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As the sharing of data is mandated by funding agencies and journals, reuse of data

has become more prevalent. It becomes imperative, therefore, to develop methods to

characterize the similarity of data. While users can group data based on the acquisition

parameters stored in the file headers, these gives no indication whether a file can be

combined with other data without increasing the variance in the data set. Methods

have been implemented that characterize the signal-to-noise ratio or identify signal

drop-outs in the raw image files, but potential users of data often have access to

calculated metric maps and these are more difficult to characterize and compare. Here

we describe a histogram-distance-based method applied to diffusion metric maps of

fractional anisotropy and mean diffusivity that were generated using data extracted from

a repository of clinically-acquired MRI data. We describe the generation of the data

set, the pitfalls specific to diffusion MRI data, and the results of the histogram distance

analysis. We find that, in general, data from GE scanners are less similar than are data

from Siemens scanners. We also find that the distribution of distance metric values is not

Gaussian at any selection of the acquisition parameters considered here (field strength,

number of gradient directions, b-value, and vendor).

Keywords: histogram distance, diffusion MRI, diffusion tensor imaging, data quality, data reproducibility

INTRODUCTION

Data sharing has been promoted as a way to accelerate advances in neuroscience and test the
reproducibility of reported results (Poline et al., 2012). As data-sharing requirements become
prevalent and more data becomes available, it is of interest to ask: how similar is the data in a
repository and can the data be meaningfully combined? We describe here a method based on
histogram distances that we apply to diffusion MRI data retrieved from a clinical data repository.
Previously (Helmer et al., 2016), we have applied this method to diffusion-metric maps that were
collected during a multi-site study of diffusion reproducibility; data that was acquired using an
imaging protocol that was harmonized across the three major MRI vendors (Siemens, Philips,
and GE) and using a protocol suggested by Landman et al. (2007) and Farrell et al. (2007). In
that study, the goal was to identify the effect size of differences in field strength, vendor, site, and
echo time on diffusion metric maps (fractional anisotropy, FA, and mean diffusivity, MD). This
method determined which parameters most strongly affected the similarity of the resulting maps
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in a uniformly-acquired data set. That work employed an
experimentally-determined threshold for statistical significance
for the histogram distances through simulations of histograms
of a known distribution. There we found that the thresholds
determined in silico were reasonable and able to separate smaller
effects like site, from larger effects like echo time. In the present
study, we examine the ability of histogram distance metrics to
characterize the similarity of a heterogeneous clinical data set
of the type available from publicly-available data repositories.
Repository data is an important use case because it can be used as
either a supplement to locally-acquired data in order to increase
statistical power or as a normative data set against which to
compare data acquired in other studies of unknown quality.

Diffusion-weighted MRI data in a clinical repository may
originate from multiple vendors, sites, scanners with different
field strengths and be collected using protocols that differ in b-
value, number of gradient directions, number of T2-weighted
scans (b = 0 scans) as well as acquisition parameters such as
bandwidth, voxel-size, and echo time. Choices of values for each
of these can affect the calculated metric maps (e.g., MD and FA).
These parameters can also affect the reproducibility of data sites
in a multi-site study (Cercignani et al., 2003; Pfefferbaum et al.,
2003; Pagani et al., 2010; Fox et al., 2012; Magnotta et al., 2012;
Takao et al., 2012), but there, effort is expended to harmonize the
acquisition protocols as much as possible to minimize differences
between data sets in signal- and contrast-to-noise ratios, image
distortion, and pools of spins that contribute to the observed
signal. In the case of a clinical repository, the protocol will vary
by intent, usually depending upon the presented symptoms of
the patient and so, some method is needed to characterize the
similarity of data before it can meaningfully be reused. Note that
this method is not specific to diffusion-weighted maps, it can be
applied to any type of images or maps, though with images, the
image intensity values can differ greatly due to differences in gain
and scaling.

Histogram Distance
To compare results derived from data collected on different
hardware with different protocols, metrics are needed to
characterize the degree of similarity. One approach to the
comparison problem is to use calculated metrics based on the
distance between histograms of image intensity values. This is
regularly done in fields as diverse as flow cytometry (Cox et al.,
1988; Bernas et al., 2008) and image featurematching (Duda et al.,
2000; Haibin and Kazunori, 2006). Histogram distance measures
are also often used to quickly search for images within a database
(Long et al., 2003) when the incoming data rate is too large to
attach metadata to each stored image.

Given the complexity of modeling the underlyingmechanisms
that result in a given FA or MD map, a general histogram
comparison method would be non-parametric and have low
computational burden. In addition, there would be some way of
assessing the statistical significance of the calculated difference.
One commonly used method to find the difference between
histograms is the two-sample Kolmogorov–Smirnov (K–S) test
(Pettitt and Stephens, 1977; Young, 1977), which estimates the
likelihood that two histograms originate from the same, though

not necessarily known, continuous distribution by calculating
the maximum absolute deviation of the cumulative histograms.
The K–S method has been shown to be conservative for binned
data (Noether, 1963) and therefore other methods have been
proposed. Cox et al., have posited that if the number of counts
in a given channel is relatively large (∼20), the distribution
of the counts is approximately governed by Poisson statistics
and hence bin-by-bin confidence intervals and tests can be
developed (Cox et al., 1988). Roederer et al. (2001) have noted,
however, that Cox et al.’s statistic is weighted toward bins with
greater numbers of counts and therefore may not be sensitive to
outlier populations. Therefore, they have proposed “probability
binning,” which chooses bin widths based on a control sample
such that each bin contains an equal number of counts and thus
equal statistical weight. Both the Roederer and Coxmethods use a
modified chi-squared statistic. Probability binning, however, has
the drawbacks that it does not satisfy the triangle inequality (see
the Appendix) and the binning is dependent upon a particular
control sample. It should also be noted that Lampariello (2000)
has used the K–S test as a metric for estimating the variability in
control samples, which can then be used to give information on
whether or not test histograms are significantly different from the
control histograms. In in vivo studies, however, thesemethods are
not applicable due to the lack of standard samples.

In the field of pattern recognition, many other metrics have
been proposed to measure the distance between histograms
(Cha and Srihari, 2002). We investigate the efficacy of metrics
from seven different families of distance measures. Two broad
categories of histogram distance metrics comprise the families
of metrics investigated here: those that treat histograms as
vectors and those that treat them as probability distribution
functions (PDF). The families were (1) Minkowski, (2) Fidelity,
(3) Intersection, (4) Inner Product, (5) Squared L2 Norm, (6)
Shannon Entropy, and (7) Earth Movers. Given that, a priori,
there is no physical or statistical reason to choose one metric
over the others, we chose one or more examples from each
family and then evaluated their performance when applied to
our data. The histogram metrics are discussed in the Appendix
in more detail. After initial evaluation, we chose a single metric
to present the final analysis, based on how the distance metric
separated outlier data sets relative to “normal” data. For this
analysis, all histograms have been normalized using the total
number of binned values. The rationale for investigating a broad
range of metrics outside the simplest Minkowski family is that
other families address the insensitivity of the Minkowski metrics
to simple offsets between histograms and we expect that the
protocol parameters investigated here will create subtle changes
in histogram shape as well as potential offsets.

Previous Use of Histograms in DWI
Various histogram analyses have been performed on derived
datamaps inMRI-based diffusion experiments. Published studies
however, have reported only the mean, median, peak height and,
less often, quartiles. In some cases, changes in those quantities
were measured after some intervention. Here we briefly list
several examples that span the range of common analyses. Bester
et al. (2015) compared the mean values of mean kurtosis (MK),
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MD, and FA histograms between MS patients and controls.
Kang et al. (2011), calculated differences in apparent diffusion
coefficient (ADC) histogram percentile values of tumor volume
data in an effort to determine glioma grade and evaluate the
diagnostic performance of ADC maps at two different b-values.
Pope et al. (2011, 2012) has fit the post-treatment ADC histogram
to a bimodal distribution and analyzed the mean ADC for each
component. Nusbaum et al. (2000) created ADC whole-brain
histograms of different categories ofMS patients and reported the
increase in mean ADCav of controls and each different category
using changes in peak location and peak height. Rovaris et al.
(2003) used data from normal-aging subjects to create whole
brain histograms of ADC and FA, analyzing both the mean value
and peak height vs. age. Several studies have performed more
involved analysis of histogram data. For example, Yankeelov et al.
(2007) acquired dynamic contrast enhancement and ADC maps
in a study of breast cancer, created ADC histograms and looked
for statistically significant changes in individual bin frequency
between pre- and post-treatment histograms. Goodyear et al.
(2015) studied changes in optic nerve mean MD, FA, axial (AD),
and radial diffusivity (RD) as well as changes in histogram
skewness of those quantities in optic neuritis patients. Wagner
et al. (2016) characterized pediatric cerebellar tumors using the
25th percentile, 75th percentile, and skewness of FA, MD, AD),
and RD. Steffen-Smith et al. (2014) analyzed MD histogram
through the standard deviation, skewness, measures of histogram
asymmetry: length of left tail > right tail (negative skewness) or
length of right tail > left tail (positive skewness), peak location
(mode), and peak height. MD values were also fitted using a two-
normal mixture distribution model. Finally, Tozer et al. (2006)
used principal-component and linear-discriminant analysis on
T1 and ADC histograms from multiple sclerosis patients and
compared metrics of these analyses to the standard peak height
and location metrics.

MATERIALS AND METHODS

Data Preparation and Processing
This study was approved by the Partners Human Research
Committee. Subjects have granted their written informed consent
for the use of this data.

Here we provide details on how the data set was constructed
using a database of radiology reports from hospitals within the
Partners HealthCare Network. The code used in the selection and
analysis of the data can be found on GitHub at https://github.
com/gcwarner1/DTIDistance. The reports were first sorted to
find patients who underwent brain MRI scans, but who were
ultimately free of any pathology. We include information on the
sorting process to show the steps necessary to construct such a
data set from a clinical data repository and to contextualize the
data set that was finally analyzed in this study.

We obtained DTI scans of individuals with normal brain
morphology from the Partners Research Patient Data Registry
(RPDR) (Nalichowski et al., 2006) clinical database via a
two-fold query by age range and diagnosis. The patient
age range was 18–54 and the diagnosis selection terms
were: “Chronic migraine without aura,” “Migraine,” “Migraine

with aura,” “Migraine without aura,” “Migraine unspecified,”
“Ophthalomplegic migraine,” “Periodic headache syndromes in
child or adult,” or “Persistent migraine aura without cerebral
infarction.” From the results of this query we selected all reports
that were tagged: “BRAIN MRI,” “MR Brain w/o Contrast,”
“MRD BRAIN,” “MRI BRAIN,” “MRI SCAN BRAIN,” “MRI
Brain WITHOUT,” “MRI Brain W/O Con MRI Brain W/O
Con,” or “MRI BRAIN WO CONT.” This query yielded 232,922
radiology reports, each of which described a single clinical visit.

To find the scan sessions that included diffusion imaging,
we then selected only those reports that contained the terms
“DTI” and/or “diffusion,” which yielded 3,035 reports. We
then used natural language processing (in-house python code)
to remove all reports mentioning artifacts or morphological
abnormalities. This filtering was performed in two steps. First,
we removed all reports containing any of the terms: “braces,”
“resection,” “craniotomy,” “callosotomy,” “cingulotomy,”
“lobotomy,” “hemicraniotomy,” or “lobectomy.” Second,
we removed all reports that contained any of the terms:
“ischemia,” “tumor,” “stroke,” “ischemic,” “neurofibromatosis,”
“infarct,” “glioblastoma,” “artifact,” “artifactual,” “mass effect,”
“hyperintense,” or “hyper intensity” that did not also include
any of the terms: “no,” “none,” “negative,” “not,” “without,”
“inconsistent,” “normal,” “performed,” “obtained,” “acquired,”
or “unremarkable” in the same sentence. Constructing this list
was an iterative process that involved examining a large random
sampling of the reports to determine commonly used terms.

Together, these two steps reduced the number of qualifying
radiology reports to 1,438. All MRI data from these remaining
reports was then downloaded from the Partners database. This
yielded 26,013 DICOM series (note that these series included
all of the scans from a particular scan session, including
non-diffusion scans), all of which were either JPEG or RLE
compressed. These series were decompressed using the software
packages dcmdjpeg (OFFIS, Oldenburg, Germany) and dcmdrle
(OFFIS, Oldenburg, Germany), respectively. Thirty-four of the
series were corrupt and failed to decompress resulting in 25,979
decompressed series. All data whose sequence, b-value, and
protocol DICOM tags (including vendor specific private tags
known to contain diffusion information) did not contain any of
the strings: “tof,” “fl3d,” “memp,” “fse,” “grass,” “3-Plane,” or “gre,”
but did contain at least one of the strings: “ep2,” “b,” “ep_,” “1000,”
“directional,” or “dif” were considered to be diffusion-related
data and all others were removed, reducing the number of series
to 7,521. This set of tag strings was determined by examining a
listing of DICOM tag values for the following tags:

Pulse Sequence: (0018,0024) (0018,0020)
Protocol: (0018,1030)
B-Value: (0018,9087)
Siemens Private B-Value: (0019,100C)
GE Private Sequence: (0019,109C)
GE Private B-Value: (0043,1039)

The remaining volumes were then converted to NIfTI format
using dcm2nii (https://github.com/rordenlab). Of these 7,521
series, 6,212 were scanner-calculated diffusion metric maps (e.g.,
ADC, FA) rather than series of diffusion-weighted images. These
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maps were not used in this study to ensure that each analyzed
map was processed using the same pipeline. This step resulted in
1,309 NIfTI files and their corresponding b-value and b-vector
files. Next, we removed all data which did not contain both b-
value and b-vector files, along with all data containing less than
six non-zero b-values, and data for which the number of b-values
did not match the number of gradient directions. This filtration
step resulted in 1,266 usable data sets.

We then eddy- and motion-corrected each volume within
each diffusion data set using FSL’s (Jenkinson et al., 2012)
(FMRIB, Oxford, UK) eddy_correct tool and the gradient
direction vectors were corrected for the observed motion.
Calculation of diffusion metrics was then performed using FSL’s
dtifit tool. At this stage, we also removed data with additional
issues. Fourteen data sets had gradient direction vectors that
contained all zeros and a further data set contained a negative
b-value. In addition, we set an upper threshold of 1.0 for the FA
maps thereby removing non-physical values. We also removed
the corresponding voxel in the MD map for each FA map voxels
found to be above 1.0.

Histogram Generation for Diffusion and
Distance Metrics
Histograms of FA and MD values were constructed for each of
the remaining data sets. Each histogram was calculated using 100
bins, with ranges (0.0–1.0] for FA and (0.0–0.004]mm2/s forMD.
The b-values, number of gradient directions, scanner vendor, and
field strength were recorded for each volume/histogram. These
tags were used to construct data sets with identical parameters
used in the comparisons described below. Sample FA and MD
histograms are shown in Figure 1. Note that in neither case are
the histograms Gaussian.

The general methodology we followed was to first create
subsets of diffusion metric (FA and MD) histograms based
on vendor, field strength, b-value, and number of gradient
directions, then calculate histogram distance metrics between all
pairs of histograms within that subset. This calculation resulted
in a set of distance metrics. This set of distance metric values
was then formed into histograms and these distance metric
histograms were then compared to that calculated from other
related subsets using statistical tests described below. Because the
data used in this study arose from a clinical repository and were
not acquired using a harmonized protocol, the ability to make
meaningful comparisons depended upon the number of data
sets with a given set of acquisition parameters in the repository.
Shown in Table 1 are the relevant acquisition parameters for the
available data. As an example, note that the majority of GE data is
at a field strength of 1.5T and a b-value of 1,000 s/mm2 while the
Siemens data is more evenly divided between 1.5T and 3.0T data
and there is a range of b-values. Therefore, exactly matching all
of the acquisition parameters is impossible for some obvious data
subsets, but the process does serve to illustrate the situation faced
when trying to assemble a data set for reuse from a repository
containing data acquired with many different protocols.

The specific comparisons investigated here were selected
as those that had sufficient number of data sets to make

the comparisons meaningful. The following comparisons were
performed (if a specific tag value is not noted, no restriction is
set on its value):

1) Within vendor (Siemens, GE)
2) Between vendor (Siemens vs. GE)
3) Between vendor, field strength of 1.5T.
4) Between vendor, b= 1,000 s/mm2

5) Within Siemens, b= 1,000 s/mm2 vs. b= 700 s/mm2

6) Within Siemens, field strength (1.5T vs. 3.0T)
7) Between vendor, b = 1,000 s/mm2, 30 gradient directions,

1.5T
8) 1.5T vs. 3.0T Siemens, b = 1,000 s/mm2, 30 gradient

directions,.
9) Within GE, b= 1,000 s/mm2, 1.5T, 6 vs. 25 gradient directions

All distance metric histograms were then normalized such
that the integral of the histogram was equal to one. One
goal of the project was to determine the shape and range of
the histogram-distance metric histograms, as these could be
used as normative distributions against which the similarity
of newly acquired data could be determined. Another goal
was to compare the shape and extent of the distance metric
histograms for the above comparisons to see the effect of the
different acquisition parameter choices on the similarity of the
data.

Selection of Distance Metric
The histogram distance calculations in this work were performed
with each of the 13 distance metrics. The details of these metrics
are given in the Appendix. Some metrics performed better than
others and we selected a single metric for presentation of the
results. Based on the dynamic range of the metric and the
distance calculated for data sets with visible artifacts, we chose
the Hellinger metric for presentation.

Use of Histogram Distance to Discover
Volumes With Severe Artifacts
Initially, each distance metric histogram for each comparison
was used to identify data sets that contained artifacts. Several
of the FA distance metric histograms appeared to be bimodal
with a second, smaller peak appearing in the (right) tail of the
primary distribution. These peaks were most pronounced in
the Canberra, City-Block, Euclidean, Intersection, and Hellinger
metrics. Of the 884 individual data sets represented in the
smaller peak of the all-GE vs. all-Siemens comparison, three
data sets appeared in more than two comparisons, signaling that
these data sets were dissimilar to most of the other data sets.
These three sets appeared in 570, 309, and 168 comparisons
respectively. Visual inspection of these three data files revealed
significant artifacts. These three FA volumes were removed from
the FA data set and the histograms were regenerated. This
new set of histograms again contained an outlier peak. Two
data sets were disproportionately represented in this outlier
mode occurring 299 and 298 times respectively while no other
data set occurred more than twice. Visual inspection revealed
improper slice arrangement and other artifacts in these files.
They were both removed from our data set and the histograms
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FIGURE 1 | Representative histograms of diffusion metric map values for fractional anisotropy, FA (A) and mean diffusivity, MD (B) maps. These data arise from a

single subject scanned on a 1.5T GE scanner at a b-value of 1,000 s/mm2 and 25 gradient directions.

TABLE 1 | Composition of the 1,266 data sets used for analysis broken down by vendor and static field strength and b-value (rows), as well as the number of gradient

directions (columns).

Field Strength b-value Number Grad Directions

6 8 9 12 14 15 16 17 24 25 29 30 31 35 36 48 58 60

SIEMENS

1.5T 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1,000 0 0 0 0 0 0 0 0 3 0 0 52 0 1 89 1 8 0

3.0T 700 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 37

1,000 0 0 1 24 0 0 1 0 64 1 0 32 0 0 0 0 0 3

GE

1.5T 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1,000 269 1 0 0 1 30 0 9 0 560 15 0 21 1 0 0 0 0

3.0T 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1,000 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0

The numbers indicate the number of data sets for that combination of manufacturer, field strength, b-value and number of gradient directions (e.g., there were 32 GE data sets with a

field strength of 3.0T, a b-value of 1,000 s/mm2, and 25 gradient directions). There are 6 data sets not represented in this table. Five data sets had multiple b-values, ranging from 2 to

21 b-values. The other data set had a single b-value that was not either of the two listed in the table above. All were from Siemens scanners with a static field strength of 3.0T. These

six data sets were only included in comparisons in which b-value was not a controlled variable (e.g., all GE vs. all Siemens).

were regenerated, this time, yielding unimodal, though decidedly
non-normal, histograms. For each FA map histogram removed
in this process, the corresponding MD map histogram was also
removed.

This process was then repeated for the MD maps where we
discovered a data set in which the subject was scanned with
a head-and-neck coil and the field-of-view contained a larger
portion of the spinal cord than did the other data sets. This MD
volume and the corresponding FA volume were then removed,
and the histogram distance metric histograms were recalculated.
Note that, while we were also able to identify diffusion metric
maps that had elevated noise using this process, these were not
removed from consideration; only maps with clear artifacts were
removed.

Comparison Between Histogram Distance
Distributions
As the histogram distance histograms were non-Gaussian and
there was no “ideal” histogram to compare them to, we used two
different non-parametric methods to determine the similarity
between histogram-distance metric histograms for each chosen
comparison. First, we used the Mann–Whitney U-test in which
values from both distributions are chosen and ranked by value.
This method tests the similarity of two distributions through a
null hypothesis that a randomly-chosen sample from the first
distribution will be less than or equal to a randomly-selected
sample from the second distribution. The Mann–WhitneyU-test
therefore, tests for global similarity. Second, we used the two-
sample Kolmogorov–Smirnov test, which compares bin values
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of the cumulative histograms of the two distributions and is
therefore sensitive to the range, location and shape of the
histograms.

To better visualize the distributions, we converted the
histograms into box-and-whisker plots with the whiskers
extending 1.5 times the interquartile range past the third
quartile. We used these values for the whiskers rather than the
fourth quartile so that noisy, but valid, data sets would not extend
the whiskers into a region where there are far fewer values and
create what we believe would have been an unrepresentative view
of the data. The distance between the median and 1.5 times the
interquartile range past the third quartile was used to describe
the variance in the data in the calculations described below. All
data points, including those outside the whiskers of the box-
and-whisker plots, were included in the Mann–Whitney U-test.
The tests were performed for each of the nine comparisons listed
above.

In addition, we also created cumulative histogram plots of the
histogram distance metrics for each subset of data. Using these
cumulative histograms, we calculated the Kolmogorov–Smirnov
statistic in each case. This presentation allows the visualization
of shape differences between the two compared histograms while
the box-and-whisker plots are better for visualizing the median
and range of the histograms.

RESULTS

As discussed above, the goal of this work is to show the usefulness
of the histogram distance in characterizing the similarity of
data, particularly retrospective data from a repository. Unless the
imaging protocols were harmonized or only a single protocol
is available on a single scanner, repository data will have been
acquired with varying protocols and it is often not clear the
magnitude of the effect that the parameter variations have on
the similarity of the data. The approach we take is to present
results from the general to the specific, i.e., to present results for
data that have the least acquisition parameters in common to the
most. For example, how similar are data from different vendors,
irrespective of other acquisition parameters (least specific)?
Or how similar are data that are matched in field strength,
b-value, and number of gradient directions, but not vendor
(most specific)? Through these comparisons, one can gain an
understanding of the relative importance various parameters.

The set of histogram distance metrics investigated here
generally performed similarly, but differed slightly in their ability
to separate data sets that produced distances in the tails on
either side of the distribution. Of the 13 metrics tested, the
Hellinger metric was chosen as being representative of those
metrics that met the criteria discussed above. We therefore use
that metric to present results for differences due to scanner
manufacturer, b-value, and field strength, all of which proved to
have a significant influence over the shape of the distance metric
histograms. In what follows, “outliers” will be defined as 1.5 times
the interquartile range past the third quartile.

Comparison Between Manufacturers
Figure 2A shows the Hellinger distance metric values between
the FA maps of data collected on Siemens scanners (n = 47,586

comparisons, all scans). Figure 3A shows the Hellinger distance
metric values between the FA maps of data collected on
GE scanners (n = 434,778 total comparisons, all scans).
The difference between the two distributions was statistically
significant according to the Mann–Whitney U (U = 8.5e9, p =

4e-126) and the Kolmogorov–Smirnov (K–S = 0.2605, p = 9e-
1700) tests. The Hellinger distance between the median and the
upper limit, excluding outliers, was 0.3899 for the GE data and
0.2010 for Siemens data.

Figure 2B shows the Hellinger distance metric values between
the MD maps of data collected on Siemens scanners (n =

47,586 comparisons, all scans). Figure 3B shows the Hellinger
distance metric values between the MD maps of data collected
on GE scanners (n = 434,778 total comparisons, all scans).
The difference between the two distributions was statistically
significant according to the Mann–Whitney U (U = 8.5e9, p
= 2e-130) and the Kolmogorov–Smirnov (K–S = 0.2011, p =

3e-170) tests.
Figure 4 shows the data of Figures 2, 3 in the form of a

whisker plot. The whisker extends 1.5 times the interquartile
range past the third quartile with the “outlier” distances plotted
as individual points. The Hellinger distance between the median
and the upper limit, excluding outliers, was 0.4277 for the GE
data and 0.2705 for Siemens data.

Comparison Between Manufacturers;
B-Value Controlled
Figure 5A shows that the FA maps of data collected on a
GE scanner with a b-value of 1,000 s/mm2 (n = 434,778
comparisons) had a wider range of Hellinger distance
distributions compared to Siemens data with a b-value of
1,000 s/mm2 (n = 35,511 comparisons). Figure 5C shows
the cumulative frequency plots for each FA map Hellinger
distance distribution. The two distributions differed significantly
according to the Mann–Whitney U (U = 5.9e9, p = 8e-126)
and the Kolmogorov–Smirnov (K–S = 0.2378, p = 5e-170) tests.
The Hellinger distance between the median and the upper limit,
excluding outliers, was 0.3899 for the GE 1,000 s/mm2 b-value
data and 0.1916 for the Siemens 1,000 b-value data.

Figure 5B shows that the MD maps of data collected on a
GE scanner with a b-value of 1,000 (n = 434,778 comparisons)
had a wider range of Hellinger distance distributions compared
to Siemens data with a b-value of 1,000 s/mm2 (n = 35,511
comparisons). Figure 5D shows the cumulative frequency plots
for each MD map Hellinger distance distribution. The two
distributions differed significantly according to the Mann–
Whitney U (U = 5.8e9, p = 4e-130) and the Kolmogorov–
Smirnov (K–S= 0.2193, p= 7e-174) tests. The Hellinger distance
between the median and the upper limit, excluding outliers, was
0.4277 for the GE b = 1,000 s/mm2 data and 0.2543 for the
Siemens b= 1,000 s/mm2 data.

Comparison Between B-Values; Vendor
Controlled
Figure 6A shows there was a significant difference between the
Hellinger distances distributions of the FA maps of Siemens data
with a b-value of 700 s/mm2 (n= 741 comparisons) and Siemens
data with a b-value of 1,000 s/mm2 (n = 35,511 comparisons)
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FIGURE 2 | FA (A) and MD (B) map Hellinger histogram distance metric for the within-group Siemens (all b-values, all gradient directions, all field strengths) (number

of comparisons = 47,586).

FIGURE 3 | FA (A) and MD (B) map Hellinger histogram distance metric for the within-group GE (all b-values, all gradient directions, all field strengths) (number of

comparisons = 434,778).

according to the Mann–Whitney U (U = 8.5e9, p = 4e-80)
and the Kolmogorov–Smirnov (K–S = 0.1001, p = 8e-7) tests.
The Hellinger distance between the median and upper limit,
excluding outliers, was 0.1916 for the Siemens data with a b-value
of 1,000 s/mm2 and 0.1516 for the Siemens data with a b-value of
700 s/mm2. Figure 6C shows the cumulative frequency plots for
each FA map Hellinger distance distribution.

Figure 6B shows there was a significant difference between the
Hellinger distances distributions of theMDmaps of Siemens data
with a b-value of 700 s/mm2 (n= 741 comparisons) and Siemens
data with a b-value of 1,000 s/mm2 (n = 35,511 comparisons)
according to the Mann–Whitney U (U = 8.5e9, p = 2e-101)

and the Kolmogorov–Smirnov test (K–S = 0.2005, p = 5e-26).
The Hellinger distance between the median and upper limit,
excluding outliers, was 0.2543 for the Siemens data with a b-value
of 1,000 s/mm2 and 0.2244 for the Siemens data with a b-value of
700 s/mm2. Figure 6D shows the cumulative frequency plots for
each MDmap Hellinger distance distribution.

Comparison Between Field Strengths;
Vendor Controlled
Figure 7A shows there was a significant difference between the
Hellinger distance distributions of the FA maps of Siemens data
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FIGURE 4 | FA (A) and MD (B) map box-and-whisker plot of the histogram distance values for all GE (number of comparisons = 434,778) vs. all Siemens (number of

comparisons = 47,586). Cumulative histograms for these data are shown for FA (C) and MD (D).

FIGURE 5 | FA (A) and MD (B) map box-and-whisker plot for GE (number of comparisons = 434,778) vs. Siemens (number of comparisons = 35,511) histogram

distances for data collected with a b-value of 1,000 s/mm2. Cumulative histograms for these data are shown for FA (C) and MD (D).

with a static field strength of 3.0T (n = 13,861 comparisons)
and Siemens data with a static field strength of 1.5T (n = 10,011
comparisons) according to the Mann–Whitney U (U = 6.0e7, p
= 3e-77) and the Kolmogorov–Smirnov test (K–S = 0.1178, p
= 1e-70) tests. The Hellinger distance between the median and

upper limit, excluding outliers, was 0.2168 for the 3.0T group and
was 0.1641 for the 1.5T group. Figure 7C shows the cumulative
frequency plots for each FA map Hellinger distance distribution.

Figure 7B shows there was a significant difference between
the Hellinger distance distributions of the MD maps of
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FIGURE 6 | FA (A) and MD (B) map box-and-whisker plot for Siemens b = 1,000 s/mm2 (number of comparisons = 35,511) vs. Siemens b = 700 s/mm2 (number of

comparisons = 741) data. Cumulative histograms for these data are shown for FA (C) and MD (D).

FIGURE 7 | FA (A) and MD (B) map box-and-whisker plot for Siemens 1.5T (number of comparisons = 10,011) vs. Siemens 3.0T (number of comparisons =

13,861). Cumulative histograms for these data are shown for FA (C) and MD (D).

Siemens data with a static field strength of 3.0T (n =

13,861 comparisons) and Siemens data with a static field
strength of 1.5T (n = 10,011 comparisons) according to
the Mann–Whitney U (U = 6.2e7, p = 1e-45) and the
Kolmogorov–Smirnov test (K–S = 0.0813, p = 7e-34) tests.

The Hellinger distance between the median and upper
limit, excluding outliers, was 0.2610 for the 3.0T group
and was 0.2379 for the 1.5T group. Figure 7D shows the
cumulative frequency plots for each MD map Hellinger distance
distribution.
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Comparison Between Field Strengths;
B-Value, Vendor, and Number of Gradient
Directions Controlled
Figure 8A shows there was a difference between the Hellinger
distance distributions of the FA maps of Siemens data with a b-
value of 1,000 s/mm2, 30 gradient directions, and a static field
strength of 3.0T (n = 528 comparisons) and Siemens data with
a b-value of 1000 s/mm2, 30 gradient directions, and a static
field strength of 1.5T (n = 780 comparisons) according to the
Mann–Whitney U (U = 1.9e5, p = 9e-3 and the Kolmogorov–
Smirnov test (K–S = 0.0847, p = 0.02046) tests. The Hellinger
distance between the median and upper limit, excluding outliers,
was 0.1516 for the 1.5T group and was 0.1767 for the 3.0T group.
Figure 8C shows the cumulative frequency plots for each FAmap
Hellinger distance distribution.

Figure 8B shows there was a difference between the Hellinger
distance distributions of the MD maps of Siemens data with a
b-value of 1,000 s/mm2, 30 gradient directions, and a static field
strength of 3.0T (n = 528 comparisons) and Siemens data with a
b-value of 1,000 s/mm2, 30 gradient directions, and a static field
strength of 1.5T (n = 780 comparisons) according to the Mann–
Whitney U (U = 180,084.0, p = 6e-05) and the Kolmogorov–
Smirnov test (K–S = 0.1196, p = 0.000214) tests. The Hellinger
distance between the median and upper limit, excluding outliers,
was 0.2243 for the 1.5T group and was 0.2243 for the 3.0T group.
Figure 8D shows the cumulative frequency plots for each MD
map Hellinger distance distribution.

Comparison Between Number of Gradient
Directions; B-Value, Vendor, and Field
Strength Controlled
Figure 9A shows that the FA maps of GE data with a b-value
of 1,000 s/mm2, a static field strength of 1.5T, and 25 gradient
directions (n = 153,735 comparisons) had a narrower range
of Hellinger distance distributions compared to GE data with
a b-value of 1,000 s/mm2, a static field strength of 1.5T, and
6 gradient directions (n = 36,046 comparisons). Figure 9C

shows the cumulative frequency plots for each FA map Hellinger
distance distribution. The two distributions differed significantly
according to both the Mann–Whitney U-test (U = 2.2e9, p =

1e-130) and the Kolmogorov–Smirnov test (K–S = 0.1555, p =

2e-174). The Hellinger distance between the median and upper
limit, excluding outliers, was 0.2358 for the 25 gradient directions
group and was 0.3355 for the 6 gradient directions group.

Figure 9B the MD maps of GE data with a b-value of
1,000 s/mm2, a static field strength of 1.5T, and 25 gradient
directions (n = 153,735 comparisons) had a narrower range of
Hellinger distance distributions compared to GE data with a
b-value of 1,000 s/mm2, a static field strength of 1.5T, and 6
gradient directions (n = 36,046 comparisons). Figure 9D shows
the cumulative frequency plots for each MD map Hellinger
distance distribution. The two distributions differed significantly
according to both the Mann–Whitney U-test (U = 2.2e9, p =

9e-130) and the Kolmogorov–Smirnov test (K–S = 0.1281, p =

3e-173). The Hellinger distance between the median and upper

limit, excluding outliers, was 0.3198 for the 25 gradient directions
group and was 0.3816 for the 6 gradient directions group.

Comparison Between Vendors; Number of
Gradient Directions, Field Strength, and
B-Value Controlled
Figure 10A shows that the FA maps of GE data with a b-
value of 1,000 s/mm2, a static field strength of 1.5T, and 30
gradient directions (n = 630 comparisons) had a wider range
of Hellinger distance distributions compared to Siemens data
with a b-value of 1,000 s/mm2, a static field strength of 1.5T,
and 30 gradient directions (n = 780 comparisons). Figure 10C
shows the cumulative frequency plots for each FA map Hellinger
distance distribution. The two distributions differed significantly
according to both the Mann–Whitney U-test (U = 1.2e5, p =

9e-61) and the Kolmogorov–Smirnov test (K–S= 0.4649, p= 1e-
66). The Hellinger distance between the median and upper limit,
excluding outliers, was 0.3604 for the GE group and was 0.1526
for the Siemens group.

Figure 10B shows that the MD maps of GE data with a b-
value of 1,000 s/mm2, a static field strength of 1.5T, and 30
gradient directions (n = 630 comparisons) had a wider range
of Hellinger distance distributions compared to Siemens data
with a b-value of 1,000 s/mm2, a static field strength of 1.5T,
and 30 gradient directions (n = 780 comparisons). Figure 10D
shows the cumulative frequency plots for eachMDmapHellinger
distance distribution. The two distributions differed significantly
according to both the Mann–Whitney U-test (U = 1.2e5, p =

7e-65) and the Kolmogorov–Smirnov test (K–S= 0.4482, p= 5e-
62). The Hellinger distance between the median and upper limit,
excluding outliers, was 0.5141 for the GE group and was 0.2243
for the Siemens group.

DISCUSSION

In this work, we turn from the characterization of uniformly
acquired data to the heterogeneous data of the type available in
clinical repositories. In previous work, we used the histogram
distance to measure the effects of vendor, site, field strength,
and echo time in multi-site data acquired on a small
number of subjects with a harmonized protocol. There, we
calculated a threshold using simulations of histograms from
specific distributions to determine statistical significance of
observed differences. This was necessary because there were
only five subjects at each site and hence only 15 between-
subject distances were available for the within-site distance
metric histograms, too few to make statistically-meaningful
comparisons between distributions. In the present work, we
have more subjects available at each comparison level (e.g.,
between vendors or with a given number of diffusion-
sensitizing gradient directions) and we can statistically measure
the similarity of the resulting histogram distance metric
histograms.

It can be seen from the representative histograms shown in
Figure 1 that neither the FA (Figure 1A) nor theMD (Figure 1B)
values are normally distributed. This is not unexpected given the
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FIGURE 8 | FA (A) and MD (B) map box-and-whisker plot Siemens 1.5T (number of comparisons = 780) vs. Siemens 3.0T (number of comparisons = 528) for b

=1,000 s/mm2 and 30 gradient directions. Cumulative histograms for these data are shown for FA (C) and MD (D).

FIGURE 9 | FA (A) and MD (B) map box-and-whisker plot for GE 6 gradient directions (n = 36,046 comparisons) vs. GE 25 gradient directions [(n = 153,735

comparisons) for b = 1,000 s/mm2 and 1.5T. Cumulative histograms for these data are shown for FA (C) and MD (D)].

heterogeneous, but ordered nature of brain tissue constituents.
This does however point to the need for a method to compare
histogram similarity that is sensitive to the complicated shape of
the distribution, rather than relying on mean, median, or peak
height.

It would be expected that if all diffusion metric volumes were
identical except for additive random noise, the shape of the
resulting distance metric histograms would be Gaussian. The
comparisons were made in a hierarchical fashion (e.g., vendor,
vendor at a specific field strength, vendor at a specific field
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FIGURE 10 | FA (A) and MD (B) map box-and-whisker plot for GE (number of comparisons = 630) vs. Siemens (number of comparisons = 780) for 30 gradient

directions, b = 1,000 s/mm2 and 1.5T. Cumulative histograms for these data are shown for FA (C) and MD (D).

strength with a specific b-value, vendor with a specific b-value
and number of gradient directions) to determine if, at any level
on comparison of the distance metric histograms were indeed
Gaussian. It was determined that for any of the comparisons we
performed the distance metric histograms were always skewed
rightward and were more similar to non-normal distributions,
such as lognormal, Weibull, or chi-squared (see Figures 2, 3).
Part of this shape is likely due to the natural lower bound of zero,
but the shape also reflects the natural variability of the underlying
acquisition process and data.

The program we adopted here was to suggest a method that
potential repository users might use to answer questions that
arise when looking to reuse diffusion data (though we emphasize
that this method is not specific to diffusion MRI data). For
example: what are the fewest number of parameters that one
needs to match to get acceptably similar data? Therefore, while
it is obvious when looking at Table 1 that there is data with a
wide variety of acquisition parameters, one doesn’t immediately
have a method with which to determine the relative importance
of those differences. We suggest that the histogram distance is a
particularly good tool for this purpose.

To begin to determine which parameters are important,
we first looked at the broadest subset: that of vendor. If one
determined that the distance histograms were the same across
vendors irrespective of other acquisition parameters, then one
could be justified in combining data from all vendors. In the
data examined here, the FA andMDmaps derived from diffusion
data collected on GE scanners had a greater variability than
those collected on Siemens scanners (Figure 4). This is somewhat
surprising given the distribution of acquisition parameters
presented in Table 1. From that data one can see that the GE data

was more uniform than the Siemens data: 97% of the GE data
were acquired on a 1.5T system, while only 45% of Siemens was
and the majority of GE data was acquired using only 2 different
numbers of gradient directions and a single b-value. The Siemens
data was much less uniformly distributed in field strength, b-
value, and number of gradient directions and one would expect
that the greater variation in acquisition protocol would translate
to a greater range in histogram distances. On the other hand,
the SNR for a well-maintained 3.0T scanner will be greater than
that for a 1.5T scanner and this also is expected to contribute to
a reduction in histogram distance variability for Siemens data.
Therefore, each vendor has variations that the other does not
and why we further subdivided the data to determine the relative
effect of each subdivision.

In Figure 5, we compared GE vs. Siemens data, but with the
extra restriction of b = 1,000 s/mm2. As seen in Table 1, all GE
data had b= 1,000 s/mm2 so the data in Figure 5 is the same as in
Figure 4. However, the expected behavior occurs for the Siemens
data, namely that the width of the distance metric histogram
becomes smaller, especially for MD.

As all of our data with a b-value of 700 s/mm2 came from
Siemens machines, we performed our between-b-value analysis
using the Siemens data (Figure 6). We found that data with
a b-value of 1,000 s/mm2 have a larger distance metric range
of observed FA and MD values than data with a b-value of
700 s/mm2 (Figure 6). Neither variations in echo time, in-plane
resolution, nor slice thickness could explain the variability. This
difference may be due to the difference in signal-to-noise ratio
between the two diffusion weightings, with the b = 700 s/mm2

data having a higher SNR. The difference in SNR could lead to
a more accurate determination for the 30% lower b-value. Note
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also that these two measurements result from different spin pools
that survive the dephasing effect of the diffusion gradients. In
addition, this is expected given the range of gradient directions
in the b= 1,000 s/mm2 data as seen in Table 1, while the b= 700
s/mm2 data only occurs with a single (high) number of gradient
directions (60). Therefore, it’s unsurprising that the b = 700
s/mm2 data is more similar. These data point to the important
role that number of gradient directions plays in data similarity.
The FA maps between the two b-values were more similar than
were the MD. Generally, we find this to be true, and we have
found that this is due to the varying amounts of cerebral spinal
fluid signal in ventricles and left at the edge of the brain after
brain extraction using BET.

Diffusion metric volumes collected on Siemens 3.0T scanners
had a larger variability than those with a field strength of 1.5T
(Figure 7). This difference also points to the effect of the number
of gradient directions on the final similarity as Table 1 shows that
there is a larger variation in the number of gradient directions
in the 3.0T data than in the 1.5T data. This effect was significant
when comparing all 3.0T data to all 1.5T data though the MD
KS plot (Figure 7D) shows clearly that the difference is fairly
small even though the KS statistic and p-value are small. This is a
consequence of the large numbers of elements in the histograms
and should be taken into account when judging an individual
comparison. We looked at echo time, in-plane resolution, and
slice thickness as potential confounding variables that could
explain this unexpected result but none of these varied enough
between the two samples to explain the observed difference.

The final three figures (Figures 8–10) all presented results
for cases that were maximally differentiated given the data
available in this repository. First, in Figure 8, we showed results
for the case in which the field strength is different, but the
vendor, b-value, and number of gradient directions are the same.
Interestingly, when b-value and number of gradient directions
are controlled, there were only small differences in the cumulative
FA histogram (Figure 8C) and somewhat larger differences for
MD (Figure 8D). Note that the both the Mann–Whitney U
and the KS test statistic for FA, while less than the standard α

= 0.05, are close and if one normalized α for the number of
comparisons, the difference would not be statistically significant.
Even with such a normalization the difference in MD cumulative
histograms of the distance metrics would show a difference
between the two field strengths with the 3.0T data being more
variable for both FA and MD. This is somewhat surprising
given that with the b-value and number of gradient directions
controlled one would expect that the greater SNR available at
3.0T would result in more accurate measurements, which are
presumably less variable.

In Figure 9, we showed the results for GE data in which
field strength and b-value were controlled, but the number
of gradient directions were different (either 6 or 25). It is
unsurprising that there was a statistically significant difference
in the distance metric histograms as 6 is the minimal number of
gradient directions for construction of the diffusion tensor and
the resulting maps would reflect the reduced map “SNR” that
arose from the smaller number of diffusion-weighted images used
in their construction.

In Figure 10, we finally showed results for a comparison
between vendors in the case that b-value (1,000 s/mm2), number
of gradient directions (30) and field strength (1.5T) was all
controlled. Here we saw that there was a clear statistical difference
between the two vendors with Siemens data distance metric
histogram showing increased similarity of the data than did that
for GE.

The data presented here makes the case for the control of
several variable when constructing data sets for reuse from
repositories in which the data do not arise from a harmonized
protocol. In summary we found that: (1) there are significant
differences in data similarity with different vendors, (2) the
number of gradient directions affects data similarity if there are
a wide range of values, but also when there are some data sets
with minimal (6) number of gradient directions are included in
the data set, (3) when other variables are controlled field strength
does not have a large effect on data similarity, (4) b-value did have
a statistically-significant effect on data similarity.

The fact that the spread of the distribution of histogram
distances varies widely based on MRI vendor, b-value used,
and scanner field strength implies that it is important to
characterize the degree of variability in these variables when
making comparisons between FA and MD maps or reusing data.
One goal of this study was to examine the type of data that
can be extracted from clinical repositories suitable for use as
“healthy control” data and to then characterize the data in terms
of metrics of similarity. That a limited number of comparisons
could be done with such a data set shows that data extracted
from repositories should be carefully characterized before reuse
for other purposes.

This could be used to qualify sites for multi-site trials
or used to determine variability after scanner upgrades.
We are currently instantiating a web portal that will allow
users to compare their uploaded FA or MD volumes
to a normative data set by displaying the histogram of
distance metrics for the uploaded data set compared to
each volume in the normative data set against the similar
within-group histogram calculated for the normative data set
itself.

CONCLUSION

We have presented this histogram-distance-based method to
determine the similarity of acquired MRI map volumes. This
method can be used most easily on quantitative maps, but can
also be used on image-intensity data with suitable normalization.
We used this method on data extracted from a clinical repository
and showed the process by which this data set was constructed.
The results point to the careful curation necessary for the reuse
of such data.

AUTHOR CONTRIBUTIONS

GW contributed to the analysis and interpretation of data. He
also contributed to the drafting and revision of the manuscript.
KH contributed the conception and design of the work, as well

Frontiers in Neuroscience | www.frontiersin.org 13 March 2018 | Volume 12 | Article 133

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Warner and Helmer Characterization of Metric Map Similarity

as contributed to the analysis and interpretation of data. He also
contributed to the drafting and revision of the manuscript and
gave final approval of the published version. KH agrees to be
accountable for all aspects of the work in ensuring that questions
related to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

FUNDING

This research was partially funded by the Defense Advanced
Research Projects Agency (DARPA) under Cooperative

Agreement Number W911NF-14-2-0045. The views,
opinions, and/or findings expressed are those of the author
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00133/full#supplementary-material

REFERENCES

Bernas, T., Asem, E. K., Robinson, J. P., and Rajwa, B. (2008). Quadratic form:

a robust metric for quantitative comparison of flow cytometric histograms.

Cytometry A 73, 715–726. doi: 10.1002/cyto.a.20586

Bester, M., Jensen, J. H., Babb, J. S., Tabesh, A., Miles, L., Herbert, J.,

et al. (2015). Non-Gaussian diffusion MRI of gray matter is associated

with cognitive impairment in multiple sclerosis. Mult. Scler. 21, 935–944.

doi: 10.1177/1352458514556295

Cercignani, M., Bammer, R., Sormani, M. P., Fazekas, F., and Filippi, M. (2003).

Inter-sequence and inter-imaging unit variability of diffusion tensor MR

imaging histogram-derived metrics of the brain in healthy volunteers. AJNR

Am. J. Neuroradiol. 24, 638–643.

Cha, S.-H., and Srihari, S. N. (2002). On measuring the

distance between histograms. Pattern Recogn. 35, 1355–1370.

doi: 10.1016/S0031-3203(01)00118-2

Cox, C., Reeder, J. E., Robinson, R. D., Suppes, S. B., and Wheeless, L. L.

(1988). Comparison of frequency distributions in flow cytometry. Cytometry

9, 291–298. doi: 10.1002/cyto.990090404

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification. New York,

NY: Wiley-Interscience.

Farrell, J. A., Landman, B. A., Jones, C. K., Smith, S. A., Prince, J. L., van Zijl, P. C.,

et al. (2007). Effects of signal-to-noise ratio on the accuracy and reproducibility

of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity,

and principal eigenvector measurements at 1.5 T. J. Magn. Reson. Imaging 26,

756–767. doi: 10.1002/jmri.21053

Fox, R. J., Sakaie, K., Lee, J. C., Debbins, J. P., Liu, Y., Arnold, D. L., et al.

(2012). A validation study of multicenter diffusion tensor imaging: reliability

of fractional anisotropy and diffusivity values. AJNR Am. J. Neuroradiol. 33,

695–700. doi: 10.3174/ajnr.A2844

Goodyear, B. G., Zayed, N. M., Cortese, F., Trufyn, J., and Costello, F. (2015).

Skewness of fractional anisotropy detects decreased white matter integrity

resulting from acute optic neuritis. Invest. Ophthalmol. Vis. Sci. 56, 7597–7603.

doi: 10.1167/iovs.15-17335

Haibin, L., and Kazunori, O. (2006). “Diffusion distance for histogram

comparison,” in Proceedings of the 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition - Vol. 1 (Washington, DC: IEEE

Computer Society).

Helmer, K. G., Chou, M. C., Preciado, R. I., Gimi, B., Rollins, N. K., Song, A.,

et al. (2016). Multi-site study of diffusion metric variability: characterizing

the effects of site, vendor, field strength, and echo time using the histogram

distance. Proc. SPIE Int. Soc. Opt. Eng. 9788:97882U. doi: 10.1117/12.

2217445

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M.W., and Smith, S. M.

(2012). Fsl. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kang, Y., Choi, S. H., Kim, Y. J., Kim, K. G., Sohn, C. H., Kim, J. H., et al.

(2011). Gliomas: histogram analysis of apparent diffusion coefficient maps with

standard- or high-b-value diffusion-weighted MR imaging–correlation with

tumor grade. Radiology 261, 882–890. doi: 10.1148/radiol.11110686

Lampariello, F. (2000). On the use of the Kolmogorov-Smirnov statistical

test for immunofluorescence histogram comparison. Cytometry 39, 179–188.

doi: 10.1002/(SICI)1097-0320(20000301)39:3<179::AID-CYTO2>3.0.CO;2-I

Landman, B. A., Farrell, J. A., Jones, C. K., Smith, S. A., Prince, J. L.,

and Mori, S. (2007). Effects of diffusion weighting schemes on the

reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and

principal eigenvector measurements at 1.5T. Neuroimage 36, 1123–1138.

doi: 10.1016/j.neuroimage.2007.02.056

Long, F., Zhang, H., and Feng, D. D. (2003). “Fundamentals of Content-

based Image Retrieval,” inMultimedia Information Retrieval and Management:

Technological Fundamentals and Applications, eds D. D. Feng, W. C. Siu, and

H. Zhang (Berlin; Heidelberg: Springer-Verlag), 1–26.

Magnotta, V. A., Matsui, J. T., Liu, D., Johnson, H. J., Long, J. D., Bolster, B. D. Jr.,

et al. (2012). Multicenter reliability of diffusion tensor imaging. Brain Connect.

2, 345–355. doi: 10.1089/brain.2012.0112

Nalichowski, R., Keogh, D., Chueh, H. C., and Murphy, S. N. (2006). Calculating

the benefits of a research patient data repository. AMIA Annu. Symp. Proc.

2006:1044.

Noether, G. (1963). Note on the Kolmogorov statistic in the discrete case.Metrika

7, 115–116. doi: 10.1007/BF02613966

Nusbaum, A. O., Tang, C. Y., Wei, T., Buchsbaum, M. S., and Atlas, S. W. (2000).

Whole-brain diffusion MR histograms differ between MS subtypes. Neurology

54, 1421–1427. doi: 10.1212/WNL.54.7.1421

Pagani, E., Hirsch, J. G., Pouwels, P. J., Horsfield, M. A., Perego, E., Gass, A., et al.

(2010). Intercenter differences in diffusion tensor MRI acquisition. J. Magn.

Reson. Imaging 31, 1458–1468. doi: 10.1002/jmri.22186

Pettitt, A. N., and Stephens, M. A. (1977). The Kolmogorov-Smirnov goodness-

of-fit statistic with discrete and grouped data. Technometrics 19, 205–210.

doi: 10.1080/00401706.1977.10489529

Pfefferbaum, A., Adalsteinsson, E., and Sullivan, E. V. (2003). Replicability of

diffusion tensor imaging measurements of fractional anisotropy and trace in

brain. J. Magn. Reson. Imaging 18, 427–433. doi: 10.1002/jmri.10377

Poline, J. B., Breeze, J. L., Ghosh, S., Gorgolewski, K., Halchenko, Y. O., Hanke, M.,

et al. (2012). Data sharing in neuroimaging research. Front. Neuroinform. 6:9.

doi: 10.3389/fninf.2012.00009

Pope, W. B., Lai, A., Mehta, R., Kim, H. J., Qiao, J., Young, J. R., et al. (2011).

Apparent diffusion coefficient histogram analysis stratifies progression-free

survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR Am. J.

Neuroradiol. 32, 882–889. doi: 10.3174/ajnr.A2385

Pope, W. B., Qiao, X. J., Kim, H. J., Lai, A., Nghiemphu, P., Xue, X.,

et al. (2012). Apparent diffusion coefficient histogram analysis stratifies

progression-free and overall survival in patients with recurrent GBM treated

with bevacizumab: a multi-center study. J. Neurooncol. 108, 491–498.

doi: 10.1007/s11060-012-0847-y

Roederer, M., Treister, A., Moore, W., and Herzenberg, L. A.

(2001). Probability binning comparison: a metric for quantitating

univariate distribution differences. Cytometry 45, 37–46.

doi: 10.1002/1097-0320(20010901)45:1<37::AID-CYTO1142>3.0.CO;2-E

Rovaris, M., Iannucci, G., Cercignani, M., Sormani, M. P., De Stefano, N., Gerevini,

S., et al. (2003). Age-related changes in conventional, magnetization transfer,

and diffusion-tensor MR imaging findings: study with whole-brain tissue

histogram analysis. Radiology 227, 731–738. doi: 10.1148/radiol.2273020721

Steffen-Smith, E. A., Sarlls, J. E., Pierpaoli, C., Shih, J. H., Bent, R. S., Walker, L.,

et al. (2014). Diffusion tensor histogram analysis of pediatric diffuse intrinsic

pontine glioma. Biomed Res. Int. 2014:647356. doi: 10.1155/2014/647356

Frontiers in Neuroscience | www.frontiersin.org 14 March 2018 | Volume 12 | Article 133

https://www.frontiersin.org/articles/10.3389/fnins.2018.00133/full#supplementary-material
https://doi.org/10.1002/cyto.a.20586
https://doi.org/10.1177/1352458514556295
https://doi.org/10.1016/S0031-3203(01)00118-2
https://doi.org/10.1002/cyto.990090404
https://doi.org/10.1002/jmri.21053
https://doi.org/10.3174/ajnr.A2844
https://doi.org/10.1167/iovs.15-17335
https://doi.org/10.1117/12.2217445
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1148/radiol.11110686
https://doi.org/10.1002/(SICI)1097-0320(20000301)39:3$<$179::AID-CYTO2$>$3.0.CO
https://doi.org/10.1016/j.neuroimage.2007.02.056
https://doi.org/10.1089/brain.2012.0112
https://doi.org/10.1007/BF02613966
https://doi.org/10.1212/WNL.54.7.1421
https://doi.org/10.1002/jmri.22186
https://doi.org/10.1080/00401706.1977.10489529
https://doi.org/10.1002/jmri.10377
https://doi.org/10.3389/fninf.2012.00009
https://doi.org/10.3174/ajnr.A2385
https://doi.org/10.1007/s11060-012-0847-y
https://doi.org/10.1002/1097-0320(20010901)45:1$<$37::AID-CYTO1142$>$3.0.CO
https://doi.org/10.1148/radiol.2273020721
https://doi.org/10.1155/2014/647356
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Warner and Helmer Characterization of Metric Map Similarity

Takao, H., Hayashi, N., Kabasawa, H., and Ohtomo, K. (2012). Effect of scanner in

longitudinal diffusion tensor imaging studies. Hum. Brain Mapp. 33, 466–477.

doi: 10.1002/hbm.21225

Tozer, D. J., Davies, G. R., Altmann, D. R., Miller, D. H., and Tofts, P. S. (2006).

Principal component and linear discriminant analysis of T1 histograms of

white and grey matter in multiple sclerosis.Magn. Reson. Imaging 24, 793–800.

doi: 10.1016/j.mri.2005.08.002

Wagner, M. W., Narayan, A. K., Bosemani, T., Huisman, T. A., and Poretti, A.

(2016). Histogram analysis of diffusion tensor imaging parameters in pediatric

cerebellar tumors. J. Neuroimaging 26, 360–365. doi: 10.1111/jon.12292

Yankeelov, T. E., Lepage, M., Chakravarthy, A., Broome, E. E., Niermann, K. J.,

Kelley, M. C., et al. (2007). Integration of quantitative DCE-MRI and ADC

mapping to monitor treatment response in human breast cancer: initial results.

Magn. Reson. Imaging 25, 1–13. doi: 10.1016/j.mri.2006.09.006

Young, I. T. (1977). Proof without prejudice: use of the Kolmogorov-Smirnov

test for the analysis of histograms from flow systems and other sources. J.

Histochem. Cytochem. 25, 935–941. doi: 10.1177/25.7.894009

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Warner and Helmer. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 March 2018 | Volume 12 | Article 133

https://doi.org/10.1002/hbm.21225
https://doi.org/10.1016/j.mri.2005.08.002
https://doi.org/10.1111/jon.12292
https://doi.org/10.1016/j.mri.2006.09.006
https://doi.org/10.1177/25.7.894009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Characterization of Diffusion Metric Map Similarity in Data From a Clinical Data Repository Using Histogram Distances
	Introduction
	Histogram Distance
	Previous Use of Histograms in DWI

	Materials and Methods
	Data Preparation and Processing
	Histogram Generation for Diffusion and Distance Metrics
	Selection of Distance Metric
	Use of Histogram Distance to Discover Volumes With Severe Artifacts
	Comparison Between Histogram Distance Distributions

	Results
	Comparison Between Manufacturers
	Comparison Between Manufacturers; B-Value Controlled
	Comparison Between B-Values; Vendor Controlled
	Comparison Between Field Strengths; Vendor Controlled
	Comparison Between Field Strengths; B-Value, Vendor, and Number of Gradient Directions Controlled
	Comparison Between Number of Gradient Directions; B-Value, Vendor, and Field Strength Controlled
	Comparison Between Vendors; Number of Gradient Directions, Field Strength, and B-Value Controlled

	Discussion
	Conclusion
	Author Contributions
	Funding
	Supplementary Material
	References


