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SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power

simulation of large-scale spiking neural networks at speeds close to biological real-time.

Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron

and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has

proved to be a powerful tool for studying different neuron models as well as synaptic

plasticity—believed to be one of the main mechanisms behind learning and memory

in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already

been implemented on SpiNNaker and have been shown to be capable of solving various

learning tasks in real-time. However, while STDP is an important biological theory of

learning, it is a form of Hebbian or unsupervised learning and therefore does not explain

behaviors that depend on feedback from the environment. Instead, learning rules based

on neuromodulated STDP (three-factor learning rules) have been shown to be capable

of solving reinforcement learning tasks in a biologically plausible manner. In this paper

we demonstrate for the first time how a model of three-factor STDP, with the third-factor

representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker

neuromorphic system. Using this learning rule we first show how reward and punishment

signals can be delivered to a single synapse before going on to demonstrate it in a

larger network which solves the credit assignment problem in a Pavlovian conditioning

experiment. Because of its extra complexity, we find that our three-factor learning rule

requires approximately 2× as much processing time as the existing SpiNNaker STDP

learning rules. However, we show that it is still possible to run our Pavlovian conditioning

model with up to 1 × 104 neurons in real-time, opening up new research opportunities

for modeling behavioral learning on SpiNNaker.
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1. INTRODUCTION

One of the earliest andmost famous hypotheses onwhen synaptic
plasticity occurs came fromDonald Hebb, who postulated (Hebb,
1949):

“When an axon of cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it, some growth

process or metabolic change takes place in one or both cells such

that A’s efficiency, as one of the cells firing B, is increased.”

In the context of the changing strengths of existing synaptic
connections, rather than the formation of new synapses, Hebb’s
postulate suggests that connections between neurons whose
activity is causally related will be strengthened. Neurons which
persistently fire at the same time are likely to do so because they
respond to similar or related stimuli.

Using improved experimental techniques that became
available in the 1990s, Markram et al. (1997) showed that the
magnitude of the changes in synaptic strength caused by Hebbian
learning were related to the timing of pre- and post-synaptic
spikes. The relationship between the magnitude of these changes
and the relative timing of the pre- and post-synaptic spikes
became known as Spike-Timing Dependent Plasticity (STDP)
and the data recorded by Bi and Poo (1998) suggests that it
reinforces causality between the firing of the pre- and post-
synaptic neurons. When a pre-synaptic spike arrives before
a post-synaptic spike is emitted the synapse is potentiated
(strengthened). However, if a pre-synaptic spikes arrive after a
post-synaptic spike has been emitted, the synapse is depressed
(weakened). In the ensuing years STDP has been widely used
to solve many tasks using biologically plausible spiking neural
networks (Gerstner et al., 1996; Song et al., 2000; Davison and
Frégnac, 2006).

Many extensions have been proposed to STDP such as the
inclusion of additional spikes (Pfister and Gerstner, 2006) and the
post-synaptic voltage (Brader et al., 2007; Clopath et al., 2010).
However, while these extensionsmay improve the ability of STDP
to capture the statistical relationship between pre- and post-
synaptic activity, Hebbian learning still provides no means of
controlling what to learn. For example, if we consider a two layer
feed-forward network in which an output neuron is stimulated at
the same time by two different input neurons, Hebbian learning
will strengthen the synapses between both input neurons and the
output. However, Hebbian learning rules provide no synapse-
level means of associating reward or punishment; surprise or
novelty; or any other input that could allow the system to learn
how to behave in order to maximize reward. While circuit-
level approaches such as attractor networks, built using only
Hebbian learning rules (Amit, 1992; Giudice et al., 2003; Klampfl
and Maass, 2013), can react differently to known and novel
inputs, Hebbian learning rules cannot do this at a synaptic level.
Dopamine (DA) has been identified as a potential reward signal
in the brain (Schultz, 2000) and has been shown to control
synaptic plasticity in a large number of ways (Shen et al., 2008).
Also see Pawlak (2010) for a detailed review. On this basis
Izhikevich (2007), Florian (2007), and Frémaux and Gerstner

(2016) all developed learning rules based on neuromodulation
which extend Hebbian learning to include reinforcement from
neuromodulators such as dopamine.

SpiNNaker is a digital neuromorphic architecture designed
for simulating spiking neural networks (Furber et al., 2014).
SpiNNaker systems consist of varying numbers of custom
SpiNNaker chips—each of which contains 18 simple, integer-
only ARM cores which are connected through a network-on-chip
and can communicate with their six neighboring chips using
a multicast router. Each ARM core is typically programmed
to simulate a number of neurons and communicates with the
neurons simulated on other cores using spike events. Being
able to define the neuron and synapse models in software
makes SpiNNaker very flexible and has enabled a wide range
of neuron models and integration methods (Hopkins and
Furber, 2015) as well as synaptic plasticity algorithms (Jin
et al., 2010; Galluppi et al., 2015; Lagorce et al., 2015;
Knight et al., 2016) to been developed. Most recently Knight
et al. (2016) developed a general framework, based on the
algorithms developed by Morrison et al. (2007), for efficiently
implementing STDP learning rules on SpiNNaker. Using
this framework, Knight et al. successfully simulated large-
scale models with tens of millions of plastic synapses on
SpiNNaker.

Some progress has been made on simulating neuromodulated
STDP on other neuromorphic hardware (Friedmann et al.,
2013, 2017), but no large-scale networks using these learning
rules have been demonstrated. In their technical report,
Nichols et al. (2017) present the implementation of a three-
factor learning rule for learning spatio-temporal patterns on
SpiNNaker. However, in their learning rule, the third factor
represents an attention signal—used to demarcate individual
spatio-temporal patterns—rather than a biologically-inspired
reinforcement signal. Additionally they only demonstrated this
learning rule on small networks with up to 4 neurons and 1,000
input synapses.

While the methods we present in this paper could be used
to simulate various three-factor learning rules on SpiNNaker,
we demonstrate it in the context of the rule proposed by
Izhikevich (2007), which we introduce in section 2.2. In
section 2.1 we briefly outline the algorithm used to simulate
STDP on SpiNNaker before, in section 2.3, we present an
extended version of this algorithm which incorporates reward
signals. In order to illustrate the functioning of this new
algorithm, in section 3.1, we present the results of some simple
network simulations which use reward and punishment signals
to modulate learning. In section 3.2 we reproduce the classical
conditioning experiment described by Izhikevich (2007) and use
this to demonstrate both how neuromodulated STDP can be used
to solve the credit assignment problem and how SpiNNaker can
be used to simulate larger models incorporating neuromodulated
STDP. Finally, in section 3.3, we measure the performance
of our three-factor learning implementation—comparing the
overhead with existing STDP models running on SpiNNaker
and the run-time of the classical conditioning experiment with
simulations running on GPU hardware with comparable energy
requirements.
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2. MATERIALS AND METHODS

2.1. Simulating STDP on SpiNNaker
STDP is simulated on SpiNNaker using a trace-based
approach (Song et al., 2000; Morrison et al., 2008) where
each synapse records pre- and post-synaptic neural activity into
local trace variables (si and sj, respectively) with the following
dynamics:

ds

dt
= −

s

τ
+
∑

tf

δ(t − tf ), (1)

where spikes at times tf – described by Dirac delta functions δ(t−
tf )—increase the value of the trace which decays exponentially
with a time constant τ . The time constants of these traces are
typically set to match the shape of the desired STDP function.

Biological neurons have on the order of 103–104 afferent
synapses, so updating all of these every time step would
be extremely computationally intensive. Instead, as individual
synapses only receive spikes at relatively low rates, they can be
updated only when they transfer a spike as long as their new state
can be calculated from their previous state.

Using this event-driven approach on SpiNNaker is also
advantageous as, due to their sheer number, synapses need to be
stored in the off-chip SDRAM which has insufficient bandwidth
for every synapse’s parameters to be retrieved every simulation
time step (Painkras et al., 2013). Instead, synapses are updated
only when spike packets arrive at a core and the row of the
connectivity matrix associated with the pre-synaptic neuron is
fetched from the off-chip SDRAM using a DMA transfer. Each
row of the connectivity matrix describes the synapses going from
a pre-synaptic neuron (the source of the spike) to a number of
post-synaptic neurons.

Figure 1 illustrates how pre- and post-synaptic trace variables
are sampled to compute STDP weight updates. This process
is implemented using the processRow() function shown in
Algorithm 1 which is called when a pre-synaptic spike arrives and
the corresponding synaptic matrix row has been transferred into
local memory. This algorithm applies all of the STDP updates
that have occurred since the last pre-synaptic spike was received
(between each pair of dashed blue vertical lines in Figure 1) in a
similar manner to that proposed byMorrison et al. (2007). Firstly
the spike times (tj) and associated trace values (sj) for each post-
synaptic neuron connected by the synaptic row are retrieved from
the post-synaptic history structure (located in the core’s local
memory). Then the effect of each post-synaptic spike (dashed
green vertical lines in Figure 1) is applied to the synaptic weight
using the applyPostSpike function. The effect of the pre-synaptic
spike which triggered this update is then applied to the synaptic
weight using the applyPreSpike function. Finally, the fully-
updated weight is applied to the post-synaptic neural input (via
a delay ring-buffer structure) using the addWeightToRingBuffer
function. Once all of the synapses have been updated, the last pre-
synaptic spike time (told) and associated trace value (si) stored in
the synaptic row are updated.

Algorithm 1 Algorithmic implementation of STDP (After
Knight et al., 2016).

function processRow(t)
for all j in postSynapticNeurons do

history← getHistoryEntries(j, told, t)

for all (tj, sj) in history do
wij ← applyPostSpike(wij, tj, told, si)

(tj, yj)← getLastHistoryEntry(t)
wij← applyPreSpike(wij, t, tj, sj)
addWeightToRingBuffer(wij, j)

si ← addPreSpike(si, t, told)
told ← t

2.2. Neuromodulated-STDP Model
Izhikevich (2007) revisits an important question: how does an
animal know which of the many cues and actions preceding a
reward should be credited for the reward? Izhikevich explains
that dopamine-modulated STDP has a built-in instrumental
conditioning property, i.e., the associations between cues, actions
and rewards are learned automatically by reinforcing the firing
patterns (networks of synapses) responsible, even when the
firings of those patterns are followed by a delayed reward or
masked by other network activity. To achieve this each synapse
has an eligibility trace C:

dC

dt
= −

C

τc
+ STDP(1t)δ(t − tpre/post), (2)

where τc is the decay time constant of the eligibility trace and
STDP(1t) represents the magnitude of the change to make to the
eligibility trace in response to a pair of pre- and post-synaptic
spikes with temporal difference 1t = tpost − tpre. Finally, δ(t −
tpre/post) is a Dirac delta function used to apply the effect of STDP
to the trace at the times of pre- or post-synaptic spikes.

The concentration of Dopamine is described by a variable D:

dD

dt
= −

D

τd
+ Dc

∑

t
f

d

δ(t − t
f

d
), (3)

where τd is the time constant of dopamine re-absorption, Dc is
the increase in dopamine concentration caused by each incoming

dopaminergic spike and t
f

d
are the times of these spikes.

Equations ( 2, 3) are then combined to calculate the change in
synaptic strengthW:

dW

dt
= CD. (4)

As discussed in section 1, when a post-synaptic spike arrives
very shortly after a pre-synaptic spike, a standard STDP rule
would immediately potentiate the synaptic strength. However,
as Figure 2 illustrates, when using the three-factor STDP rule,
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FIGURE 1 | Calculation of weight updates using pair-based STDP traces. Pre- and post-synaptic traces reflect spiking activity of pre- and post-synaptic neurons.

Potentiation is calculated at each post-synaptic spike time by sampling the pre-synaptic trace (green circle) to obtain a measure of recent pre-synaptic activity.

Depression is calculated at each pre-synaptic spike time by sampling the post-synaptic trace (blue circle) to obtain a measure of recent post-synaptic activity. Weight

dependence is additive. After Morrison et al. (2008).

FIGURE 2 | Using eligibility trace C to gate STDP with dopamine D. After Izhikevich (2007).

this potentiation would instead be applied to the eligibility trace.
Because changes to the synaptic strength are gated by dopamine
concentration D (Equation 4), changes are only made to the
synaptic strength if D 6= 0. Furthermore, if the eligibility trace
has decayed back to 0 before any dopaminergic spikes arrive, the
synaptic strength will not be changed.

2.3. Simulating Neuromodulated-STDP on
SpiNNaker
Because Equation (4) describes a continuous weight change,
it cannot be directly evaluated within the event-driven STDP

algorithm described in section 2.1. However, in this section
we will show how it can be transformed into a form suitable
for event-driven evaluation. Firstly we consider the C and D
traces (Equations 2, 3). Similarly to the pre- and post-synaptic
STDP traces discussed in section 2.1, between the times at which
spikes occur, both of these equations are simple first-order linear
ODEs. Therefore, we can write down the following equations to
update C and D:

Cij = Cij(t
last
c )e−

t−tlastc
τc , (5)
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Dj = Dj(t
last
d )e

−
t−tlast

d
τd , (6)

where tlastc is the time of the last eligibility trace update (when
either a pre- or post-synaptic spike caused an STDP update)
and tlast

d
is the time of the last dopamine trace update (occurs

when a dopamine spike is received). So that each (post-synaptic)
neuron can be independently targeted by dopaminergic spikes,
the dopamine trace values (D) are stored in the post-synaptic
history structure along with the post-synaptic traces (sj) and
event times (tj) in a similar manner to the “target spikes” in the
learning rule presented byNichols et al. (2017). However, because
the eligibility traces (C) are individual to each synapse, they must
be stored alongside the synaptic weights (wij) in SDRAM and
can thus only be updated within the processRow function when
have been transferred into local memory. We can now substitute
Equations (5, 6) into Equation (4) to obtain the weight change
dynamics:

dwij

dt
= C(tlastc )D(tlastd )e−

t−tlastc
τc e

−
t−tlast

d
τd . (7)

Now, by integrating the preceding equation, the total weight
change since the last update at tlast can be found:

1wij = C(tlastc )D(tlastd )

∫ t

tlast
e−

t−tlastc
τc e

−
t−tlast

d
τd dt, (8)

1wij =
C(tlastc )D(tlast

d
)

−

(

1
τc
+ 1

τd

)

(

e−
t−tlastc

τc e
−

t−tlast
d

τd − e−
tlast−tlastc

τc e
−

tlast−tlast
d

τd

)

.

(9)

The final update Algorithm 1 makes to each synaptic weight is
to apply the effect of the pre-synaptic spike at time t. Therefore,
if we extend Algorithm 1 to update the eligibility trace, told will
always represent the last time C was updated i.e., tlast = tlastc =

told. Furthermore, before the inner loop over the post-synaptic
events occurs, we can decay the last dopamine trace value to told
using Equation (6). Therefore, tlast = tlast

d
= tlastc = told, meaning

that Equation (9) can be simplified to:

1wij =
C(told)D(told)

−

(

1
τc
+ 1

τd

)

(

e−
t−told

τc e
−

t−told
τd − 1

)

. (10)

Algorithm 2 shows the extended, three-factor STDP algorithm.
The applyPostSpike and applyPreSpike functions used to directly
update the synaptic weight in Algorithm 1 are now instead used
to update the eligibility trace (Cij). When pre- or post-synaptic
events are applied, Equation (5) is used to decay the eligibility
trace (Cij) and Equation (10) is used to update the synaptic
weight (wij). Finally, as previously discussed, Equation (6) is used
to obtain the decayed Dj trace values at told and t.

In order to allow users to describe dopaminergic synapses
we modified sPyNNaker (Stokes et al., 2017), the SpiNNaker
implementation of PyNN (Davison et al., 2009) to support
dopaminergic connections. To implement the dopamine signal

Algorithm 2 Algorithmic implementation of three-factor STDP.

function processRow(t)
for all j in postSynapticNeurons do

history← getHistoryEntries(j, told, t)

(tprev, sprev,Dprev, typeprev)← getPrecedingHistoryEntry(t)

tc ← told

Dc ← Dprevexp(
−(tc−tprev

τD
)

for all (tj, sj,Dj, typej) in history do

wij ← wij +
CijDc

−

(

1
τC
+ 1

τD

)

(

exp(−
(tj−tc

τC
)exp(−

(tj−tc
τD

)− 1
)

Cij ← Cijexp(−
tj−tc
τC

)
if typej is not dopamine then

Cij ← applyPostSpike(Cij, tj, told, si)

Dc ← Dj

tc ← tj

(tj, sj,Dj, typej)← getLastHistoryEntry(t)

wij← wij +
CijDc

−

(

1
τC
+ 1

τD

)

(

exp(− (t−tc
τC

)exp(− (t−tc
τD

)− 1
)

Cij ← Cijexp(−
t−tc
τC

)
Cij ← applyPreSpike(Cij, t, tj, sj)

addWeightToRingBuffer(wij, j)

si ← addPreSpike(si, t, told)
told ← t

we introduced dopaminergic neurons that communicate through
a special type of synapses (similar to the “target synapses”
employed by Nichols et al., 2017) which do not cause updates
to the membrane potential of the post synaptic neuron but
simply bring information about dopaminergic spikes into it. This
approach has the advantage of allowing any type of PyNN neuron
to act as a source of dopaminergic spikes. When a core receives a
dopaminergic spike it is not added to the delay ring-buffer but
is instead added directly to the post synaptic history structure
where they can be accessed by Algorithm 2.

3. RESULTS

3.1. Reinforcing a Synapse on SpiNNaker
In this section we first demonstrate how the magnitude of
synaptic weight changes caused by the learning rule described
in section 2.2 depends on the delay preceding a “reward” or
“punishment” reinforcement signal. Figure 3 shows the result
of an experiment where reinforcement signals with different
delays are injected after a pre-post spike pair (separated by
1ms). When a reinforcement signal is introduced after a small
delay of 4ms, it produces a large change in synaptic strength as
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FIGURE 3 | The strength of a single synapse after delayed reward and

punishment. Each data point represents a separate experiment with a single

pre-synaptic neuron connected to two post-synaptic neurons. A single

pre-synaptic spike at time 1ms is fired which causes both post-synaptic

neurons to fire at time 3 ms. A single dopaminergic spike with Dc = 0.1 for

reward and Dc = −0.1 for punishment is fired at different times between 4 and

3,000 ms. All the parameters are set to the values shown in Tables 1, 2. It can

be seen that the longer dopamine is delayed, the more the eligibility trace

decays and thus the smaller the resultant weight change. When the eligibility

trace decays to zero at around 2,400 ms, the synapses are no longer affected

by dopamine release.

the eligibility trace has not had time to decay. However, if the
reinforcement signal is delayed by a larger time, the eligibility
trace will have decayed significantly and the change in synaptic
strength will be much smaller. Furthermore, once the eligibility
trace has decayed to 0, even if a reinforcement signal is received,
the synaptic strength will remain unchanged (as dictated by
Equation 4).

In Figure 4 we show the spiking activity of 10 neurons whose
input synapses use the learning rule presented in section 2.2.
We performed this experiment using a SpiNNaker simulation
in which each of these 10 neurons receives input from an
independent 50Hz Poisson spike source. Additionally, a single
dopamine spike source is connected to all 10 neurons. The
synapses connecting the Poisson spike sources to the neurons
were initialized with a weight of 1.5 nA. This causes the neurons
to fire initially at a low rate in response to the Poisson input but,
when reward signals (green arrows) are applied to these synapses,
the firing rate of all 10 neurons increases. However, when
punishment signals (red arrows) are applied to these synapses,
the neurons’ firing rate reduces to the point that some stop firing,
depending on magnitudes of eligibility traces at the times of
punishment signal. An example usage of such a setup would be
for the online training of a neural motor-control circuit where
reinforcement signals could be used tomodify the strengths of the
synapses that drove the current motor output so as to fine-tune
its magnitude.

FIGURE 4 | Ten neurons connected to 10 Poisson spike sources, each with a

mean firing rate of 50Hz. Dopamine is injected at times 2,000 ms, 3,000 ms,

and 4,000 ms (Green markers). This causes potentiation of synaptic

connections between stimuli and post-synaptic neurons which causes

post-synaptic neurons to respond more strongly. We then apply punishment

(negative dopamine value, red markers) at times 8,000 ms, 9,000 ms,

10,000 ms which causes a reduced response to the same random stimuli. The

experiment was performed with parameters τd = 5.0 ms, τc = 100.0 ms;

reward signals were represented using Dc = 0.01; and punishment signals

using Dc = −0.002. Due to Poissonian stimulus and short timing constants for

eligibility and dopamine traces, not all synapses get potentiated. On the other

hand, punishment is more effective because spiking rate is higher and thus

eligibility traces have non-zero values constantly.

3.2. Solving the Credit Assignment
Problem on SpiNNaker
Pavlov and Thompson (1902) first described classical
conditioning: a phenomenon in which a biologically potent
stimulus–the Unconditional Stimulus (UC)—is initially paired
with a neutral stimulus—the Conditional Stimulus CS). After
many trials, learning is observed when the previously neutral
stimuli starts to elicit a response similar to that which was
previously only elicited by the biologically potent stimulus.
Pavlov and Thompson performed many experiments with
dogs, observing their response (by monitoring salivation) to the
appearance of a person who has been feeding them and the actual
food appearing (UC). He demonstrated that the dogs started
to salivate in the presence of the person who has been feeding
them (or any other CS), rather than just when the food appears,
because the CS had previously been associated with food.

While Pavlovian conditioning has been demonstrated in small
networks of spiking neurons with Hebbian learning (Hofstoetter
et al., 2005), in more realistic situations where there is a
long delay between the stimuli and the reward and there is
distracting network activity, it becomes impossible to determine
which firing patterns from which neurons are responsible for
the reward. This is known as the credit assignment or distal
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reward problem—brute-force solutions to which would require
recording all spiking activity and, when a reward signal arrives,
searching this data to find the synapses responsible for the
reward. Fortunately, as Izhikevich (2007) described, the learning
rule discussed in section 2.2 enables us to solve the credit
assignment problem in networks of any size with minimal
memory overhead and no requirement to search through
synaptic data.

Izhikevich (2007) demonstrated a Pavlovian conditioning
experiment in which a CS (S1) is repeatedly injected into the sea
of random neural activity and then followed by a reward, which
reinforces the neural pathways going from neurons representing
S1. To simulate the experiment, 100 random sets of 50 neurons
(each representing stimuli S1...S100) are chosen from the pool
of 1,000 neurons. To deliver these stimulus to the network,
we stimulated the 50 neurons representing the chosen stimulus
by injecting a 1ms pulse of super-threshold current. Next, a
continuous input stream is formed consisting of stimuli Sk(1 ≤
k ≤ 100) in a random order with random intervals between
100 and 300ms. After every presentation of S1 a reward in the
form of an increase of extra-cellular dopamine is delivered to
all plastic synapse in the network after a random delay of up
to 1 s. The delay is large enough to allow a few irrelevant input
stimuli to be presented during the waiting period—these can be
considered as distractors. At the beginning of the experiment
the neurons representing each stimuli Sk(1 ≤ k ≤ 100)
respond equally. However, after many trials, the network starts
to show reinforced response to the CS (S1). Because synapses
coming out of neurons representing S1 are always tagged with
the eligibility trace when the reward is delivered, whereas the
synapses connected to neurons representing irrelevant stimuli
will only be occasionally tagged, the average strength of synaptic
connections from neurons representing stimuli S1 becomes
stronger than the mean synaptic connection strength in the rest
of the network. Therefore, the other neurons in the network learn
to listen more closely to the stimuli S1, because the activation of
this pathway causes a reward.

We reproduced Izhikevich’s experiment on SpiNNaker using
the three-factor learning rule presented in section 2.2. Our
experimental set-up consists of a population with NT Leaky
Integrate-and-Fire (LIF) neurons, which are divided into 80%
regular- and 20% fast-spiking (RS and FS, respectively); Table 1
shows the parametrization for each type. All neurons—modeled
using the PyNN IF_curr_exp model (Davison et al., 2009)—
connect to each other with 10% probability. Connections
originating from RS neurons are excitatory and permit synaptic
weight changes through dopamine-modulated STDP (Table 2)
and FS neurons project through fixed inhibitory synapses.

We designated Ng =
NT
10 (e.g., when NT = 103, Ng =

100) neural groups, with each group including Npg =
NT
20 (e.g.,

when NT = 103, Npg = 50) randomly selected neurons.
Dopamine is delivered by a single neuron which projects to
all of the neurons in the main population and, throughout the
experiment, each neuron in the population is stimulated with
a 10Hz Poisson noise input. In Figure 5 we demonstrate the
results of this experiment with NT = 1, 000 (which corresponds

to the third column in Table 3). Figure 5A shows that, over
the course of 60min of simulated time, the average strength
(weight) of synapses coming from the neurons representing
S1 gradually becomes greater than the average strength of all
synapses in the network. In the early stages of the experiment the
network responds similarly to all five randomly selected stimuli
meaning that the network response to the neurons representing
S1 being stimulated is indistinguishable from the response to
other stimuli. However, after an hour of simulation, we can
observe an increase in the activity of the neurons representing
S1 when this stimuli is delivered (Figure 5C)—showing that
these neurons been selectively associated. Finally, based on this
increased response to S1, we can observe that the network learns
which of the 100 stimuli brings rewards—even though the activity
of the neurons representing S1 is masked by distracting spiking
activity and the reward is delayed for up to 1 s. Therefore, as
Izhikevich (2007) reported, injection of a global dopaminergic
signal into the network allows it to identify a group of neurons
responsible for the rewards even in the presence of Poisson noise
and unrelated activity from other groups.

In order to evaluate the scaling properties of our algorithm,
we also simulated this network at the scales listed in Table 3 up to
10,000 neurons and 10 million synapses (keeping the connection
probability and Ng constant). We found that the SpiNNaker
system was able to simulate the experiment in real time at all
of the listed network sizes. However, when the total number of
neurons in the network reached 8,000, the increase in the number
of incoming synapses per neuron required that we reduce the
number of neurons simulated on each core to maintain real-time
performance.

3.3. Performance
In this section we discuss performance statistics obtained by
benchmarking the three-factor STDP learning rule running on
SpiNNaker.

3.3.1. Incoming Spike Processing Performance
SpiNNaker machines have no form of global synchronization.
Therefore, each core needs to update the state of each neuron it is
responsible for simulating and process any incoming spikes it has
received within a predetermined simulation time step (typically
1ms). This means that the number of neurons simulated on each
core, the complexity of the neuron or synapse model, the density
of connectivity and the rate of incoming spikes all need to be
balanced to guarantee real time operation.

In Figure 6 we compare the incoming spike processing
performance of a single SpiNNaker core simulating a population
of leaky-integrate-and-fire neurons with standard STDP and
three-factor STDP synapses. The extra local memory required
to store dopamine trace values in the post-synaptic history
structure means that, when using the three-factor STDP
algorithm described in section 2.3, each core is limited to
simulating 126 neurons. As Knight and Furber (2016) discussed,
the length of synaptic matrix rows has a significant effect
on synapse processing performance. This is because, beyond
the computational cost of processing each synapse, there is
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TABLE 1 | IfCurrExp Neuron model parameters for the PyNN simulation.

Type/Param Cm Ioffset τm τrefrac τsyn_E τsyn_I Vreset Vrest Vthresh

[nF] [nA] [ms] [ms] [ms] [ms] [mV] [mV] [mV]

Excitatory (RS) 0.3 0.005 10 4 1 1 −70 −65 −55.4

Inhibitory (FS) 0.3 0 10 2 1 1 −70 −65 −56.4

TABLE 2 | STDP parameters.

Parameter A+ A− τ+ [ms] τ− [ms] τc [ms] τd [ms]

Value 1 1 10 12 1,000 200

FIGURE 5 | (A) Shows the average synaptic weight of synapses from the group of neurons representing S1 (green) and every synapse in the network (blue) for the

first hour of the experiment. Randomly selected stimuli Sk are delivered to the network (black arrows), separated by random intervals of between 100 and 300ms.

These are visible in the synchronous spikes in (B,C). Every time S1 is chosen, dopamine is delivered to the network (dashed line). Raster plot (B) depicts the first 1 s of

network activity when S1 was delivered to the network; and (C) illustrates 1 s of activity after 1 h of simulation, showing how the neurons stimulated by S1 have

learned to respond more strongly. Note that in (A), the average of all the weights is increasing because, additionally to S1 always being rewarded, some stimuli

Sk 6= S1 also randomly get picked up soon before or after reward is delivered to the network.

a large fixed cost in processing each row meaning that the
best performance is obtained with long row lengths. Therefore,
following the procedure outlined by Knight and Furber, we
stimulated our population of neurons with an increasing number
of 10Hz Poisson spike trains in order to determine the maximum
incoming spike rate that the core could process in real time.
Additionally, because the number of events in the post-synaptic
history structure affects the performance of Algorithms 1 and 2,
we varied the post-synaptic firing rate by injecting a fixed current
into the simulated neurons. Because, in the case of three-factor
STDP, incoming dopaminergic spikes also get added to the post-
synaptic history structure, we also measured the performance
with a single dopaminergic neuron, firing at 8Hz, connected to
all the neurons in the benchmark population.

We find that the highest number of inputs into a single core
can be achieved with rows approximately 60 synapses long (50%
connection density). Furthermore, as the post synaptic rate is
increased, more synaptic history traces have to be processed on
each pre-synaptic spike, so overall performance decreases. As

predicted, we also find that performance with short synaptic
rows (10–40 synapses per neuron) suffers from the fixed row-
processing overheads mentioned earlier in this section. It is also
worth noting that with very long synaptic rows (80–120 synapses
per neuron) performance is also reduced. We predict that this
is because, with very long rows that take a long time to process,
even small variations in the number of spikes emitted by the
Poisson sources each time-step can overrun the time available.
Themaximumnumber of inputs into a core simulating a network
spiking at 10Hz and neuromodulated with an 8Hz dopaminergic
signal was 0.38 million which is approximately two times slower
than the simplest additive STDP rule.

3.3.2. Moving toward Cortical Levels of Connectivity
SpiNNaker was designed around the assumption that each ARM
core would be responsible for simulating 1,000 neurons with
1,000 input synapses, each receiving spikes at a mean rate of
10Hz (Jin et al., 2008). However, over recent years, it has
been found that, on average, cortical neurons have 8,000 input

Frontiers in Neuroscience | www.frontiersin.org 8 February 2018 | Volume 12 | Article 105

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mikaitis et al. Neuromodulated STDP on Neuromorphic Hardware

TABLE 3 | Effects of scaling conditioning network.

Neurons per core 90 90 90 90 90 90 60 60

Total neurons NT 200 500 1,000 2,000 4,000 6,000 8,000 10,000

Total synapses 4 K 25 K 100 K 400 K 1.6 M 3.6 M 6.4 M 10 M

FIGURE 6 | Comparison between incoming spike processing performance of

standard STDP (with an additive weight dependence) and three-factor STDP

for different post-synaptic spiking rates.

synapses (Beaulieu and Colonnier, 1989; Pakkenberg et al., 2003;
Braitenberg and Schüz, 2013) each receiving spikes at the lower
average rate of around 3Hz (Buzsaki and Mizuseki, 2014). While
Knight and Furber (2016) showed that SpiNNaker was capable
of simulating neurons in real-time with these higher levels of
connectivity, even when using standard STDP this required
reducing the number of neurons simulated on each core to only
around 30. The alternative is to slow down the simulation to
some fixed fraction of real-time. In Figure 7 we demonstrate
how the number of neurons per core and the simulation speed
can be traded off when simulating neurons with three-factor
STDP and cortical levels of connectivity. Each neuron in the
network is densely connected to 8,000 Poisson sources firing at
3Hz as well as to a single dopaminergic neuron spiking at an
average rate of 4.5Hz. We found that, in order to simulate this
network in real-time, the maximum number of neurons that
could be simulated on each core was only 15. However, when we
increased the number of neurons simulated on each core to the
maximum of 126, we had to slow the simulation down by a factor
of 11x.

FIGURE 7 | Time to simulate 5 s of network activity with 8,000 inputs to each

neuron. The mean firing rate of each input is 3Hz, the post synaptic firing rate

is 3Hz, and the mean firing rate of the dopaminergic neuron is 4.5Hz.

3.3.3. Neuromodulated-STDP on SpiNNaker vs. GPUs
Neuromorphic architectures such as SpiNNaker have been
specifically designed for the low-power simulation of spiking
neuron networks. However, GPU architectures, although initially
designed for accelerating the rendering of 3D graphics, have
evolved into versatile accelerators which have been used in a
wide range of HPC applications (Fan et al., 2004; Kindratenko
et al., 2009)—notable deep-learning (Chellapilla et al., 2006;
Cireşan et al., 2010). Additionally, with the demands of edge
computing (Shi et al., 2016), GPUs are increasingly becoming
available in form factors with comparable power requirements
to neuromorphic hardware. One device of this type is the Jetson
TX1, an embedded system with a peak power usage of only
18W, yet still equipped with a 256 CUDA core “Maxwell” GPU
as well as a 64 bit quad-core ARM Cortex-A57 and 4GiB of
LPDDR4 memory. Similarly to other GPU devices, the NVIDIA
Jetson TX1 can be programmed using the Compute Unified
Device Architecture (CUDA), meaning that a wealth of scientific
software can be compiled for it including GeNN (Yavuz et al.,
2016)—a code generation framework for spiking neural network
simulations.

In this section we compare the performance of the Pavlovian
conditioning experiment running on SpiNNaker that we
presented in section 3.2 with the same model running on
the Jetson TX1 using the GeNN simulator. Diamond et al.
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(2016) previously compared the performance of GeNN and
SpiNNaker running a classification task but, although their
model also used three-factor learning, Diamond et al. did not
implement the learning rule on either SpiNNaker or GeNN.
Instead Diamond et al. used standard STDP with a post-
synaptic teaching signal on SpiNNaker and, when using GeNN,
they performed learning on the host machine’s CPU. However,
based on Equation (9), we implemented a GeNN version of
the dopamine modulated STDP rule described in section 2.2
so can provide a somewhat closer comparison. Furthermore,
Diamond et al. (2016) compared SpiNNaker to an NVIDIA
Titan Black—a high-end gaming card which uses up to 250W
of power—whereas the Jetson TX1’s peak power usage of 18W
is much more comparable to the 26–36 W consumed by a 48
chip SpiNNaker system (Stromatias et al., 2013) making this an
interesting comparison.

As discussed in section 3.2, we were able to run the Pavlovian
conditioning experiment in real-time at all scales on SpiNNaker.
However, GeNN simply runs the simulation as fast as possible
and, as Figure 8 shows, when simulating this model simulation
times increase approximately linearly with the number of
synapses. Using the NVIDIA profiling tools to further analyse
the performance suggests that the majority of time (88% in the
10× 103 neuron model) is spent in the CUDA kernel responsible
for applying weight updates resulting from post-synaptic spikes.
Yavuz et al. (2016) also identified this as a bottleneck on mobile
GPUs and suggested that this is due to the non-coalescedmemory
accesses that this kernel employs.

4. DISCUSSION

4.1. Reinforcement Learning
Reinforcement learning is a biologically inspired learning
paradigm where an agent learns by interacting with the

FIGURE 8 | Time to simulate 1 h of the Pavlovian conditioning experiment

described in section 3.2 at three different scales. SpiNNaker can simulate all

configurations in real-time. The Jetson TX1 GPU and all CPUs are set to run at

the maximum supported frequency.

world around it and modifies its behavior based on sparse
feedback (for example a reward signal). Reinforcement learning
has been shown to work effectively in convolutional neural
networks (Mnih et al., 2015). However, it remains unclear how
these techniques could be replicated in spiking neural networks
and whether classical reinforcement learning (Sutton and Barto,
1998) is at all analogous to dopamine modulated synaptic
plasticity in the brain (Reynolds et al., 2001; Pawlak and Kerr,
2008).

Bridging the gap between classical reinforcement learning and
synaptic plasticity could be key to understanding, and using,
low power neuromorphic systems, eventually simulating the
human brain at scales not currently possible even on super
computers. Temporal Difference learning is one of the most
common reinforcement learning algorithms (Sutton and Barto,
1998) and some similarities between it and plasticity in the brain
have been already observed (O’Doherty et al., 2004). Potjans
et al. (2009) provided further evidence to support this link
using a reinforcement learning framework implemented using
a spiking neural network. In this framework reward is modeled
as a real-valued signal which, rather than gating weight updates
in the manner we describe in section 2.2, is simply added to
the weight alongside any changes induced by Hebbian learning
in the learning rule. However, weight changes induced by this
learning rule can also cause weight changes in other synapses
emanating from the same pre-synaptic neuron, even if they are
not active. This would prove difficult to implement using the
SpiNNaker framework described in section 2.3 as each synapse
only has access to local information. Finally, both Potjans et al.
(2011) and Frémaux et al. (2013) suggest that a more biologically
plausible model of reward signals, modeled as a concentration of
dopamine which gates and scales weight changes, also provides
an effective model of TD learning.

4.2. Improving Performance
As the results presented in section 3.3.1 show, due to the
increased complexity of Algorithm 2 compared to Algorithm 1,
the incoming spike processing performance of the three-factor
STDP rule is approximately half that of the standard SpiNNaker
STDP rule. While this is an unavoidable consequence of a more
complex learning rule, if we wish to simulate our model in real-
time, the only way to reduce the load on each core is to reduce
the number of neurons being simulated on the core. This has
the unfortunate side effect of also reducing the length of synaptic
matrix rows which, as Figure 6 illustrates, reduces the efficiency
of synaptic processing.

Knight and Furber (2016) developed an alternative method
of mapping populations of neurons and their synapses to
SpiNNaker which they called synapse-centric mapping. They
split the time-driven simulation of neurons and the event-
driven simulation of synapses between separate cores and these
exchanged data using DMA transfers. This synapse-centric
approach allows the processing of a synaptic matrix to be split
between multiple cores in a row-wise manner. Unlike when the
synaptic matrix is split in a column-wise manner—which occurs
when the number of neurons per core is reduced using the
approach discussed in this paper—this allows optimal synaptic
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matrix row lengths to be maintained. While Knight and Furber
did not apply the synapse-centric approach to the three-factor
STDP rule described in section 2.2, they demonstrated how it
could be used to simulate highly-connected models using the
spiking Bayesian Confidence Neural Network (BCPNN) learning
rule (Tully et al., 2014) in real-time. BCPNN has similar
properties to our three-factor STDP rule in that each synapse
contains a trace as well as a synaptic weight and the cost of
updating each synapse is significantly higher than for normal
STDP. Therefore, we believe that combining the synapse-centric
mapping with our three-factor STDP implementation would
allowmodels with cortical levels of neuromodulated connectivity
to be simulated in real-time—a significant improvement over the
scaling properties illustrated in section 3.3.2.

4.3. Volume Transmitters
Both chemical and electrical synapses are generally assumed to
connect a pair of neurons in a one-to-one manner— Zoli et al.
(1999) classifies this as wired transmission. However, there are
also several volume transmission mechanisms used by the brain
for one-to-many modes of communication. In areas of the brain
with a high density of dopaminergic axons such as the striatum,
dopamine is transmitted in a wired manner (Gerfen, 1988).
However, Garris et al. (1994) showed that dopamine may also be
transmitted extracellularly using volume transmission.

The method we have presented in this paper is well-suited to
simulating wired dopamine transmission. However, if dopamine
is delivered by volume-transmission, each synapses would receive
spikes from all dopaminergic neurons within a volume with a
radius of around 100 nm to 1mm (Zoli et al., 1999). As Potjans
et al. (2010) state, this means that each synapse would be likely
to receive substantially more dopaminergic than pre-synaptic
spikes. Potjans et al. propose a novel approach for simulating
such synapses on a distributed system where separate nodes
handle the dopaminergic spikes arriving at eachmachine running
the simulation. These nodes are responsible for sorting the
dopaminergic spikes and delivering them, when requested by the
equivalent of Algorithm 2, to the nodes simulating the synapses.
Additionally, the volume transmitter nodes send dopaminergic
spikes to the nodes simulating the synapses at regular intervals,
minimizing the amount of memory required for dopaminergic
spike storage. Potjans et al. demonstrated this approach by
building a model consisting of 1 × 105 neurons and 1 × 109

synapses – each of which received a total neuromodulatory spike
rate of 500Hz. They showed that, using their new approach,
simulations of this model exhibited supralinear scaling up to
32 machines and, beyond that, linear scaling up to 1,024
machines.

In the context of SpiNNaker, the large numbers of
dopaminergic spikes in the post-synaptic history structure
that would result from simulating volume transmitters using
the approach we presented in section 2.3 would be even more
problematic. Firstly, Figure 6 suggests that the spike handling
performance of our implementation would be very low if
each synapse received neuromodulatory spikes at the rates
used in the model developed by Potjans et al. Secondly, the
NEST simulator used by Potjans et al. stores post-synaptic

history in a dynamic data structure (described in detail by
Morrison et al., 2007), whereas, due to each core’s limited local
memory, SpiNNaker uses a static data structure. Therefore, if
the number of post-synaptic or dopaminergic spikes increases
beyond the fixed capacity of this structure, spikes will not
be processed and simulation results will be incorrect. We
believe that the approach developed by Potjans et al. could
be adapted to solve these issues by using one core on each
SpiNNaker chip to manage the gathering of neuromodulatory
spikes and delivering them by DMA to the cores responsible
for simulating the neuromodulated STDP synapses. This core
could also be responsible for performing the regular, time-
driven weight updates due to dopaminergic spikes, perhaps
using a similar approach to that proposed by Galluppi et al.
(2015).

4.4. Robotics
One interesting future direction for this work would be
to implement a reinforcement learning agent which could
perform instrumental conditioning tasks using the SpiNNaker
implementation of dopamine modulated STDP presented in this
paper. Shim and Li (2017) did some work in this area and
presented a collision avoidance agent using the same learning
rule that we have implemented. However, they only tested these
agents in a simulated environment whereas, using SpiNNaker, it
would be possible to simulate the spiking neural network based
controller in real-time so it could be evaluated, embodied in a
real robot.
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