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This paper introduces a color asynchronous neuromorphic event-based camera and a

methodology to process color output from the device to perform color segmentation and

tracking at the native temporal resolution of the sensor (down to one microsecond). Our

color vision sensor prototype is a combination of three Asynchronous Time-based Image

Sensors, sensitive to absolute color information. We devise a color processing algorithm

leveraging this information. It is designed to be computationally cheap, thus showing how

low level processing benefits from asynchronous acquisition and high temporal resolution

data. The resulting color segmentation and tracking performance is assessed both with

an indoor controlled scene and two outdoor uncontrolled scenes. The tracking’s mean

error to the ground truth for the objects of the outdoor scenes ranges from two to twenty

pixels.

Keywords: event-based signal processing, AER, color segmentation, tracking, silicon retina

1. INTRODUCTION

Primates’ ability to discriminate colors is advantageous for survival (Dominy and Lucas, 2001).
They use it for long-range detection of edible food in forest environments. This ability is
nowadays exploited by humans to efficiently communicate information: road signs, merchandizing
and maps are a few examples. Consequently, machine vision systems meant to interface with
humans or mimic their vision often rely on colors (Trémeau et al., 2008). Applications include
traffic sign recognition (Bahlmann et al., 2005), skin detection (Kakumanu et al., 2007), visual
saliency modeling (van de Weijer et al., 2006) or vehicle color classification (Hsieh et al., 2015).
However, detecting colored objects in a scene remains a challenge for such systems: even though
a considerable amount of research has been carried out on color segmentation, ad hoc techniques
are still required to solve many problems. The large amount of recently published works (Vantaram
and Saber, 2012) tends to demonstrate that automated color segmentation is far from being solved.
Current state-of-the-art methods for color video segmentation rely on a model describing tracked
objects: superpixels (Pun and Huang, 2016), graphs (Rother et al., 2004; Grundmann et al., 2010;
Lezama et al., 2011) or local classifiers (Bai et al., 2010; Lee et al., 2011). These methods yield robust
and accurate results, but require heavy computations. Other methods rely on clustering techniques,
especiallyMean Shift derivatives, to segment colors (Fukunaga and Hostetler, 1975; Cheng, 1995).
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The results quality and very high computational costs drove
research on speed optimization and complexity reduction
through structuring of the feature space (Guo et al., 2006;
Paris and Durand, 2007; Xiao and Liu, 2010), dynamic
bandwidth selection (Yang et al., 2003) or kernel choice
improvements (Comaniciu, 2003). Despite these optimizations,
state-of-the-art methods still require large computations
preventing their use for real-time or low-power applications.
This need derives from the dense and exceedingly redundant
visual information provided by conventional, frame-based
cameras. By contrast, the human eye contains several neuron
layers known to reduce redundancy and participate in color
information processing (Johansson, 2004).

This work introduces a new direction for color segmentation,
with algorithms operating on high temporal resolution data
(down to one microsecond) provided by neuromorphic event-
based cameras which mimic the human eye. These sensors are
based on pixels operating independently. Instead of capturing
information at a fixed frame-rate, with no relation to the
visual information source (Lichtsteiner et al., 2006), each pixel
optimizes its sampling depending on the visual information
it receives. If the scene changes quickly, the pixel samples
information with a high adaptive rate. Otherwise, the pixel
stops acquiring redundant data and goes idle until luminance
changes in its field of view, therefore contributing to information
processing. The sensor does not require a common frame
clock, since event-based cameras’ pixels are independent and
autonomous. A variety of such sensors were developed in the
past few years: temporal contrast vision sensors detecting relative
luminance changes (Lichtsteiner et al., 2006; Posch et al., 2008,
2011), gradient-based sensors detecting static edges (Delbruck,
1993), edge-orientation sensitive devices (Etienne-Cummings
et al., 1997) and optical flow sensors (Krammer and Koch,
1997).

The Asynchronous Time-based Image Sensor (Posch et al.,
2011), or ATIS, used in this paper is an asynchronous camera
that contains an array of autonomously operating pixels that
combine an asynchronous change detection circuit and a separate
exposure measurement circuit, the latter being triggered by the
former. Each pixel independently and continuously monitors
its field of view. The detection of luminance change triggers a
local light integration, as illustrated Figure 1. The information
is output asynchronously with the pixel coordinates, hence
providing the new gray level. Consequently, the scene is
not acquired frame-wise, but rather continuously and locally,
conditionally on visual information changes. In other words, only
information that is relevant—because unknown—is acquired,
transmitted, stored and eventually processed by machine vision
algorithms. Pixel acquisition and readout times range from
milliseconds to microseconds, resulting in temporal resolutions
equivalent to conventional sensors running at tens to hundreds of
thousands frames per second. The sparse nature of the generated
visual data benefits subsequent processing in terms of speed
and power consumption. Moreover, the data’s high temporal
resolution allows for simplifying assumptions, with complex
behaviors emerging from simple, high-speed algorithms. The
event-based formulation of vision problems in the time domain

has already produced striking results for many computer vision
algorithms, such as stereo-vision (Rogister et al., 2012; Carneiro
et al., 2013), optical flow (Benosman et al., 2014) or tracking (Ni
et al., 2012).

The benefits of event-based cameras make them well-suited
candidates to overcome existing limitations in automated color
segmentation. To our knowledge, only two attempts at building
a color event-based sensor have been made. The pixel proposed
by Berner and Delbruck (2011) is sensitive to both luminance
and wavelength changes. Moeys et al. (2017) added a Bayer
matrix to an existing DVS sensor. However, both sensors are
only sensitive to relative luminance changes, and were not
illustrated with concrete applications. Using the ATIS capacity
to acquire absolute luminance in an event-based manner, we
present in this paper both a functional event-based color
sensor, illustrated Figure 2, and its application for segmenting
colored objects with simple processing techniques requiring little
computation power. The absolute luminance information allows
for a robust and computationally cheap color segmentation
based on clustering, unlike change detectors which need to rely
on edges detection. We evaluate the sensor’s ability to track
colored shapes, using a real-time on-line algorithm. Thanks to
the nature of the data generated by event-based cameras, tracking
can be implemented with a moving mean algorithm (Drazen
et al., 2011), which requires very little computational power.
More complex and robust methods have been devised (Lagorce
et al., 2015; Reverter Valeiras et al., 2015) for more demanding
applications.

2. MATERIALS AND METHODS

2.1. Three-Chip Event-Based Camera
We build an event-based color sensor as an association of three
ATIS cameras acquiring red, green and blue light exposures.
The sensor captures light through a hot mirror reflecting infra-
red light. A beam splitter directs photons with wavelengths
larger than 605 nm toward the red sensor. The other photons
are reflected toward a second beam splitter, which directs
photons with wavelengths smaller than 505 nm toward the blue
sensor. The remaining photons are directed toward the green
sensor. Before hitting the red, green and blue sensors, photons
cross band-pass filters which mimic the filtering functions of
conventional Bayer matrices’ pixels. Each sensor uses a C-mount
objective, as the sensors dimensions prevent using a common
objective placed behind the hot-mirror. Figure 3 illustrates the
assembly.

In order to account for the mechanical imperfections of
the prototype, a spatial calibration step is required to make
sure that the color sensor’s cameras share the same field of
view. We capture a checker board with the sensor before
each recording, and compute the homography linking the
green and blue cameras to the red one. The homography
is computed by determining the direct linear transformation
on normalized points (Hartley, 1995), which were extracted
from a reconstructed image of the checker board using corner
detection and structure recovery (Geiger et al., 2012). This spatial
calibration is valid only for objects within the checker board’s
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FIGURE 1 | The ATIS is an asynchronous, event-based camera with independent pixels. This figures illustrates the behavior of a single pixel. When the logarithm of

the luminance captured by the pixel crosses a threshold, light integration for the pixel starts. The exposure measurement’s duration is proportional to the inverse of the

luminance, and is notified by two events called threshold crossings: the first one is sent when the integration begins, the second one when it ends.

plan. However, we observe a good pixel matching for objects
in other plans as well, as the fields of view differences are small
compared to the pixels size.

2.2. Color Events
After applying the spatial calibration step, the red sensor’s pixel
with index i has the same field of view as the green and blue
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FIGURE 2 | The three-chip event-based camera is an assembly of three ATIS cameras (Left). The cameras share the same field of view. Reconstructed color events

can be visualized as a spatio-temporal point-cloud (Right). There are as many color points in the four frames (far right) as in the whole point cloud.

FIGURE 3 | Our three-chip event-based camera uses dichroic filters to split

the light beam and ATIS cameras to record the scene as events. We use an

objective for each camera instead of a single one in order to reduce the flange

distance (constrained by the sensors’ size).

sensors’ pixels with index i. We call pixel with index i of the color
sensor the virtual pixel combining the red, green and blue pixels
with index i. The signal captured by this pixel can be modeled as
a continuous R

3 function si of the time t:

si : R → R
3

t 7→
(

r, g, b
) (1)

where r, g, and b are the red, green and blue components
intensities of the signal. i, the pixel’s index, is in the range [1, n],
where n is the sensor’s number of pixels.Wewant the color sensor

to generate events ei,t defined by the tuple of attributes:

ei,t =
(

i, t, r, g, b
)

(2)

Assuming an initial value si (t0) =
(

r0, g0, b0
)

, the pixel with
index i’s first event should be generated at the time t1 such
that si (t1) =

(

r1, g1, b1
)

and the distance in R
3 between

(

r0, g0, b0
)

and
(

r1, g1, b1
)

is larger than a tunable threshold. The
distance function should not be the euclidean distance in order
to mimic human perception, which is highly non-linear in RGB
space (Cheng et al., 2001).

The ATIS-based three-chip camera’s pixels do not yield the
si signal directly. Instead, the camera associated with each
color component generates an independent stream of events.
Since ATIS cameras yield exposure measurements with a delay
inversely proportional to themeasured exposure, it is not possible
to detect temporally coinciding events to generate color events.
Therefore, we associate each color sensor’s virtual pixel with
a memory space storing the three color components. Every
time an event is generated by one of the color component
cameras, the memory is updated and a color event based on
the current memory value is dispatched. This mechanism is
illustrated Figure 4.

2.3. Color Model
We consider color object tracking as a first practical application
of the event-based color sensor. Given a pre-determined set of
uniformly colored objects, we want to determine the position
of each object in an scene at every moment. We use a two-step
approach : first, we build a statistical color signature for each
object using a labeled scene. Then, events from an unknown
scene are matched against the statistical models and associated
with the closest signature.

In order to reduce the required amount of computation for
each event, we reduce the problem’s dimensionality by converting
color events from the RGB space to the CIEL∗a∗b∗ space. We
use only the a∗ and b∗ components of the latter. For each object,
we gather events from the labeled scene and project them to the
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FIGURE 4 | Events generated by the color sensor’s three cameras’ pixel i are merged to generate color events. Every time an exposure measurement is generated by

one of the ATIS cameras, it is stored in memory. Then, a color event is dispatched using the current memory value.

a∗b∗ plane of the CIEL∗a∗b∗ space. We use a bivariate normal
distribution as a statistical model for describing these points.

Converting events from the RGB space to the CIEL∗a∗b∗ space
requires a color calibration step. ATIS cameras send exposures
as a pair of threshold-crossing events to the computer. The
actual exposure is—as a first approximation—proportional to
the inverse of the time difference between the two thresholds-
crossing events. We use a Macbeth ColorChecker to evaluate
the required proportionality factor between the time difference
inverse and red, green and blue components in RGB space.
We observe that the expected red, green and blue values given
by the Macbeth ColorChecker as functions of the measured
inverse threshold-crossing time differences are well described
by affine functions, as shown Figure 5. The need for affine
functions instead of linear functions can be attributed to the

sensor imperfections, including the pixels’ dark current. We

calculate the affine regression by minimizing the mean squared

error for each color component. This method yields good results
for displaying the sensor’s measurements using an RGB screen.
Estimated red, green and blue components can be used to

determine the CIEL∗a∗b∗ color components using several non-
linear relations (Jain, 1989).

However, when using this model to convert the measured

colors to the CIEL∗a∗b∗ space, we observe a poor fit with the

values given by the Macbeth ColorChecker. The difference can
be attributed to the uncorrelated regression applied to each
component and the ATIS cameras’ noise. Therefore, we use

the Nelder-Mead simplex algorithm (Lagarias et al., 1998) to
optimize the six parameters of the three color components’
affine regressions. We minimize the distances between the

expected colors given by the Macbeth ColorChecker and the
measured points in CIEL∗a∗b∗ space. Since the CIEL∗a∗b∗ space
is perceptually uniform, this method yields the best compromise
for converting the measured Macbeth ColorChecker’s colors to
the CIEL∗a∗b∗ space with regards to human perception. Figure 5
shows the two methods results.

2.4. Signatures
We consider the sequence S of n color events associated with a
uniformly colored object:

S =
((

ik, tk, rk, gk, bk
)

, k ∈ J0, n− 1K
)

(3)

We define Sab as the sequence of pairs
(

a, b
)

obtained by
converting each color event from the sequence S to the
CIEL∗a∗b∗ space:

Sab =
((

ak, bk
)

, k ∈ J0, n− 1K
)

(4)

We call signature of the considered object the bivariate normal
distributionN (µ,6) estimated from the Sab sequence:

µ =

(

µa

µb

)

=
1

n

n−1
∑

k = 0

(

ak
bk

)

6 =

(

σ 2
a σab

σab σ 2
b

)

=
1

n− 1

n−1
∑

k = 0

((

ak
bk

)

− µ

) ((

ak
bk

)

− µ

)T

(5)
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FIGURE 5 | Converting the sensor’s color events to the CIEL*a*b* space requires a transformation model. We use a Macbeth ColorChecker to compare the expected

color values with the measured time differences. We consider two strategies for finding our model’s parameters : mean squared error (red) and non-linear optimization

to minimize the distance between expected and measured colors in the CIEL*a*b* space (green). The latter yields a better fit for blue and purple colors in the a*b*

plane. On the a*b* plane figures, squares represent the expected colors and circles represent the mean measured value. The represented Macbeth ColorCheckers

were captured by our sensor.

The experiment presented Figure 6 illustrates the method to
determine the signature of actual objects. Five colored wooden
pieces placed on a white background are recorded. Even though
the scene is static, the ATIS cameras’ noise triggers exposure
measurements which are converted to color events. We associate
a pixel set—or mask—to each wooden piece. The color events
generated by this pixel set make up the S sequence used to fit a

signature. The color signature for the background is evaluated as
well.

2.5. Tracking
After determining the five wooden pieces’ signatures, we consider
a scene with the same pieces moving. Let X be the continuous
bivariate random variable which associates each color event with
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FIGURE 6 | In order to build color signatures for a set of wooden pieces, we

accumulate noise-generated events from a static scene. We use the resulting

image to build a mask labeling a specific piece (here, the orange one). All the

color events associated with the mask’s pixels are converted to the CIEL*a*b*

space and projected on the a*b* plane. The projected points are used to

estimate a bivariate normal distribution, which we call the signature. The

bottom diagram shows 95% confidence ellipses of the wooden pieces’

signatures in the a*b* plane.

its a∗ and b∗ components:

X :

(

N,R+,R3
)

→ R
2

ei,t 7→

(

a
b

)

(6)

We note x =

(

a
b

)

a color event’s a∗ and b∗ components.

Writing Oj for the probabilistic event “the color event
was generated by the object j,” the Bayes’ theorem yields the
probability that the object j generated the considered color event:

P
(

Oj | X = x
)

=
fOj (x)P

(

Oj

)

m−1
∑

j = 0
fOk

(x)P (Ok)

(7)

fOj is the probability density function of the bivariate normal
distribution associated with the object j, and m is the number of
objects.

The color event is associated with the object with the largest
probability to be the source of the event. Assuming an identical
probability P

(

Oj

)

= 1
m for each object to generate an event (six

in the wooden pieces example, background included), we simply
need to find the index jmaximizing fOj (x), given by:

fOj (x) =
1

2π
∣

∣6j

∣

∣

e
− 1

2

(

x−µj

)T

6
−1
j

(

x−µj

)

(8)

where µj and 6j are the object j’ signature’ mean and covariance
matrix.

In order to track the objects, we use a movingmean algorithm.

Each object is given a center pj =

(

xj
yj

)

, where xj and

yj are the object’s mean coordinates in the screen referential.
When an event ei,t is generated, the mean associated with the
object minimizing expression 8 is updated. The new mean p′j is

calculated from the previous mean and the event as:

p′j = λpj + (1− λ) xi (9)

where xi is the coordinates in the screen referential of the pixel
which generated the event. λ is an inertia parameter ranging from
zero to one. λ is generally given a value close to

(

1− 10−3
)

. The
larger λ, the more robust to noise the tracking. However, large λ

values yield more latency and deteriorate the algorithm’s ability
to account for small variations.

We take into account the camera noise with a spatio-temporal
activity filter. Once an event is associated with an object, we
count the number of prior events associated with the same object
that were generated less than one second before in a six-by-six
square window around the event’s position. Only events with at
least thirty neighbors in this spatio-temporal window are taken
into account for updating the object’s mean position. Increasing
the required count decreases the number of false positive events,
while increasing the number of false negative events.

3. RESULTS

We applied the color tracking algorithm to three experiments.
Videos illustrating the associated results are provided as
Supplementary Materials. The first experiment is recorded under
laboratory-controlled conditions. Five colored wooden pieces
are placed on a rotating surface captured with a static sensor.
Figure 7 shows the results compared to the ground truth,
evaluated with a contour tracing algorithm (Suzuki and be,
1985). The objects and their centers are identified on images
reconstructed from the color camera’s events. For each event, we
calculate the distance between the associated object’s estimated
mean and its ground truth. The mean distance is given for each
object as a fraction of the yellow object’s trajectory’s radius. We
are able to estimate the objects trajectories using only color data.
The moving mean algorithm’s λ parameter is identical for all the
objects, empirically set to

(

1− 10−3
)

. A compromise must be
reached between noise robustness and accuracy. Reducing the
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FIGURE 7 | Tracking of five wooden pieces in rotation motion. Figures show the pieces motions estimated with our method (colored trajectories) and the ground truth

(gray trajectories) for a whole rotation. The mean error for each object is the average distance between the estimated object’s mean position and the ground truth as a

ratio of the yellow object’s trajectory’s radius. The observed errors derive from the compromise between noise robustness and accuracy imposed by the moving mean

algorithm.

parameter’s value would improve results for the purple object
while degrading the results for the green one.

The second experiment consists of a moving camera in an
urban scene containing a red road sign and a green pharmacy

neon light. The corresponding color signatures are learnt from
an initialization step. The latter uses data from a one-second
sequence taking place before the experiment’s recording. Figure 8
illustrates the associated color reconstruction process. Due to
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FIGURE 8 | The figure’s top row shows reconstructed frames from events acquired by each sensor of the three-chip event-based camera. The gray levels are

tone-mapped with a logarithmic function in order to be displayed on a regular screen. The bottom-left frames are reconstructed with the linear color model presented

in the methodology. The colors are properly reconstructed, but very little detail is left in dark areas. The bottom-right frames use the channels’ logarithmic

tone-mappings as their color channel, yielding incorrect colors but much more details in dark areas.

the scene’s high dynamic range, the linear color model yields
little detail in the dark areas of reconstructed frames. Therefore,
we generate color frames for display purposes by applying a
logarithmic tone-mapping on each channel independently. This
operation yields incorrect colors, but shows much more detail
in dark areas. The tracking algorithm is not influenced by this
operation since it uses colors calculated by the linear model, as
presented in our methodology.

The third experiment takes place in an urban scene as well.
It consists of two pedestrian wearing colored sweaters walking
in front of the sensor. Figure 9 shows the segmented events for
both urban experiments, while Figure 10 compares the estimated
trajectories with the ground truth. The latter is computed with
the contour tracing algorithm provided by Suzuki and be (1985)
as well. We remind the reader that this technique exploits shape
rather than color: spatial constrains yield more robust results, but
require a more complex algorithm. The estimated mean position
lags behind the ground truth, which is a consequence of the
moving mean algorithm. In order to assess the dynamics of our
results, we compensate the lag for the road signs experiment
and shift the position’s reference for the pedestrians one. Table 1
summarizes the mean errors and standard deviations along
the x and y axis for both urban scenes. We observe degraded
performances for objects near the sensor’s edges, which can be
attributed to sensor limits. On the one hand, the ATIS camera
used in the assembly lacks sensitivity to blue wavelengths, which

is reflected by longer integration times for this component.
This leads to timestamp differences between channels, which
result in incorrect color reconstructions. On the other hand, our
prototype three-chip color camera exhibits optical aberrations
which degrade the signal near the edges.

4. DISCUSSION

The event-based three-chip color camera is the first working
prototype of an event-based sensor able to acquire absolute
color information: the sensor generates packets of data carrying
the luminance value integrated over a small time interval. By
contrast, the event-based color pixel designed 6 years ago (Berner
and Delbruck, 2011) and the DVS camera with a Bayer matrix
built in early 2017 (Moeys et al., 2017) can only detect color
variations: they send the same message regardless the variation
magnitude, and require heavy calculations to retrieve the absolute
luminance. Even though our prototype is still at an early stage,
we manage to track colored objects in several scenes, using
only the color information generated by the sensor. Thanks
to the capture of absolute luminance, very little computational
power is required to label the events. Therefore, the algorithm
is a good candidate for the first stage of a complex chain of
computations achieving a higher level task. It proves that color
information alone is enough to achieve tracking with event-
based cameras. The advantages of the event-based color sensor
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FIGURE 9 | We consider two outdoors scenes to assess the tracking algorithm performance: a moving camera acquiring a red road sign and a green pharmacy sign

(Top), and a static camera recording pedestrians wearing colored sweaters (Bottom). The color signatures for the objects are calculated from similar scenes. The

point clouds show color events where fO is larger than 10−5 for one of the objects. These events are used to update the estimated center of the associated object

with a moving mean algorithm where λ = 1− 10−3. The tracked object are framed on the reconstructed frames for better visualization.

presented in this work over frame-based color cameras are
similar to the advantages of gray event-based sensors over gray
frame-based sensors: carrying out part of the computation on

the sensor yields a natural data compression, with an increased
temporal resolution. Both greatly reduce the required amount
of computation for the processor. However, a proper use of the
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FIGURE 10 | We compare the estimated position of the tracked objects with the ground truth along the x and y axis as functions of time for the road signs experiment

(Top) and the pedestrians experiment (Bottom). The events’ timestamps are corrected to account for the delay induced by the mean-shift algorithm, effectively

comparing dynamics rather than absolute values. Tracking is degraded near the edges, especially for the red stop sign (Top, x axis, after 3.6 s), which is a

consequence of our prototype’s optical aberrations. Since the pedestrians move along the x axis, motion along the y axis is relatively small, making the noise appear

stronger.

TABLE 1 | The mean error between the estimated position and the ground truth is

evaluated for each tracked object in the outdoor scenes.

Object Mean error (pixels)

x y

Green sign 2.18 1.30

Red sign 18.4 2.09

Orange sweater 14.5 4.58

Brown sweater 11.9 6.20

The larger errors along the x axis for three out of four object can be attributed to the optical

aberration near the sensors’ edges.

generated data requires a re-design of most computer vision
algorithms.

The presented prototype can find applications in embedded
systems. When low latency and low power consumption are
required—as an example, with drones—conventional vision
sensors show limits which can be overcome with event-based
cameras. Fast color segmentation on a drone can be useful
for several tasks, such as target detection and tracking or
environment mapping. Moreover, the high dynamic range
of the ATIS camera tackles the luminance adaptation issue,
particularly troublesome for self-driving cars. Color makes road
sign segmentation and recognition much easier on such systems.

The use of spatial information is out of the scope of this work.
However, it should allow for a more robust algorithm thanks
to data fusion, and is considered as this work continuation.
We also identify several areas of improvement for the sensor
that would benefit the algorithm’s results. These improvements
require hardware development. On the one hand, one of the
event-based three-chip color sensor’s weaknesses is its lack of
sensitivity to short wavelengths. This limitation is shared by most
silicon-based photo-detectors, but is aggravated by the ATIS’s
low sensitivity to low light. Therefore, better results would be
achieved with increased sensitivity. On the other hand, the three-
chip event-based prototype exhibits optical limits, such as color
aberrations near the edges and vignetting. These shortcomings
are caused by the large size of the electronics boards used by the
ATIS sensors to communicate with the computer: the sensors are
18× 18 mm, while the board are 50× 50 mm. They impose large
distances between the light entry and the sensors, which in turn
require the objectives to be placed after the beam splitters. The
small defects in the beam splitters’ angles and positioning are
responsible for the visible aberrations. The circular field of view
is a consequence of a compromise reach with the off-the-shelf
components used in the assembly: the input hot mirror results
in a partially masked field of view, however a larger one would
increase the amount of reflections inside the sensor’s casing,
which degrades capture. Designing a dedicated electronics board
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matching the sensor size would allow a casing reduction large
enough to place as single objective before the light entry, hence
alleviating the optical aberrations. Another solution consists in
using a single array of pixels with a Bayer matrix. However, the
latter requires designing a chip from the ground up, as Bayer
matrix placing is part of the pixel building process.

Assuming the design of a new chip, it would be interesting
to consider the following problem. Both the sensor presented in
this work and the existing event-based color sensors digitize the
analog light signal into events for each channel independently.
Processing is then performed on the generated events, including
color merging. The parallel drawn with the human eye for such
sensors (Posch et al., 2011) ignores part of the eye complexity,
including data passed between pixels through the horizontal cells.
This data appears to be analog rather than digital. Implementing
such a data transfer in the next generation of color neuromorphic
vision sensors may be the key to acquiring color information
efficiently. It may also help overcoming the following paradox
in computer vision: for segmenting natural scenes, color, though
helpful, provides a generally small advantage (Hansen and
Gegenfurtner, 2017). However, it requires dealing with three
times as much data. Assuming an access to the extra power
required to deal with this data, one is generally better off with a
more complex algorithm working on gray levels. Merging colors
on the analog level may help reducing the amount of generated
data without tainting its quality.
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