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The mammalian auditory system is able to extract temporal and spectral features from
sound signals at the two ears. One important cue for localization of low-frequency
sound sources in the horizontal plane are inter-aural time differences (ITDs) which are
first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of
ITD tuning curves at various stages along the auditory pathway suggest that ITDs in
the mammalian brainstem are not represented in form of a Jeffress-type place code.
An alternative is the hemispheric opponent-channel code, according to which [TDs are
encoded as the difference in the responses of the MSO nuclei in the two hemispheres.
In this study, we present a physiologically-plausible, spiking neuron network model of
the mammalian MSQO circuit and apply two different methods of extracting ITDs from
arbitrary sound signals. The network model is driven by a functional model of the auditory
periphery and physiological models of the cochlear nucleus and the MSO. Using a linear
opponent-channel decoder, we show that the network is able to detect changes in
ITD with a precision down to 10us and that the sensitivity of the decoder depends
on the slope of the ITD-rate functions. A second approach uses an artificial neuronal
network to predict ITDs directly from the spiking output of the MSO and ANF model.
Using this predictor, we show that the MSO-network is able to reliably encode static and
time-dependent ITDs over a large frequency range, also for complex signals like speech.

Keywords: spatial hearing, medial superior olive, computational model, artificial neural network, binaural model

1. INTRODUCTION

Our remarkable sound localization acuity relies on the ability of the auditory system to decode
the arrival time and intensity difference between the ear canal signals into information about the
direction of sound sources. In mammals, the primary nucleus to extract fine structure interaural
time differences (ITDs) is the medial superior olive (MSO), while the interaural level differences
(ILDs) are extracted primarily at the lateral superior olive (LSO) (Grothe et al., 2010). The MSO
neurons detect fine-structure ITDs by acting as coincidence detectors receiving excitatory inputs
from both hemispheres. The existence of such neurons was already hypothesized by Jeffress (1948),
who proposed an array of coincident detectors to be arranged along a neural delay line. In this
hypothesis, each neuron would respond maximally to a specific ITD (best-ITD)—generating a
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topographical mapping of time differences within the nucleus.
Later, such a circuit was found in the nucleus laminaris of
birds like the barn owl (Carr and Konishi, 1988). However,
more recent measurements of mammalian inferior colliculus
(IC) and MSO neurons in gerbils (Brand et al., 2002) or guinea
pigs (McAlpine et al., 2001) revealed broadly-tuned neurons, of
which the majority had their best-ITDs at the border or even
outside of the animals physiological range. This observation
is inconsistent with place-code theory, which would require a
vast amount of narrowly-tuned neurons with their best-ITDs
distributed within the physiological range. One alternative ITD-
coding mechanism is based on the comparison of firing rates
between the nuclei in the two hemispheres. This mechanism
has consequently been called the opponent-channel (Magezi and
Krumbholz, 2010), count-comparison (Colburn and Durlach,
1978), or hemifield (Stecker et al., 2005) model. The opponent-
coding model is in agreement with both observations, the wide
tuning curves and the large best-ITDs (McAlpine and Grothe,
2003). There is also evidence that overall sound localization
(Stecker et al., 2005; Briley et al., 2012) as well as specifically
ITD-coding in the human auditory cortex is based on an
opponent coding mechanism (Salminen et al., 2010). Lesion
studies in cats showed that unilateral lesions at the level of the
central auditory system (Jenkins and Masterton, 1982) as well
as in cortical regions (Malhotra et al., 2004) mainly resulted
in deficits localizing sounds from locations contralateral of the
lesion. These results lead Jenkins and Masterton (1982) to
conclude that each auditory-hemifield is represented solely in
the respective contralateral hemisphere, which would contradict
the opponent coding mechanism. One problem with applying
this interpretation to ITD processing is that both studies used
broad-band stimuli so that ITDs and ILDs, as well as spectral and
monaural cues were available to localize the sound source this
makes it difficult to draw conclusions about the representation
of the individual cue. An alternative to the opponent-channel
code, which uses the summed response of the neurons within
each of the two hemispheres, is the population decoder that
instead uses the individual response of each neuron for decoding.
Based neuronal recordings of neurons in the IC, Goodman et al.
(2013) and Day and Delgutte (2013) both proposed population
decoders and showed that these decoders could outperform a
two-channel decoder. On the other hand, Harper et al. (2014)
used an optimal coding approach to show that ITDs in low-
frequency signals would be best represented by a two-channel
code. Additionally, results from psychoacoustic lateralization
experiments using pure-tone adapter stimuli with fixed ITDs
showed, that adaptation influences lateralization at ITDs not only
close to that of the adapter but within the whole hemisphere
(Phillips et al., 2006), which is more in line with an opponent-
channel code.

The aforementioned remarkable sound localization ability
has inspired numerous researchers to create computational
binaural models. Most of the existing binaural models
are phenomenological implementations of the delay-line
principle proposed by Jeffress (1948), which have been tuned
to successfully predict data from human psychoacoustics

(Lindemann, 1986). Some more recent models were

implemented following the opponent-coding mechanism
(Pulkki and Hirvonen, 2009; Dietz et al., 2011; Takanen et al.,
2014). Even though these models closely follow the functionality
of the neuronal sound localization pathway, they provide only
a phenomenological description of the processing stages. On
the other hand, several biophysical models of MSO neurons
have been published as well (Brughera et al., 1996, 2013; Zhou
et al., 2005; Lehnert et al, 2014), but there are only a few
biophysical models covering the complete neuronal circuit.
Wang et al. (2013) used a circuit containing a model of the
auditory periphery as well as spiking models of the MSO and
LSO and a simplified IC model to investigate the sensitivity of
IC neurons to envelope ITDs in high-frequency sounds. Due to
the focus on high-frequency sounds where ITDs are extracted
from the envelope of the sound signal instead of its fine structure
(Nuetzel and Hafter, 1976), Wang et al. (2013) did not include
any source for a shift in best-ITD and also neglected inhibitory
inputs to the MSO. Glackin et al. (2010) presented a spiking
neural network (SNN) constructed from leaky integrate-and-fire
models of the CN and MSO nuclei. In disagreement with newer
physiological studies, the SNN was constructed as a Jeffress-type
delay-line decoder. Glackin et al. (2010) trained the network
to localize the sounds using spike-timing-dependent plasticity
learning rules.

To our knowledge, none of the previous models combined
an SNN approach with the concept of opponent-coding to
investigate ITD sensitivity. Brughera et al. (2013) presented a
single spiking neuron model of the MSO to investigated ITD
sensitivity, but used a periodic Poisson-like process as an input
to the MSO. This limits the model to simple pure-tone-like
scenarios while also neglecting any non-linear processing of
the auditory periphery. To that end, we present here a new
binaural model based on biophysical spiking neuron models
of the mammalian MSO circuit. We show that a simple linear
hemisphere decoder applied to the output of the model is
sufficient to encode ITDs in tones with a precision that matches
human performance. Furthermore, we show how the model in
conjunction with a simple artificial neural network can decode
ITDs from broadband signals, including complex signals like
speech.

2. RESULTS
2.1. Model Structure

The primary mammalian MSO neurons receive excitatory inputs
from spherical bushy cells (SBCs) as well as inhibitory inputs
from the globular bushy cells (GBCs) of the cochlear nuclei in
both hemispheres. Inhibitory inputs are being relayed via the
trapezoid body (TB) (see Grothe et al., 2010 for an overview).
Both SBCs and GBCs are directly excited by auditory nerve fibers
(ANFs). GBCs in particular, but also SBCs have been found to
enhance phase locking of the neuronal inputs (Joris et al., 1994;
Dehmel et al., 2010). Our model consists of three stages, a model
of the auditory periphery, a population of globular bushy cells
and a population of MSO neurons (see Figure 1). For simplicity,
SBC as well as the TB nuclei, were reflected as direct relays of the
ANF signals so that our MSO model receives direct excitatory
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FIGURE 1 | (A,C) Poststimulus time histograms (750 ps bin size) of the responses of the three model stages to a 100 ms long pure tone. (B) The model network
contains three stages. A model of the auditory periphery (ANF), A model of the globular bushy cells in the cochlear nucleus (GBC), and the model of the medial
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input from the ANF and inhibitory inputs from GBCs of both
hemispheres (see section 4 for details on the implementation).
In practice, our model takes digitized binaural signals as input
and processes them first through the peripheral hearing models
of the left and right ears. The peripheral model consists of a
middle-ear compensation filter, a non-linear model of the basilar
membrane and a functional model of the neural transduction of
the inner hair cell and auditory nerve fibers (Zilany et al., 2014).
All ANFs were modeled as high spontaneous rate units. The spike
timings of the peripheral hearing models were then used as input
to the biophysical neuron models. As a consequence of the direct
excitation by ANF fibers, the frequency responses of both MSO
and GBCs resemble that of the ANFs from the peripheral hearing
model (see Figure S1).

As an example of the output from the different model stages,
Figures 1A,C illustrate the outputs of ANFs, GBCs, and the
MSO of the two hemispheres for a left-leading (150 us ITD)
125 Hz pure-tone input. The ANFs of both hemispheres show a
phase-locked response to the input stimulus. This phase-locked
response is sharpened by the population of GBC neurons. The
MSO neurons of the two hemispheres respond with different
firing rates depending on the delay between the signals delivered
to the left and right ear.

Most MSO neurons of gerbils show bell-shaped ITD-rate
functions with their maximum (best-ITD) located outside of
the animals physiological range (Brand et al, 2002). There
has been much debate about the origin of this shift ranging
from intra-cochlear delays (Joris et al., 2006) over asymmetric
synaptic currents (Jercog et al., 2010) to effects of the recent
stimulus history (Franken et al., 2015). Our model is based on
the effect described by Brand et al. (2002) and Pecka et al. (2008),
who showed that blocking of the inhibitory inputs results in
a shift of the best-ITD toward zero. Measurements in gerbil
brain slices have also shown that inhibitory inputs to the MSO

precede the excitatory inputs in time (Roberts et al., 2013). Using
conduction clamp measurements, Myoga et al. (2014) showed
that the relative timing of inhibitory to excitatory inputs to the
MSO can delay or advance the peak of the excitatory post-
synaptic potential (EPSP) and consequently, affect the best ITD
of the neurons. Our model is consistent with these findings.
In agreement with Brand et al. (2002) and Pecka et al. (2008),
the best-ITD shifted toward zero when simulating the effect of
blocked inhibition by reducing the inhibitory synaptic strength
(see Figures2A,B). Similarly, and in accordance with Myoga
et al. (2014), we could shift the best-ITD of the MSO model by
adjusting the delay of contra- and ipsilateral inhibitory inputs.
For the model used in later evaluations, we optimized both arrival
times to obtain a maximal shift of the best-ITD toward contra-
leading ITDs. This optimization resulted in a delay of 0.6 ms
for the contralateral inhibitory input and 0 ms for the ipsilateral
input (both values relative to the timing of the excitatory input
from the corresponding side). These values are in agreement
with the timescales observed by both Myoga et al. (2014) and
Roberts et al. (2013). The study by Pecka et al. (2008) showed
a residual shift of the best-ITD even when the inhibitory inputs
were blocked. This could be explained by fundamental physics as
the axons connecting inputs from the contralateral hemisphere
to the MSO have to span over a larger distance than the ones
for ipsilateral inputs. We considered this observation by adding
a constant delay of 100 us to the contralateral excitatory and
inhibitory inputs, which resulted in an additional shift of the
best-ITD toward negative values (see Figure 2B).

2.2. Decoding ITD Information From the
Neuronal Responses

The opponent-coding theory is based on two populations of
neurons, both firing maximally when the sound source is on
the opposite side of the midline (Stecker et al., 2005). Figure 3A
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FIGURE 2 | (A) MSO ITD-rate functions (calculated for 15 ITDs in the range
+1 ms) for the right hemisphere of the model at different inhibitory
conductivities stm, (B) Increased inhibition, reduces the overall firing rate and
shifts the best-ITD toward more contra-lateral leading ITDs. Without inhibition
the best-ITD equals the predefined shift of 100 ps.

shows firing rates of the MSO model in both hemispheres
to a stimulation with varying ITDs. The left MSO responds
strongest when the stimulus was right-leading (positive ITD),
while the right hemisphere responds strongest to a left-leading
ITD (negative value). Consequently, a change in ITD from zero
results in an increased firing of one MSO and a reduced firing
of the other. A very basic decoder for the opponent-channel
code can be constructed by subtracting the firing rates of the
left MSO (Rr) from the right MSO (RR). Around zero ITD,
the calculated firing rate difference AR = Rgp — Ry shows an
almost linear response to ITD changes (see Figure 3B). Due to
the subtraction, this approach increases the slope around zero
by a factor of two and consequently maximizes the sensitivity
in this region. However, this approach is applicable only for
ITDs for which the linear approximation is valid. The linear ITD
region depends primarily on the location of the best-ITD (see
Figure 3C) in the two hemispheres. When calculating ITD-rate
functions for neurons with different best-frequency, the best ITD
decreases with increasing sound frequency (see Figure 3C). The
best-ITD is maximally 470 us at 125 Hz and decreases to 110 s at
1.4 kHz. The same trend of decreasing best-ITDs with increasing
frequency has been found in in-vivo recordings of MSO neurons
(Brand et al.,, 2002; Pecka et al., 2008) as well as in the IC
(McAlpine et al.,, 2001). As aforementioned, this model mainly
uses phase-locked inhibition to shift the best-ITD. This method
relies on the slopes of the inhibitory post-synaptic potentials
(IPSPs) of each phase (Myoga et al., 2014). At higher frequencies,
the summation of individual IPSPs reduces the effectiveness in
shifting the best-ITD (Roberts et al., 2013; Myoga et al., 2014),
which is also seen in the model results. Experimental studies have
shown that MSO and IC neurons exhibit a variety of different
best-ITDs (McAlpine et al., 2001; Bremen and Joris, 2013), while
in this model, all neurons with the same best frequency also
show the same best-ITD. As this study does not use a population
decoder but relies on the mean activity within each hemisphere,
the single ITD-rate function can also be interpreted as the mean
ITD-rate function of a single hemisphere.

The sensitivity of the linear-decoder to ITD changes is
proportional to the slope of the AR function around zero ITD—
a steeper slope results in larger changes. As the slope of the AR
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FIGURE 3 | (A) The model demonstrates ITD-rate functions for the left and
right MSO that are effectively mirrored around zero so that a shift in ITD from
the center line leads to an inverse response of the two channels forming the
basis for the opponent-channel code (Stecker et al., 2005). (B) A simple
difference computation between the [TD-rate functions of the two
hemispheres resulted in a nearly linear relationship around zero ITD (dashed
line). (C) The shift in the best-ITD decreases with increasing best-frequency of
the MSO neuron, reaching the predefined shift of 100 us at about 1.4 kHz.

(D) The slope of the rate difference curve around midline can be seen as a
sensitivity to changes in ITD. This value changes with the best frequency. The
sensitivity peaks at 300 Hz from where it decreases again toward higher
frequencies. (E) The single hemisphere responses showed the largest change
at or close to the midline and therefore maximizes the sensitivity of the
linear-decoder. (F) Frequency-dependent normalized firing rates of the three
neuron populations in the model in response to a 100 ms pure tone at 50 dB.

function around zero is twice the slope of a single hemisphere
response, maximizing the slope of the single hemisphere will
also result in a maximal slope of AR . Pecka et al. (2008) and
McAlpine et al. (2001) both reported the maximal slope of single
neuron responses to be located at or close to mid-line. In this
model, responses to frequencies up to 700 Hz followed these
findings (see Figure 3E). At higher frequencies, the location of
the largest slope started to shifted away from midline as the
best-ITD decreased faster than the width of the ITD-tuning
function, which shifted the location of the largest slope toward
positive ITDs. A second influencing factor on the sensitivity
is the maximum firing rate of the MSO response—a higher
rate of the single hemisphere responses will also result in a
larger slope at midline. Figure 3F shows the frequency dependent
normalized firing rates of all three neuron populations in the
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model. The firing rate of the MSO model is of course strongly
influenced by the balance between the excitatory inputs from
the ANFs and the inhibitory inputs from the GBCs but it is
additionally modulated by changes of the spiking thresholds.
MSO neurons have been found to exhibit subthreshold resonance
(Remme et al., 2014; Mikiel-Hunter et al., 2016) which introduces
frequency dependent thresholds. The MSO model used in this
study exhibited a resonance frequency at about 260 Hz (see
Figure S2) which is in agreement with the resonance frequencies
found in electrophysiological studies (Remme et al., 2014; Mikiel-
Hunter et al,, 2016). The reduced spiking threshold around
260 Hz in combination with the dynamics of the synaptic inputs
results in a peak in MSO response seen in Figure 3F, which also
corresponds to the peak in sensitivity shown in Figure 3D.
While applying the linear-decoder does not directly result
in an ITD estimate, it can be used to predict ITDs. The link
between ITD and AR also allows for a direct comparison of
the laterality of two signals with different ITDs without the
necessity to map the MSO model response to the absolute ITD
estimates. This highlights the difference between an absolute
localization task, which requires the mapping of the auditory
perception to a spatial measure and a relative comparison task
where the relative location of one perception in comparison to a
second perception is reported. In psychoacoustical experiments,
the sensitivity to ITDs is often assessed by determining the just
noticeable differences (JNDs) which describe the smallest change
in ITD a subject can use to detect a change in lateralization
between the two otherwise identical stimuli (Klumpp, 1956).
Using the same method, we calculated JNDs for our network
model using the linear-decoder (see section 4). In our model,
the performance depends critically on the number of neurons
composing the population, as the intrinsic stochasticity of the
neuronal system loses its impact on the average firing rate
when the population increases. To determine the influence of
the population size on the performance of our model, JNDs
were calculated separately for subsets of 5, 10, 50, and 100
randomly chosen neurons among a population of 500 neurons.
Figure 4C shows exemplary psychometric curves derived for a
population of 10 and 100 neurons. Figure 4A shows the result of
the JND experiment for different pure tone stimuli. As expected,

the predicted JND decreases when increasing the size of the
population. The decrease in JND can be described by a 1/+/N
dependency, where N is the population size. The dependence is
in line with the reduced effect of noise due to a larger population
of neurons. If the JND thresholds are determined mainly by the
noise of the system, they should also be reflected in the sensitivity
described by the slope of the AR function. Figure 4B shows the
JND curve as well as the inverse of the slope of AR with all values
normalized to lie between 0 and 1. As expected, there is a good
agreement between the normalized JND curves and the inverse
of the slope, which confirms the aforementioned assumption that
the detection threshold of the linear-decoder depends mainly on
the slope of the rate-difference function around zero ITD.

One problem of such a linear-decoder is that the firing rates
of the two MSO models depends not solely on the ITD, but
also on other characteristics of the inputs to the MSO model.
As the firing rate of the peripheral hearing model depend
strongly on the sound pressure level, so will the output of the
MSO model. To demonstrate such dependency, Figure 5C shows
how the predicted sensitivity of our model varies with both
frequency and level of the pure tone input. The ANFs also exhibit
strong spike-rate adaptation (Smith, 1977) which, consequently
affects the MSO response (Figure 5A). These variations could
be compensated by normalizing the ITD-AR functions (overlay
in Figure 5B) but this is not possible in practice as it would
require a priori knowledge about the maximum firing rate of the
ITD-AR function at each point in time. A much more practical
approach is to compensate such non-linear dependencies using
the information that is already encoded in the ANF firing rates.

The MSO exhibits a distinct tonotopic organization along its
dorsoventral axis. As the neuronal populations along the axis
differ in their characteristic frequency (Guinan et al, 1972),
consequently, a given ITD decoder can specialize on decoding
of ITDs within a specific frequency range. In addition, the non-
linear and time-dependent output of the peripheral hearing
process can be compensated by using direct knowledge about the
firing rates of the ANF. However, implementing such corrections
would require designing a complex multi-dimensional correction
function. Artificial neuronal networks (ANN) have been proven
to be quite successful in learning the behavior of highly nonlinear
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FIGURE 5 | (A) The AR function (calculated for 100 ms bins) of 500 MSO
neurons in response to a two second long 250 Hz pure tone with ITDs ranging
from 0 to +0.3 ms show a strong influence of the peripheral hearing model’s
adaptation on the MSO model output. (B) The same data as in (A) but shown
in form of ITD-AR functions. Every function corresponds to one point in time
evaluated for 20 ITDs in the range from —1 to 1 ms. The difference in the slope
of these functions illustrates that adaptation influences the sensitivity of the
linear-decoder . Normalization with respect to the maximal rate of each
function could compensate for this influence (overlay) (C) The model displays
strong variations in sensitivity with sound frequency and sound level.

systems (Almeida, 2002), hence, they provide an appealing
alternative to tedious manual construction of a correction
function.

2.3. Artificial Neuronal Network Predictor
We used a small multi-layer perceptron (MLP) to predict ITD
values from the output of the SNN model by means of non-
linear regression analysis. The regression is based on the average
firing rates across the neuronal populations and predictions are
calculated separately for each frequency band and time frame.
The MLP was implemented using seven input nodes, one hidden
layer with twenty nodes and two output nodes (for details see
section 4). One of the MLP output nodes was used for the
prediction task, while the second output was used to classify
the reliability of the prediction based on the firing rates. This
was deemed necessary to omit predictions for parts of the
input signal, which did not contain enough energy in the given
frequency band to enable robust predictions based on sufficient
spiking activity.

The inputs to the MLP were designed to consist of the firing
rates from the MSO of the left and right hemisphere and the
characteristic frequency of the neuron population (see Figure 6
for a schematic of the networks in- and outputs). As one of the
main tasks of the predictor was to compensate for the influence

Input Layer

Hidden Layer

Output Layer

Left MSO (t)

Left MSO (t-30 ms)
Right MSO (t)

Right MSO (t-30 ms)
ANF (t)

ANF (t-30 ms)

Best Frequency

ITD Prediction (t)
Signal Exists (t)

FIGURE 6 | The ANN predictor was implemented using seven input nodes,
one hidden layer with twenty nodes and two output nodes. Inputs denoted
with (t) are firing rates within a given time period (typically 30 ms) for which the
ITD should be predicted, while the ones denoted with (t-30 ms) are firing rates
of the preceding time frame.

of variations in the peripheral hearing model output, the MLP
was also provided with a monolateral input of the ANF firing
rate. All firing rates were provided as an average value computed
over a predefined time period of 30 ms. This duration was chosen
as it offered reasonably high temporal resolution and ensured
that several periods of the phase locked input were included.
In addition to the rates within the given time frame, we also
provided firing rates of the previous time frame which reduced
the noise in the predictions by effectively doubling of the time
span that the network can employ in its predictions. The MLP
was trained on 300 ms long pure tones (see section 4) covering
the frequency range from 125 to 1,000 Hz so that predictions can
be obtained for any stimuli within that range. For the following
experiments we calculated predictions for 13 logarithmically
spaced frequencies between 125 and 1,000 Hz.

Figures 7A-C compares the results of the ANN-predictor
with those of the linear-decoder for an amplitude-modulated
tone with 400 Hz carrier frequency and a modulation rate of
2 Hz. Since amplitude modulation is encoded in the firing rate of
the ANE it is also exhibited in the output of the linear-decoder
(Figures 7A,C). On the other hand, the predictions from the
ANN (Figure 7B) showed only minor deviations at the on-
and offsets of each modulation cycle while largely compensating
the strong onset response introduced by ANFs adaptation.
Figure 7B shows only such predictions that the ANN classified
to be reliable. In case of the amplitude-modulated signal, the
frequency bands for which the ANN could predict ITDs are
dependent on the phase of the modulation.

Omitting unreliable predictions enables the calculation of
a general prediction across frequency bands. In case of the
linear-decoder, zero output can correspond to two conditions—
zero ITD and no signal. The employed method of omitting
unreliable estimates is especially important for applying the ANN
predictor to more complex signals that have several frequency
components because the omission enables the ANN to predict
ITDs without prior knowledge about the signal’s frequency
content. Figures 7D-F show examples of the ANN-predictor
applied to a linear chirp. To demonstrate the ability of the
predictor to follow changes both in frequency as well as in
ITD, an additional phase shift was applied to the left ear
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FIGURE 7 | (A) Results of the linear-decoder for an amplitude-modulated tone with 400 Hz carrier frequency and a modulation rate of 2 Hz presented with an ITD of
200 ms. AR showed strong modulation with the modulation frequency of the sound as well as an influence of ANF adaptation (B) Results of the ANN-predictor
predictor for the same signal as in (A). The ANN was able to correct for the variations conveyed by the ANF inputs and to provide a stable prediction within the
frequency bands from 250 Hz to 595 Hz. (C) The output of both, the ANN-predictor and the linear decoder for the amplitude modulated signal over time. Red: ANN
predictions for the 420 Hz channel which was the closest to the stimulation frequency. Black: Mean over all predictions that were classified to contain a useful signal.
Gray: Result of the linear-decoder in the 420 Hz frequency band. (D,E) Same plots as in (A,B) but for a linear, one-second long chirp ranging from 125 to 1 kHz where
the ITD changed from —0.4 to 0.4 ms. (F) The ANN-predictor was able to follow the change in frequency as well as in ITD, deviating from the true value only at the end
of the signal. (G-I) The ANN-predictor applied to a speech signal (German sentence “Britta gewann drei schwere Steine”) taken from the OLSA sentence test
(Wagener et al., 1999).

signal. This phase shift was chosen to be proportional to an
ITD-value that varied linearly from +300 to —300 wus. By
calculating a cross-frequency prediction for every time frame,
the ANN-predictor was able to follow the change in frequency
as well in ITD (Figure 7C) deviating from the true value only
in the last two time frames. As a final example, we show the
ANN-predictor applied to a speech signal with a static ITD of
200 ps (Figures 7G-I). Again, the across-frequency estimation,
combined with the omission of unreliable predictions allows the
ANN-predictor to offer an accurate estimate of the ITD for the
whole signal.

3. DISCUSSION AND CONCLUSION

In this study, we presented a novel binaural model and
used it to detect ITDs in arbitrary sound signals. In contrast
to previous binaural models that used a phenomenological
modeling approach (Pulkki and Hirvonen, 2009; Dietz et al,
2011), this study used biophysical neuron models based on
the current knowledge about the function of the mammalian
MSO. Some previous studies implemented similar SNN but
either used a simplified auditory periphery and thus limited
the application of the model to pure tones (Brughera et al,
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2013), based their model on topologies that disagree with newer
physiological studies (Glackin et al., 2010) or focused on ITDs in
the stimulus envelope (Wang et al., 2013). Using two different
extraction methods, we found that applying the opponent-
coding mechanism to the output of the model enabled a robust
extraction of ITDs even in complex signals.

3.1. Sensitivity of the Linear-Decoder

We have shown that a simple linear-decoder can detect ITDs
from the outputs of the left and right MSO models with a
sensitivity that reflects human performance in a discrimination
task and depended on sound frequency. The sensitivity was
mainly determined by the maximum firing rate of the MSO
at a given frequency. Our MSO neurons showed a peak at
approximately 300 Hz. To our knowledge, no such systematic
variation of firing rate with frequency has been described,
but Yin and Chan (1990) noted a similar characteristic in
the response of high-frequency MSO neurons. They recorded
the response of neurons that phase-locked to the envelopes
of amplitude-modulated tones and also showed a peak in
the response at a modulation rate of 300 Hz. In the model,
the responses were influenced by the subthreshold resonance
of MSO neurons, which is due to the dynamics of the
low threshold potassium current (Mikiel-Hunter et al., 2016).
This resonance would also explain the results by Yin and
Chan (1990). An explanation why no similar result in the
response of low-frequency MSO neurons has been described
is that these measurements are limited to responses derived
at the neurons’ best-frequency so that any systematic variation
between neurons with different best-frequencies could be
masked by variations in the overall response rate between
neurons.

It should be noted that the sensitivity of the linear-decoder
cannot be directly compared to results from psychoacoustical
experiments, as the model only accounts for the lowest stages of
the neuronal ITD-detection circuit in gerbils. In other words, it
was not the goal of this study to replicate any psychophysical data
per se, but rather to investigate the performance of the model
on its own. Nevertheless, the model could be easily tuned to
replicate psychoacoustic threshold data by adjusting the size of
the neuronal population to fit human or animal data.

3.2. Influence of Missing SBCs on the
Output of the Model

In the presented model network, MSO neurons received direct
excitatory input from ANFs, while in the physiological case, they
receive excitatory inputs from SBCs. SBCs have been found to
increase the precision of phase-locking in comparison to ANFs
(Dehmel et al., 2010; Kiinzel et al., 2011). The improvement
shown in this study is rather small when compared to the
large improvement that has been shown for GBCs (Joris et al.,
1994). In spite of this Improvement, the precision is not much
higher than that of the ANF model used in this study, and thus
no further improvement in phase locking seemed necessary. A
second function of SBCs could arise from non-monotonic rate-
level functions due to an inhibitory sideband (Kiinzel et al,
2011; Keine and Riibsamen, 2015). Including a model that

would reproduce the non-monotonic rate-level functions may
also change the output of the MSO model, specifically, the
behavior shown in Figure 5C. This change in the MSOs rate-
level function may also be compensated by the ANN, so that
the additional feature would not change the message of this
paper, leading to the decision to neglect the influence of SBCs.
It was also suggested that the slow GABA-ergic inhibition on
the level of the SBC may support sound localization of complex
sounds by acting as a gain control mechanism (Keine et al,
2016, 2017), this would be interesting to investigate in the
context of the presented model but is outside of the scope of
this paper.

3.3. Performance of the ANN-predictor

The model output showed a strong dependence on both
frequency and level of the input signals. Previous models that
employed the opponent-coding principle constructed the output
of their models to be self normalizing (Pulkki and Hirvonen,
2009; Takanen et al, 2014) or directly extracted the phase
from the left and the right input signals using gammatone
filters (Dietz et al., 2011). While both methods are valid in
view of a phenomenological modeling approach, they can not
be easily applied to a neuronal network as presented in this
study. We instead showed that a multilayer perceptron could
be trained to compensate for frequency and level dependencies
and to predict ITD values from the firing rate outputs of the
spiking neuron network. By using an ANN to compensate for
variability of the MSO output, this study neither makes any
assumption about the exact location in the ascending auditory
pathway, at which this compensation takes place, nor speculates
about the exact mechanism underlying this compensation. We
rather show that a very basic ANN containing only twenty
hidden nodes in one layer is able to perform the compensation.
The ANN-predictor was also shown to provide accurate ITD
predictions for complex signals and for time-variant ITDs,
even though it was trained on pure tones only. This suggests
that the necessary compensation is independent of context.
Psychoacoustic studies have shown that sound localization
performance depends on the duration (Tobias, 1959) and
bandwidth (Trahiotis and Stern, 1989) of the stimulus indicating
an integration of information across frequency and time. In
this study, the ANN predicted ITDs independently for each
frequency and time frame. While integration over the frequency
bands was implemented by calculating the mean prediction
across all frequencies, no integration over time apart from
the calculation of 30 ms averages was performed. Hence, the
prediction capability is expected to further improve if the output
of the model would also be integrated over time.

While the goal of this study was to evaluate the models’
performance on the detection of ITDs, the prime interest of
our binaural hearing lies in estimating the direction of a sound
source instead of the ITD value. Since low-frequency ITDs
between the ear canal signals provide a salient cue about sound
source direction, reliable prediction of the ITDs indicates that
the azimuthal sound direction may also be accurately predicted.
To that end, the ANN could also be trained to directly predict
azimuthal angles instead of ITDs.
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4. METHODS

4.1. Topology of the Model

Both MSO and GBC neurons were modeled using single-
compartment, Hodgkin-Huxley-type models simulated in
python using the package Brian (Goodman, 2009). MSO as
well as GBCs received direct excitatory input from ANF fibers,
which were modeled using the model of Zilany et al. (2014),
implemented in the python library cochlea (Rudnicki et al,
2015). Each population of neurons (ANE, GBC, MSO) always
consisted of 500 independent neurons in each hemisphere. The
frequency channel of the neuron population was set by selecting
the appropriate critical frequency of the peripheral hearing
model.

4.2. Spiking Models
While this study does not discuss the effect of single ionic
currents, it makes use of Hodgkin-Huxley-type models, as
simpler neuron models like the leaky integrate-and-fire neurons
neglect the influence of ion channel dynamics. Especially the shift
of best-ITD toward contralateral-leading ITDs has been shown
to be influenced by both low-threshold potassium (Myoga et al.,
2014) and hyperpolarizing ionic currents (Baumann et al., 2013),
both of which are included in this model.

MSO neurons were simulated using single-compartment,
Hodgkin-Huxley-type models. The dynamic of their membrane
potential V,, is given by the following equation:

v, 1
dt  Cp
+I+ Isyn,e + Isyn,i):

(Ileak + Ing + Ik (1)

where C,, is the membrane capacitance, I}, is the
leakage current, Iy, Ik, I are the sodium, potassium and
hyperpolarizing ionic currents and e, Isyn,i are the excitatory
and inhibitory synaptic currents respectively. All ionic currents
were defined as follows:

I, = §xamb"(Vm —E,), (2)

where g, and E, are the maximal conductivity and Nernst
potential for the respective ion species x. The gating variables
a™ and b" determine the channel kinetics. Equations for these
variables can be found in the original publication: The sodium
dynamics were implemented according to Rothman and Manis
(2003) and were corrected for a body temperature of 37°C
(k = 3T=22/10) To gain realistic spike shapes as well as a
spiking threshold, the activation kinetics had to be sped up by
a factor of four. Potassium currents were modeled with the
equations for the low threshold channels given by Khurana et al.
(2011) with the steady-state inactivation z, set to 0.4. The
hyperpolarizing currents were modeled using the equations for
dorsal MSO neurons from Baumann et al. (2013). We used a
membrane capacity of 70 pF (Couchman et al,, 2010) and the
ionic conductivities were adjusted to fit the steady state and peak
membrane resistances to values measured by Scott et al. (2005).
Use of these values resulted in spiking thresholds close to the
data published by Couchman et al. (2010). All parameters are

TABLE 1 | Parameters for the MSO model.

Symbol Value Symbol Value
Cm 70 pF E —70mV
Erest —55.8mV 9na 3.9uS
Ena 56.2mV 9K 650nS
Ex —90mvV 9n 520nS
Ep, —35mV Gleak 13nS
Ee omv

summarized in Table 1. GBCs and their synaptic inputs were
modeled using the neuron model with 40 non-depressing ANF
inputs as proposed by Rudniki and Hemmert (2017).

4.3. Synaptic MSO Inputs

Each MSO neuron received six excitatory inputs from ANFs of
each hemisphere. The excitatory post-synaptic currents (EPSCs)
were modeled as an alpha function:

‘- el—t/T
Isyn,e = T (Vin — Ee). (3)
e

Inhibition was provided via three GBC inputs per hemisphere.
The inhibitory post-synaptic currents (IPSCs) were modeled
using a bi-exponential function:

— e t/Ti2)

N f2 . (e_t/ri,l

& =i “(Vin — Ej). (4)

Ti2 — Til
Both, excitatory and inhibitory timeconstants were fitted to
recordings by Couchman et al. (2010) yielding values of 7, =
0.17ms and 7;; = 0.14ms, 7;, = 1.6 ms.

4.4. Sound Signals and Data Analysis
All sound signals were generated in Python at a sampling rate
of 100kHz as this sampling rate is required by the peripheral
hearing model (Zilany et al., 2014). In the case of the speech
signal, the sound was up-sampled from 44.2 to 100 kHz. Each
sound signal was gated using a 20 ms long raised-cosine function
and 20 ms of silence was attached to the beginning and the end
of the signal. The stimuli were presented at a sound pressure
level of 50 dBspy, if not stated otherwise. ITDs were defined as the
difference in the arrival times between the left and the right ears,
with positive values corresponding to right leading sounds. To
archive sub-sample ITDs, we generated the corresponding delays
between the two signals by applying a fast Fourier-transform
(FFT), adding the equivalent phase angles, which resulted from
the delays, and reverse FFT back to time domain signal.
ITD-rate functions were fitted using a modified Gaussian
function as shown in (5) were 7 is the ITD value, R,y the
maximum firing rate, W defines the width of the curve and B the
location of the maximum (best-ITD).

2

(z=B)
R(T) = Rpax-e W*  + Roﬁset (5)

Spiking data were analyzed using the Thorns toolbox for python.
Firing rates were always given as the average response of the
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whole population. To compensate for the intracochlear delay of
the inner ear model, we only considered action potentials arriving
25 ms after signal onset and up to 25 ms after the end of the signal.

4.5. Calculation of Just Noticeable

Differences

JNDs for our model were calculated by presenting two stimuli
with ITDs located symmetrically around zero—i.e., —7/2 and
7/2. The difference between the two ITD was denoted AITD .
We calculated independently, the difference in firing rate at both
hemispheres (AR ) for each of the presented signals. The two
values were then compared to each other. If the AR value for
the negative ITD signal was larger than the one for the positive
ITD signal, the trial was considered as a correct prediction. Each
AITD was presented 100 times and the fraction of correct trials
was calculated. To calculate the JND, we presented 20 logarithmic
arranged AITD in the range from 2 to 800 ws. The resulting
fraction correct values were then fitted with a weibull function.
The JND was defined as the ITD at which 75% correct predictions
were achieved.

4.6. The Artificial Neural Network Predictor
The ANN network was implemented using the Theano package
for Python. The ANN layout was that of a classic multilayer
perceptron containing an input layer with seven nodes, one
hidden layers with twenty nodes and an output layer with two
nodes (see Figure6). Both the hidden and the output layer
consisted of non-linear nodes with a tanh(x) activation function.

The predictor was designed to make predictions for every
30ms section of the signal. For this, average firing rates for
both MSO hemispheres and for the ANF of one hemisphere
were calculated in bins of 30 ms. The model firing rates of MSO
and ANF as well as the best frequency of these neurons were
given as the ANN inputs. To provide some history which can be
used to compensate for on- and off-sets, the predictor was also
provided with the firing rate in the previous 30 ms bin. Using this
information, the ANN gave a prediction of the ITD value in the
current bin and a classification whether the presented bin actually
contained a signal (signal exists).

The network was trained on the MSO model output from
2,000 different 300 ms long sine tones which were padded by
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