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In recent years, functional magnetic resonance imaging (fMRI) has been widely used

in studies that explored the personality-brain association. Researches on personality

neuroscience have the potential to provide personality psychology with explanatory

models—that is, why people differ from each other rather than how they differ from

each other (DeYoung and Gray, 2009). As one of the most important dimensions of

personality traits, extraversion is the most stable core and a universal component in

personality theory. The aim of the present study was to employ a fully data-driven

approach to study the brain mechanism of extraversion in a sample of 111 healthy adults.

The Eysenck Personality Questionnaire (EPQ) was used to measure the personality

characteristics of all the subjects. We investigated whether the subjects can be grouped

into highly homogeneous communities according to the characteristics of their intrinsic

connectivity networks (ICNs). The resultant subjects communities and the representative

characteristics of ICNs were then associated to personality concepts. Finally, we found

one ICN (salience network) whose subject community profiles exhibited significant

associations with Extraversion trait.

Keywords: personality traits, resting-state fMRI, data-driven, salience network, extraversion trait

INTRODUCTION

As a core concept of psychology, the study of personality is the basis of the practical application
of psychology. Since the patterns of behavior and cognition that constitute personality tend to be
stable and broadly predictable (Canli and Amin, 2002; DeYoung and Gray, 2009), it is feasible
for us to uncovering how personality is encoded in the brain from the perspective of cognitive
neuroscience. In recent years, a growing number of studies using functional magnetic resonance
imaging (fMRI) have explored the personality-brain association (Ryan et al., 2011; Wang et al.,
2014; Wei et al., 2014; Cohn et al., 2015). However, previous studies were usually driven by
personality concepts formed by observer-dependent life experience and consensus (Kunisato et al.,
2011; Wei et al., 2011). Whether the concepts that are not completely independent of the observer
can objectively reflect the functional organization of the brain networks is questionable. As pointed
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out by Jonathan et al. (Adelstein et al., 2011) “The large-scale and
data-driven methods should be incorporated into future studies
in the aim of examine the neural correlations of personality more
comprehensively” (Kunisato et al., 2011).

More recently, there is an increasing number of studies
using independent components analysis (ICA)—a data-driven
approach, to explore the intrinsic connectivity networks (ICNs)
from resting-state fMRI data of multiple subjects (Frazier et al.,
1996, 1997; Hollis, 2000) with an assumption that the group is
homogeneous and all the subjects share common components.
However, this assumption effectively ignores the ample evidence
for the heterogeneous nature of brain. In the field of clinical
psychiatric diagnosis, a growing number of studies have explored
the subtypes of neuropsychiatric disorders according to the
heterogeneous nature of brain diseases (Fair et al., 2012, 2013;
Drysdale et al., 2017; Gupta et al., 2017; Varol et al., 2017).
Besides, as mentioned before, since the personality concept was
not designed to facilitate people biological differentiation, there
is a high potential that subjects in the groups divided based on
personality inventory might be highly heterogeneous in brain
mechanism (Di Martino et al., 2009; Adelstein et al., 2011). Thus,
against simply comparing ICNs between pre-defined subject
groups under the assumption that subjects belong to the same
concepts-based group share homogeneous ICNs characteristics,
we decide adopt a systematic data-mining approach, generalized
ranking and averaging independent component analysis by
reproducibility (gRAICAR) (Yang et al., 2008, 2012, 2014a,b),
which allows us to classify all subjects into different communities
by taking into account information from inter-subject variability,
to find the behavior-based personality traits consistent with the
biological classification.

In the present study, we recruited 111 subjects to investigate
whether the subjects can be grouped into communities according
to the characteristics of their ICNs measured using resting-
state fMRI. After that, we associated the Eysenck Personality
Questionnaire (EPQ) (Eysenck and Eysenck, 1975) to the
ICN-derived subject communities to explain the findings in
neuroimaging data, aiming to find the potential one-to-one
mapping between ICNs and each traits of EPQ (see Figure 1

for a graphical demonstration of data analysis process). Finally,
we found one ICN (salience network) whose subject community
profiles exhibited significant associations with EPQ-Extraversion
trait.

METHODS

Participants
All participants were recruited from Shanxi medical university
or advertisements on bulletin boards in the community. The
inclusion criteria were: (1) age > 18 years, (2) right handedness,
(3) no history of psychiatric disorders or neurological disease,
brain injury. The exclusion criteria were: (1) history of substance
abuse (including illicit drugs and alcohol), (2) unsuitability for
MRI scans (metal implants or claustrophobia). Finally, 111
subjects (age range: 19–60 years; 50 males, see Table 1 for details)
are used for subsequent image analyses. The study protocol was
approved by the Ethics Committee of Shanxi Medical University.

Written informed consents were obtained from all participants.
After the participants completed all tests, they subsequently
received payment for their time.

Behavior Data Acquisition
We collected personality characteristics of all subjects by using
EPQ, an 88-item true-false self-report scale, which has been
widely used in China and has been proved validated (Chen et al.,
2016).

MRI Data Acquisition
All MRI data were acquired on a 3.0 T SIEMENS Trio scanner at
Shanxi Provincial People’s Hospital. Each participant completed a
8′50′ resting-state fMRI scan using an echo-planar imaging (EPI)
sequence (32 axial slices, acquired from inferior to superior in
an interleaved manner, FOV = 240mm, matrix = 64 × 64, slice
thickness= 4.0mm, gap= 0.0mm, TR/TE= 2,500/30ms, FA=

90◦, 212 volumes). Anatomical scans were also acquired for each
participant using a T1-weighted 3D MP-RAGE sequence (160
continuous sagittal slices, slice thickness = 1.2mm, FOV = 225
× 240mm, matrix= 240× 256, TR/TE/TI= 2,300/2.95/900ms,
FA = 9◦). All Subjects were instructed to close their eyes and
remain awake during the scan. After the scans, all subjects
confirmed that they did not fall asleep during the scan.

T1 Image Preprocessing
The images were preprocessed using the Connectome
Computation System (CCS:http://zuolab.psych.ac.cn/ccs.
html) (Zuo et al., 2013),-an integration system that involves
AFNI, FSL, Freesurfer (Cox, 2012; Fischl, 2012; Jenkinson et al.,
2012). Individual T1 images preprocessing primarily include: (1)
the images were processed with a spatially adaptive non-local
mean filter (Zuo and Xing, 2011), and submitted into the
recon-all routine in FreeSurfer 5.1 to extract the brain tissues, (2)
all individual anatomical brain images were transformed into the
MNI152 standard space by using Advanced Normalization Tools
(ANTs, http://stnava.github.io/ANTs/) (Avants and Gee, 2004).

Resting-State fMRI Preprocessing
The functional image preprocessing included: (1) discarding
the first five EPI volumes from each scan to allow for
MRI signal equilibration, (2) correcting for slice timing
difference, (3) correcting for rigid head motion, (4) estimating
a rigid transformation from individual functional space to the
corresponding anatomical space by using ANTs, (5) normalizing
the 4D data to a global mean-based intensity of 10,000, (6) band-
pass filtering (0.01–0.1Hz). Finally, the preprocessed data were
used in individual-level ICA analyses in gRAICAR.

To ensure the data were usable for subsequent analyses, a data
quality control procedure (QCP) was conducted. The structural
images were visually inspected by two researchers for the quality
of tissue segmentation and brain registration. For functional
images, subjects were excluded for excessive head motion, as
measured by the root-mean-square of frame-wise displacement
larger than 0.2mm.
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FIGURE 1 | Demonstration of data analysis flow. For simplicity, we assume that there are only three subjects (denoted as S1, S2, and S3). First, the fMRI data of

subjects are decomposed individually by using spatial independent component analysis (ICA) into spatial components (ICs). Assume that for each subject we can get

three ICs that are color coded to indicate which subject they are from. The resultant ICs maps are presented in the green layer. Second, all of the ICs from individual

subjects were pooled in gRAICAR (as presented in the purple layer). We present a distance space depicting the similarity between all ICs in the yellow layer. The

intention of gRAICAR in this part is to identify ICs that are from different individuals but are close to each other (as marked with green dashed circles). The group-level

aligned components (ACs) were formed by these clustered ICs sequentially, and a community detection algorithm can be applied to each AC to identify homogeneous

subject communities among all subjects. Third, we try to seek a kind of personality trait, according to which the subjects could be grouped into communities that

maximally agreed with the brain neural activity derived communities.

TABLE 1 | The descriptive statistics for the demographic characteristics of

sample.

Age range Male Female Number Percentage

Sample (111) 18–20 0 2 2 1.80

21–30 16 16 32 28.83

31–40 11 9 20 18.02

41–50 16 25 41 36.93

51–60 8 8 16 14.42

gRAICAR Network Mining Analysis
The algorithm of gRAICAR was applied to the preprocessed
functional images for the purpose of characterizing the
consistency of the ICNs, in other words, finding a one-to-
one correspondence between component maps across all of the
subjects. If the activity sources in the data are similar, the similar
spatial patterns in component maps should be detected by ICA.
Thus, the method we employed in this study could tell us how
strong the one-to-one correspondence is, subsequently, we could
reveal variations of brain maps across different subjects. The
rationale and a more detailed illustration of gRAICAR algorithm
have been described in the original (Yang et al., 2012) and
morerecent paper (Yang et al., 2014a,b). We also computed the
Ratio of Significant Subjects (RSS) within all subjects. The change
of this value across all subjects reflected the trend in fractions of
subjects who possess the given network.

RESULTS

gRAICAR identified 30 ACs. Based on their spatial patterns and
on previous literature (Beckmann et al., 2005; Damoiseaux et al.,
2006, 2008), 12 ACs were found to represent functional ICNs.

The remaining 18 components reflected artifacts like movement,
cerebrospinal fluid flow, and physiological noise.

The inter-subject similarity matrix for each of the 12 ICNs
reflected a subject community profile which reflect potential
subgroups of subjects that share similar ICN characteristics.
Thus, we combined with the personality score for each subject,
through the permutation test and visual inspection, trying to
find which original confused inter-subject similarity matrix
becomes a regular distribution then that means this ICN-
derived subject community may be related to personality
classification. In the following sections, we report one ICN-
derived subject community that are most related to EPQ-
Extraversion classification.

Behavioral Results
The demographical information and descriptive statistics for the
EPQ scores of all participants are shown in the Tables 1, 2.

One ICN Associated With
EPQ-Extraversion Classification
We found one ICN, that is, salience network (SN) comprising
bilateral insula and anterior cingulate cortex (ACC) reflected a
subject community profile associated with the EPQ-Extraversion
classification (Figure 2). The inter-subject similarity matrix of
this SN depicts similarities within all of the subjects. We have
added a permutation test of which the process is as follows.
First, the difference in the average similarity degree between
the high extroversion score (HES) subjects (n = 34) and the
low extroversion score (LES) subjects (n = 77) was calculated.
Then the HES subjects and the LES subjects were pooled.
Next, the subjects were randomly sampled with replacement
while keeping the original sample sizes for the HES subjects
(n = 34) and the LES subjects (n = 77) unchanged. In
other words, for each permutation sample, 34 HES subjects
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were randomly chosen from the original sample, allowing the
same HES subject to be included multiple times. Similarly,
77 LES subjects were randomly selected from the original
sample, allowing for replications of the selected subjects. This
permutation sample thus contained the same numbers of
HES subjects and LES subjects as in the original dataset, but
represented a different inter-subject variability. Third, for each
permutation sample, the difference in the average similarity
degree between the HES subjects and the LES subjects was
calculated and this procedure was repeated 6,000 times. Our null
hypothesis was that there was no significant difference in the
average similarity degree between the HES subjects and the LES
subjects.

After permutation test, we found that there was a significant
difference in the average similarity degree between the HES

TABLE 2 | The descriptive statistics for the EPQ scores of all participants in the

sample.

Dimension of EPQ Mean SD Range

Neuroticism 46.80 10.09 25–75

Extraversion 56.22 10.36 35–80

Psychoticism 48.74 9.76 35–85

subjects and the LES subjects (p = 0.02). And through the
visual inspection, we can find that the average similarity of HES
subjects is higher (Figure 2B). The subjects within homogeneous
communities have a common intrinsic connective network.
Thus, it can be concluded that the activation of SN can
distinguish the HES subjects from the LES subjects.

Analysis of Voxel-Wise Functional Connectivity

Strength
The gRAICAR results revealed that the inter-subject similarity
reflected in the SN is associated with Extroversion classification.
We then performed post-hoc functional connectivity analyses
within the SN, aiming to investigate the strength of functional
connectivity between the regions in the data-driven identified
ICN. By this step, we could verify the association between
the functional connectivity strength, measured using
Pearson’s correlation coefficient, and the Extroversion
scores. Obviously, the analysis of this step was different
from the gRAICAR analysis that attempted to associate large-
scale networks patterns (obtained using ICA analysis) with
personality inventory classifications and further provided
supporting evidence for the findings from the gRAICAR
analysis.

For the SN, we obtained three regions of interest (ROIs)
by applying a threshold of Z > 2.5 and a cluster size > 30

FIGURE 2 | gRAICAR reveal the salience network is associated with Extraversion classification. (A) The salience network dominated by the anterior cingulate and

bilateral anterior insula. (B) Combined with the Extraversion scores, the similarity matrix change into a regular distribution. Compared to the LES subjects, the HES

subjects have a higher inter-subjects average similarity. For visualization purpose, the subjects are grouped into LES and HES groups, and the blue solid lines mark

the boundary between the two groups. (C) Map of the salience network showing inter-regional connections exhibiting significant (green line) differences in connectivity

strength (Fisher’s Z) between LES and HES groups. (D) Bar graphs showing separately statistical details comparing functional connectivity strength between LES and

HES groups. Labels along the horizontal axis correspond to the connections marked on (C). All three inter-ROI connections show significant difference between LES

and HES groups. The surface maps are rendered in BrainNet Viewer (Xia et al., 2013).
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voxels to its brain map, including the anterior cingulate cortex
(ACC) and the bilateral insula. For each subject, the time series
from each voxel within the ROIs were extracted to construct
a voxel-wise functional connectivity matrix. The correlation
coefficients between voxels belonging to different ROIs were
converted into Fisher’s Z-values and we obtained a matrix
of inter-ROI functional connectivity (inter-FC) by averaging
the functional connectivity matrices from individual subjects.
A network model highlighting the functional connectivity
difference between the HES and LES subjects is shown in
Figure 2C and the corresponding statistical comparisons are
displayed in Figure 2D. A linear model was used to examine
the differences in inter-FC between HES and LES subjects,
where age (centered to mean) and gender (coded as a
factor) were included as covariates. The results showed higher
inter-FC in HES subjects than in LES subjects in all three
connections in Figure 2C (connection 1, t = −2.89, p = 0.004;
connection 2, t = −2.48, p = 0.01; connection 3, t = −2.15,
p = 0.03). These observations confirmed that LES subjects
exhibit aberrant functional connectivity within the salience
network.

Correlations Between Extraversion Scores and

Connectivity Strength in Salience Network
Results of the hierarchical regression indicated the best predictor
of Extroversion scores was connectivity strength between the
ACC and the right insula (Figure 3A). The predictor accounted
for 8.4% of the model variance (R2adj = 0.084, F = 10.966, p <

0.01). The other two connectivity strengths (connection 1, R2adj
= 0.083, F = 10.858, p < 0.01; connection 3, R2adj = 0.071, F =

9.341, p < 0.01) were also significant predictors of Extroversion
scores (Figures 3B,C).

DISCUSSION

In the present study, following a new research strategy, we
applied a systematic data-mining approach to investigate the
characteristics of ICNs with a sample of 111 healthy subjects and
found a reliable association between the salience network (SN)
characteristic and EPQ-Extroversion classification. Specifically,
there is a great possibility that people who have the high
activation of SN will get a high score on the EPQ-Extroversion
trait.

As one of the most important dimensions of personality traits,
extraversion is the most stable core and a universal component
in personality theory and it also is the best established and
validated (Eysenck and Eysenck, 1994; Lei et al., 2015). Moreover,
extraverts are typically described in positive emotional terms
such as excitement, engagement, and enthusiasm (Lei et al.,
2015). The salience network has been confirmed in the brain’s
intrinsic functional architecture and it can integrate a variety
of external cognitive and emotional information, identifying
the most significant stimuli, guiding the allocation of attention
(Seeley et al., 2007; Menon and Uddin, 2010). Meanwhile, SN
plays an important role as a “switch” between the self monitoring
network and the task related network, that is, it plays a major
role when the individual is in the process of the external
information from “awareness” to “consciousness” (Palaniyappan
and Liddle, 2012). The salience network is mainly composed of

FIGURE 3 | Correlations between extraversion scores and connectivity strength in salience network. The numbers on the y, x coordinate indicate extraversion scores

and connectivity strength (Fisher’s Z) between each ROI of salience network. (A) Connection 2 (between ACC and right insula), r = 0.304, p < 0.01; (B) connection 1

(between ACC and left insula), r = 0.302, p < 0.01; (C) connection 3 (between bilateral insula), r = 0.282, p < 0.01.
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anterior cingulate and bilateral anterior insula (Menon, 2015),
in fact, there are a large number of researchers who have
studied the relationship between this three brain regions and
extraversion as well as extraversion related personality traits by
positron emission tomography (Johnson et al., 1999; Sugiura
et al., 2000), task-fMRI (Kumari et al., 2004), rest-fMRI (Wei
et al., 2011) and structural MRI (Van Schuerbeek et al., 2011).
Previous studies have shown that the insula and cingulate gyrus
are positively correlated with extraversion, which finding is
consistent with the results of our study. In summary, prior
work already related connectivity in the salience network with
Extraversion, and the main contribution of this study is to
replicate this finding with a “brain first” research strategy,
and the new research strategy will be discussed in the next
section.

Research Strategy Angle: Focusing on the
Difference of Brain Imaging Characteristics
Many basic psychological concepts relying on the experience
of the observer which situation is the obstacle of psychology
as a mature science (Barrett, 2005, 2006, 2009). Since facing
the same conundrum, researchers have begun to focus on
exploring the biological basis of personality traits, mainly
brain function or structural basis, thus trying to make more
objective interpretations of the concepts of personality traits.
The hypothesis of these related studies is that the concept
itself of personality traits has an objective biological basis,
however, the formation of the concept would be more or less
affected by the personality inventory makers’ life observations
and experiences. From this perspective, the current researches
on the brain mechanism of personality trait seems to be
still unable to get rid of the influence of human subjective
experience, thus affecting the objectivity of the research
conclusions.

In the field of clinical psychiatric diagnosis, a series of
achievements have been obtained in the studies (Fair et al.,
2012, 2013; Yang et al., 2014a,b) that adopted the spirit of the
“Research Domain Criteria” project (Insel et al., 2010; Insel,
2014; Simmons and Quinn, 2014) that establishing the mental
disorders classification system based on brain mechanism. It is
worth our attention, the new association between some of the
brain functional networks and individual symptoms found in
these studies is difficult to be found in the study based on the
concept of psychology and semiology.

Accordingly, we decided not to adopt the traditional research
strategy when we started to design this study, instead, the
research strategy that we adopted in this study is to emphasize
the establishment of the hypothesis based on the difference of
inter-individual brain imaging characteristics, and then infer the
personality traits associated with a certain ICN characteristic.

Research Method Angle: Methodological
Advantages of gRAICAR
Originated from people’s life experience, psychological concept
does not necessarily reflect the functional organization of the

nervous system. Thus, consulting a variety of neuroimaging
studies on psychological concept, we are confused that a
brain area is related to many psychological concepts that have
a great different definition (Smith et al., 2009; Zhang and
Raichle, 2010; Gasquoine, 2013). Apparently, the research of
personality brain mechanism also has this kind of confusion.
Actually, with complex interactions from multiple dimensions
of personality, neuroimaging data are usually heterogeneous.
Findings obtained from the assumption of group homogeneity
often unable be replicated (Miller, 2009). For addressing these
problems, here, we presented a fully data-driven ICA-based
method (gRAICAR) which does not assume that all subjects share
the same set of components, meanwhile, it can provide a data-
mining tool searching for the existence of heterogeneous subject
communities according to functional neuroimaging data. Thus,
gRAICAR provides a neuroimaging-based exploratory tool and
makes it suitable for generating specific hypotheses for further
examination.

Limitations and Future Directions
There are three limitations exist in the current study. First,
only one scale (EPQ) was used in this study, actually, as an
exploratory work, we should adopt several different personality
inventories including more personality traits in order to facilitate
the establishment of associations between more ICNs and
personality traits. Second, the differences in SN functional
connectivity between high/low Extraversion subjects seems to
be circular with the finding that HES subjects are more
homogeneous in their spatial components compared with
LES subjects, and that makes this experiment exploratory.
Thus, in the future research, it is better to collect another
validation sample to verify the exploratory findings. Besides,
considering that repeatability is an important and normal
part of science, we decided to share the data on Human
Brain Data Sharing Initiative (HBDSI) (http://mrirc.psych.ac.
cn/HBDSI) in the second half of 2018. Third, more and
more studies have indicated that functional connectivity shows
noticeable variations over a range of seconds to minutes,
even in the resting state without external stimuli. Therefore,
it is necessary for future researchers to explore the dynamic
functional connection characteristics of different personality
traits.
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