing a temporal subsampling of the
input sequence, without altering the spatio-temporal correlation
of the events within the system. In order to test the behavior
of the network when processing this stimulus, different slow-
down factors were applied to the play-back of the input events
(100, 50, 20, 10, 5, 2, and 1) to reduce the rate of the input
data. A slow-down factor of 1 indicates that the stimulus is
played-back at real time, while a different value represents how
many times slower it is played-back (2 times slower, and so on),
scaling the precise timing of each individual event. For each slow-
down factor, the time constants of the network were also scaled
proportionally. Figure 14 shows the behavior of the network
for poker card symbol recognition for each value of the slow-
down factor, illustrating the effect of the proposed traffic control
mechanism.

For each value of the slow-down factor, the events sequence
of the 40 poker symbols was processed by the network 100
times in order to analyze its statistical behavior. For each
time interval associated to one of the 40 symbols, the output
events generated by the four neurons in the last layer were
observed. Positive events indicate a symbol recognition, so we
count the positive events generated by each of these output
neurons, obtaining ns, nh, nd and nc (number of positive events
generated by the output neurons associated to spades, hearts,
diamonds and clubs, respectively). For example, if ns > nh, nd,
nc, we consider that the network recognized a spade. Following
this criterion, we measured the recognition rate for each input
trial as the number of symbols recognized correctly over the
total number of symbols (which is 40 in our case). Figure 14A

FIGURE 14 | Characterization of the network for poker card symbol

recognition with different values of the slow-down factor. (A) Measurement of

the recognition rate (in %), representing the proportion of symbols identified

correctly. The error bars were obtained by repeating each experiment 100

times. The blue trace corresponds to the proposed network including traffic

control mechanism, while the red trace does not include that mechanism. (B)

Proportion of input events (in %) processed by the network. When no traffic

control is implemented (red trace), all input events are processed. Blue trace

illustrates how the proposed traffic control mechanism implements temporal

subsampling of events.
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shows a comparison between the recognition rates obtained
for the implemented network with the proposed traffic control
mechanism (blue trace) and those obtained for the network
without traffic control (red trace). For slow-down factors larger
or equal than 5, the recognition rates obtained for both networks
are almost identical (above 90%), while larger event rates (slow-
down factors 1 or 2) demonstrate the advantages of the proposed
method, with recognition rates around 65 and 22%, respectively,
when processing the recording in real time. Figure 14B shows
the proportion of input events actually processed in each case.
When there is no traffic control, all events are processed by the
network (although they are delayed by the handshake protocol
between different convolutional blocks, altering the spatio-
temporal correlation of the events), as represented by the red
trace. However, the proposed mechanism discards input events
when any convolutional block is saturated, producing a reduction
of the number of processed events as the event rate increases,
as shown by the blue trace. The robustness of the network is
demonstrated by the fact that, even when only a small fraction
of the input events is processed, the measured recognition rates
are still reasonable. In the most conservative case (slow-down
factor 100), the recognition rate is larger than 96%, with 100% of
the input events actually processed. When the slow-down factor
is 5, the proportion of processed events drops dramatically to
around 45% while the recognition rate is still larger than 90%.
Even when the recording is processed at real time, a recognition
rate of around 65% is obtained with less than 20% of the input
events. This example illustrates the robustness of this approach
even when using a very slow clock signal (50MHz) in an old
FPGA, showing how a very small number of events is giving a
reasonable high recognition rate. However, the capabilities of the
proposed architecture to process high-speed stimuli in real time
would increase dramatically using a modern FPGA with a faster
clock. Another alternative to further reduce the processing time
per second would be a VLSI implementation of this architecture,
where a whole row of neurons could be updated in parallel as
demonstrated in (Camuñas-Mesa et al., 2012).

Figure 15 illustrates the recognition performance for slow-
down factors 100 (a), 10 (b), 5 (c), and 1 (d). In each plot, the
continuous blue trace represents the input poker card symbol
presented at each time, repeating the sequence club-diamond-
heart-spade 10 times for each trial. The output events generated
by the last layer of the network are represented by different
markers for each output neuron associated with a symbol:
blue circles for club, red crosses for diamond, black inverted
triangles for heart, and green non-inverted triangles for spade.
In Figure 15A, with slow-down factor 100, the best possible
performance is shown, with a recognition rate of 97.5% (one
symbol incorrectly classified out of 40). Despite this almost
perfect performance, frequent false positives are shown in this
plot, mostly between spade and club, as the lower part of both
symbols is identical. Therefore, it is reasonable to assume that
it might be difficult to distinguish between both symbols while
they are moving and they are not completely visible all the time.
However, the correct neuron always generates more positive
events than the wrong ones (except in one case, in this particular
example).

FIGURE 15 | Recognition performance of the network for different slow-down

factors: (A) 100, (B) 10, (C) 5, and (D) 1. Continuous blue traces represent the

input symbol vs. time. Each individual marker represents a single positive

event generated by a specific output neuron associated to spade, heart,

diamond or club (see legend below).

In Figure 15B,C, the proportion of processed input events
decreases as the event rate increases, producing more false
positives than in (a), as the shape of the symbols is less clear
due to the sub-sampling of events. However, the recognition
rates are still higher than 90%. Finally, Figure 15D shows the
performance of the network when the input events are sent
at real time, discarding more than 80% of them. In this case,
a human observer looking at the visual information provided
by the processed events (which represent less than 20% of the
original event flow) would not be able to recognize easily the
shapes of the symbols, as they are not complete. Even with these
limitations, we obtain a recognition rate of 70% in this example,
illustrating the robustness of the network.

In Figure 16 we represent a reconstruction of the whole
network activity for a slow-down factor of 100 during 100ms.
We plot in (x, y) space all the events generated by all the neurons
during a 100ms time period together with the simultaneous
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FIGURE 16 | Reconstruction of the whole network activity for a slow-down

factor of 100 during 100ms. Red dots represent positive events, and blue

dots represent negative events.

input events, with red dots representing positive events and blue
dots representing negative events. The top black rectangle shows
the network input during that period, which corresponds to a
club symbol. Below that rectangle, we can see the output events
generated by the 6 convolutional nodes in layer C1, with 28× 28
neurons each. At the right hand side, another rectangle shows the
output events generated by the 4 convolutional nodes in layer C3,
with 10 × 10 neurons in each node. The next smaller rectangle
shows the 8 convolutional nodes in layer C5, with one single
neuron per node, showing either positive or negative activity.
Finally, the smallest rectangle at the right side of the figure
shows the output activity generated by layer C6, with 4 individual
neurons, one for each symbol. In this case, the first neuron is
not firing events during this time window, while the second and
third neurons are firing negative events (blue dots) and the fourth
one is firing positive events (red dot). This last neuron is the one
attached to the club symbol, representing a correct recognition.

In Figure 17 we represent a reconstruction of the whole
network activity when processing the input events at real time
during 1ms. As we mentioned before, only a small fraction
of the input events is processed by the network at this high
speed (less than 20% on average), which explains the higher
sparsity of neuron activity in this figure. The top black rectangle
again represents the network input during the 1ms window.
Theoretically, we should see the same activity than in Figure 16,
as nowwe have increased the events speed by a factor of 100 while
reducing the time window with the same factor. However, the
traffic control mechanism implemented in the network discards
more than 80% of the input events at this speed, almost ruining
the shape of the input club, as shown in the top rectangle of
Figure 17, which is barely recognizable by a human observer.
However, the output of layer C6 shows positive activity at the
correct neuron, while no activity at all is observed for the other
ones. Although we can see very sparse activity at all the layers of

FIGURE 17 | Reconstruction of the whole network activity for a slow-down

factor of 1 during 1ms. Red dots represent positive events, and blue dots

represent negative events.

the network, that activity is enough to obtain a correct symbol
recognition, demonstrating the robustness of the network.

The event timing of the multi-layer network is illustrated
in Figure 18, where we plot events vs. time during 1 s while a
club symbol is being processed with a slow-down factor of 100
(red circles represent positive events, and blue crosses represent
negative events). This time window of 1 s represents only an
initial cut of the whole symbol sequence, which lasts around
2.5 s in this example. Figure 18A shows the y-coordinates of
the flow of events generated by the DVS sensor while the club
symbol is moving in front of it. At this time window, 752
events were received by the network, while the whole symbol
sequence consists of a total number of 5, 583 events (an average
input event rate of 2.23Keps for this symbol). Figure 18B

shows the y-coordinates of the output events generated by the
fourth convolutional node in layer C1. This plot illustrates the
pseudo-simultaneity of event-based processing (Farabet et al.,
2012), as this first layer is producing output events which
are simultaneous with the input ones, introducing only an
initial latency between input and output sequences. This node
generated 1, 112 events during the represented time window,
while a total number of 9, 449 events were produced during
the processing of the whole symbol. Figure 18C shows the y-
coordinates of the events generated by the first convolutional
node in layer C3. This node generated 2,230 events during the
initial cut, with a total of 11, 308 events for the whole sequence.
Figure 18D shows the activity generated by layer C5. As each
convolutional node in this layer consists of a single neuron, the
whole layer can be represented by showing the events generated
by the 8 nodes. These 8 nodes produced 111 events during the
initial time window, while 349 events were generated during the
whole symbol processing. Finally, Figure 18E shows the activity
generated by layer C6, which is formed by 4 neurons, each
one associated to a different poker symbol. In this example,
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FIGURE 18 | Events vs. time representing the network activity for a

slow-down factor of 100 during a time window of 1 s, when processing a club

symbol. Red dots represent positive events, and blue dots represent negative

events. (A) Y-coordinates vs. time of the input events generated by the DVS

and processed by the network while a club symbol is moving for 1 s. (B)

Y-coordinates vs. time of the output events generated by convolutional node

number 4 in layer C1. (C) Y-coordinates vs. time of the output events

generated by convolutional node number 1 in layer C3. (D) Convolutional node

number vs. time of the output events generated by layer C5. (E) Neuron label

vs. time for the output events generated by layer C6.

the neuron associated to the club symbol generates two positive
events, while the other neurons generate several negative events,
concluding that the symbol was recognized correctly. The latency
between the beginning of the stimulus and the first recognition
event is less than 450ms for a slow factor of 100. This last layer
generated 12 events during the initial window of 1 s, while the
complete sequence produced a total number of 35 events.

Figure 19 illustrates the behavior of the network when
processing the same input stimulus at real time. In this case, the
5, 583 events corresponding to this symbol should be processed
in around 25ms, giving an average input event rate of 223Keps.
In this figure, we plot the events recorded at the different
layers of the network during an initial time window of 10ms
while processing the same club symbol. Figure 19A shows the
y-coordinates of the events generated by the DVS sensor. For
this event rate, the traffic control mechanism implemented in

FIGURE 19 | Events vs. time representing the network activity at real time

during a time window of 10ms, when processing a club symbol. Red dots

represent positive events, and blue dots represent negative events. (A)

Y-coordinates vs. time of the input events generated by the DVS and

processed by the network while a club symbol is moving for 10ms. (B)

Y-coordinates vs. time of the output events generated by convolutional node

number 4 in layer C1. (C) Y-coordinates vs. time of the output events

generated by convolutional node number 1 in layer C3. (D) Convolutional node

number vs. time of the output events generated by layer C5. (E) Neuron label

vs. time for the output events generated by layer C6.

the network limited the total amount of events that could be
processed by the system, ignoring the input events while the
fullFIFO signal became active in any convolutional node. For
this reason, only 338 input events are shown in Figure 19A,
representing around 45% of the events shown in Figure 18A

for the initial time window. However, if we plotted the whole
symbol sequence, we would see that the total number of input
events processed by the network is 936, representing less than
20% of the whole sequence, which is consistent with Figure 14B

for slow-down factor 1. Figure 19B shows the y-coordinates
of the events generated by the fourth convolutional node in
layer C1, only 283 events at this time window from a total
number of 874 events for the whole 25ms sequence. Figure 19C
shows the y-coordinates of the events generated by the first
convolutional node in layer C3, with 599 events presented in
the figure from a total number of 1, 260 for the whole symbol
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processing. Figure 19D shows the activity generated by all the
convolutional nodes in layer C5, which corresponds to 62 events
during the 10ms time window, and a total of 137 for the whole
sequence. Finally, Figure 19E shows the activity generated by
the 4 output neurons in layer C6, with only 7 events in the
presented cut, and a total number of 15 events for the complete
symbol processing. The figure shows how the neuron associated
to the club symbol generates two positive events and a negative
one, while the other neurons generate only negative events, so
the symbol was recognized correctly. The latency between the
onset of the stimulus and the first positive event is less than
6ms at real time, which represents a very fast recognition task.
Although the proportion of events processed by the network
is less than 20% at real time, this example illustrates how a
successful recognition is obtained by exploiting the robustness of
the network.

The power consumed by the whole network inside the FPGA
was measured while processing the input sequence for different
slow-down factors, obtaining 7.7mW when the stimulus was
being processed at real time, and even lower consumptions for
slower processing: 5.25mW when it was 10 times slower, and
0.85mW for a slow-down factor of 100. Considering that each
symbol was presented for an average time of 25ms in the real-
time situation, the energy per classification can be obtained as
192.5µJ, or inversely a number of 5, 194.81 classifications per
Joule. The same calculations can be done for slow-down factor
of 10 with Tsymbol = 250ms, and for a slow-down factor of 100
with Tsymbol = 2.5 s. Table 7 summarizes the main results given
in this section for different slow-down factors.

4. DISCUSSION

In recent years, the field of machine learning has experienced a
huge progress taking advantage of the availability of immense
image databases and the current computing power. Different
tasks have attracted the attention of researches, like classifying
handwritten digits from the MNIST dataset (LeCun and Cortes,
1998) or classifying an object into one of 1000 classes, as is
required for the ImageNet dataset (Russakovsky et al., 2015). For
instance, modern ConvNets like LeNet-5 (LeCun et al., 1998),
AlexNet (Krizhevsky et al., 2012), GoogLeNet (Szegedy et al.,
2015), VGG-16 (Simonyan and Zisserman, 2014) or ResNet
(He et al., 2016) have been developed to solve such tasks
with impressive results. However, the main bottlenecks in these

TABLE 7 | Summarized main results.

Measurement Real-time Slow-down

factor 10

Slow-down

factor 100

Recognition rate 63% 95% 96%

Ratio of processed events 17% 70% 100%

Power consumption 7.7 mW 5.25 mW 0.85 mW

Tsymbol 25 ms 250 ms 2.5 s

Energy per classification 192.5 µ J 1.312 mJ 2.125 mJ

Classifications per Joule 5,194.81 761.90 470.58

applications are related to speed and power. The human brain
represents a source of inspiration to design better approaches,
given its ability to perform classification tasks in real time
with a very small power consumption, so that is the goal of
neuromorphic systems like the one presented in this work. While
conventional frame-based ConvNets process huge amounts of
data, neuromorphic systems process visual information encoded
in events as generated by DVS sensors inspired by the biological
retina, resulting in very sparse data which facilitates the reduction
in processing time and power consumption. The pseudo-
simultaneity property of neuromorphic systems allows individual
events generated by the sensor to propagate through all the
layers in the network immediately, while frame-based systems
need to wait until large packages of information (frames) are
processed by each layer, introducing multiple delays. Despite
these clear advantages in neuromorphic systems, conventional
frame-based ConvNets are still giving better performance, mostly
due to the availability of image datasets mentioned before
and very well-known training techniques based on frames, like
backpropagation. Nevertheless, recent works have demonstrated
similar performance in neuromorphic SNNs using event-based
training techniques (Wu et al., 2017; Zheng and Mazumder,
2017), suggesting that it is only a matter of time that event-
based ConvNets become competitive with respect to frame-based
ones in terms of classification, while presenting better results
in terms of speed and power consumption. Some frame-based
approaches are using hardware accelerators (Aydonat et al., 2017;
Qiao et al., 2017) to improve their performance in terms of speed.
Some large-scale neuromorphic approaches (Schemmel et al.,
2010; Benjamin et al., 2014; Furber et al., 2014; Merolla et al.,
2014) have dealt with the speed/power tradeoff, showing very
impressive results (Furber, 2016), although they are based on very
expensive dedicated hardware. The architecture proposed in this
paper allows for implementing large-scale ConvNets using cheap
commercial FPGAs presenting competitive results in terms of the
tradeoff recognition rate/speed/power.

A new configurable event-based convolutional node with
rate saturation mechanism has been designed for hardware
implementation of convolutional neural networks on FPGAs.
This node was designed to assemble large 2D arrays, and
includes three main blocks: (1) a processor unit, which
calculates the convolutional operation of the input events
with a programmable kernel and generates the corresponding
output events, (2) a router, which manages the communication
between the processor circuit and the neighboring modules,
implementing the network structure, and (3) a configuration
block, which receives commands through an SPI connection
in order to set all the programmable parameters of the
network. The proposed implementation of the rate saturation
mechanism guarantees a programmable minimum separation
in time between consecutive spikes for each single neuron,
while the implemented traffic control mechanism discards input
events when the network is busy, keeping spatio-temporal
correlation and avoiding artificial delays. Although rectifying
non-saturating non-linearities like ReLUs have been proposed
as a simpler alternative to rate saturation mechanism in frame-
based systems, they are not a good solution for spiking hardware
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implementation, as an excessively active neuron would generate a
large amount of events and collapse the communication network.
A Convolutional Neural Network with 4 layers and 22 nodes
for poker card symbol recognition has been implemented on a
Spartan6 FPGA using a 2D array of the proposed convolutional
node. The individual node has been characterized for different
rate saturation period values from 50µs to 51.2ms, showing a
correct behavior. The proposed network, with more than 5K
neurons and 500K synapses, has been carefully characterized
for the recognition of a sequence of 40 poker card symbols
in 1 s time with different slow-down factors, from real time
processing to 100 times slower. The slower versions showed
recognition rates around 96% when all the input events were
processed by the network, while less than 20% of the events were
processed at real time, obtaining a recognition rate higher than
63%, demonstrating the robustness of the method even when
the input stimulus is barely visible by a human observer due
to the high speed. A recognition latency smaller than 6ms was
shown in the presented results. Arbitrary convolutional neural
networks can be easily implemented using the proposed node and
methodology, which can be expanded to multi-FPGA arrays by
using appropriate I/O blocks reported elsewhere (Yousefzadeh
et al., 2017). In the example presented in this paper, a relatively
small FPGA was used with a slow clock signal (50MHz).
However, some newer FPGAs include more than 5 millions logic

elements, and support maximum processing frequencies up to
1.5GHz. This would imply around 36 times more slices and a
clock signal 30 times faster. This number of slices would be able to
fit up to 180K neurons and 18M synapses within a single FPGA.
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