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If the scalp potential signals, the electroencephalogram (EEG), are due to neural “singers”

in the brain, how could we listen to them with less distortion? One crucial point is

that the data recording on the scalp should be faithful and accurate, thus the choice

of reference electrode is a vital factor determining the faithfulness of the data. In this

study, music on the scalp derived from data in the brain using three different reference

electrodes were compared, including approximate zero reference—reference electrode

standardization technique (REST), average reference (AR), and linked mastoids reference

(LM). The classic music pieces in waveform format were used as simulated sources

inside a head model, and they were forward calculated to scalp as standard potential

recordings, i.e., waveform format music from the brain with true zero reference. Then

these scalp music was re-referenced into REST, AR, and LM based data, and compared

with the original forward data (true zero reference). For real data, the EEG recorded in

an orthodontic pain control experiment were utilized for music generation with the three

references, and the scale free index (SFI) of these music pieces were compared. The

results showed that in the simulation for only one source, different references do not

change the music/waveform; for two sources or more, REST provide the most faithful

music/waveform to the original ones inside the brain, and the distortions caused by

AR and LM were spatial locations of both source and scalp electrode dependent. The

brainwave music from the real EEG data showed that REST and ARmake the differences

of SFI between two states more recognized and found the frontal is the main region that

producing the music. In conclusion, REST can reconstruct the true signals approximately,

and it can be used to help to listen to the true voice of the neural singers in the brain.

Keywords: brainwave music, EEG, reference electrode, reference electrode standardization technique (REST),

scale-free

INTRODUCTION

The electroencephalogram (EEG), one of the most useful technologies for brain research, has been
recommended for its non- invasiveness and high time resolution. However, the obtained EEG
information is almost always presented as complicated visual images or waveforms. If brain waves
could be heard after translation by a proper sonification rule, we may be able to directly “perceive”
brain activity and its variations using our auditory system. Some studies investigate that the rhythm
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of human breathing, movements, and even synchronization
follow the scale free law (Torre andWagenmakers, 2009; Hennig,
2014), which is shared with music (Manaris et al., 2005; Levitin
et al., 2012; Liu et al., 2013). In that way, the brain activities
recorded from the scalp may be due to neural singers in the brain.

To hear sound of the brain, many strategies are adopted
by researchers in different fields, from neuroscience to music
composition. Because the main frequency of EEG is so low that
it cannot be hear directly, the most basic method is parameter
mapping, which translates a few parameters of EEG to the
characteristic parameters of music. In some early works, for
example, the earliest attempt to hear brainwaves asmusic (Adrian
and Matthews, 1934) and a concert called “Music for Solo
Performer” (Rosenboom, 1976), the amplitude of the alpha waves
from EEG signals were utilized as the driving sources of the
musical sound. In the 1990s, various new music generating
rules were created from digital filtering or coherent analysis
of EEG (Rosenboom, 1997). To date, parameter mapping is
the most popular method and widely used (Rosenboom, 1976;
Hinterberger and Baier, 2005), because it not only provides a
sensitive way to detect the small variations in the amplitude
and frequency of brain waves that are ignored by conventional
EEG technique in real time (Väljamäe et al., 2013), but also can
indicate some essential features, i.e., the scale free law, followed
by both EEG andmusic (Wu et al., 2009). Another typicalmethod
was the event triggering, which utilizes specific events such as
interictal epileptic discharges as triggers for the beginning of
supposed music tones or other sound events (Baier et al., 2007).

In fact, more than one strategy is used for themusic generation
in real systems. The musical application of Brain Computer
Interface (BCI) can represent the connections between mental
states and music (Miranda and Brouse, 2005; Miranda, 2010; Wu
et al., 2010), and detect users’ current affective states significantly
(Daly et al., 2016). To express the activities of different brain
regions, several instruments were used to represent different
brain regions and that just make the brain like an orchestra
(Hinterberger and Baier, 2005); the voice or music for the
left and right channels were deduced by the activities of the
respective spheres (Wu et al., 2014). Deriving a quartet from
multi-channel EEGs with artistic beat and tonality filtering, we
can harmonically distinguish the different states of the brain
activities (Wu et al., 2013). The combination of EEG and fMRI
provided more information of the brain which can be heard (Lu
et al., 2012). Listen to the music or sound of the brain is a good
way for investigating the brain activities, but a crucial factor is
that the reality and accuracy of the sound we heard.

During EEG scalp recording, one of the most fundamental
points which influences the accuracy of data, is the reference
choosing, and that is a very attractive question in brain
electrophysiology research. Using an appropriate reference is
essential for data collecting and analyzing, because the potential
difference only can be measured between two points, the
objective electrodes and the reference (Geselowitz, 1998). Several
different types of reference, including the vertex reference (CZ),
the linked mastoids reference (LM), the average reference (AR),
and the left mastoid reference (L), are currently used for EEG
measurement. However, all of these references may lead to

an undesired temporal bias since no neutral point exists on
the body surface. Thus, the reference signal itself may involve
physiological dynamic processes that will inevitably influence
the data. Previous studies have examined the effects of reference
choice on EEG data using several methods, including the
estimation of the effect of head surface on recordings using AR
(Junghöfer et al., 1999; Yao, 2017), the examination of coherence
and reference signals (Nunez et al., 1997; Essl and Rappelsberger,
1998). To entirely resolve the problems involved in using
body surface points for referencing, a reference with neutral
potential is required. Theoretically, a point at infinity is far from
brain sources, and has an ideally neutral potential. In 2001,
Yao proposed a “reference electrode standardization technique
(REST)” to approximately transform EEG data recorded with a
scalp point reference to recordings using an infinity reference
(the software for REST transformation can be downloaded at
http://www.neuro.uestc.edu.cn/rest). In recent years, the REST
has been quantitatively validated through simulation studies
with assumed neural sources in both a concentric three-sphere
head model (Yao, 2001) and a realistic head model (Zhai and
Yao, 2004). These studies have shown that data referenced with
REST are more consistent with physiology than data referenced
using traditional scalp references. This has been shown using
a variety of techniques, including EEG spectral imaging (Yao
et al., 2005), EEG coherence (Marzetti et al., 2007), brain evoked
potentials (EP) and spatiotemporal analysis (Yao et al., 2007),
default network (Qin et al., 2010).

However, if we believe that brain activities are musical, the
influence of reference to scalp EEG recordings definitely will
affect the music of EEG. Especially, our scale free music is
supposed to be an objective reflection of the physiological signal,
we need to have the true objective EEG signal without non-
zero reference effect etc. In this work, we assume that the neural
activities are musical, for the EEG shows 1/f fluctuation (Leistedt
et al., 2007; Tomasi et al., 2017) the same as the pitch, rhythm
and consonance of the music (Manaris et al., 2005; Levitin et al.,
2012; Wu et al., 2015). Then we primarily use classical music as
the source of EEG, and forward calculate the scalp “potential”
of them, and to see what’s the effect of the reference on the
scalp potential, the music of the brain. In this study, the tested
reference are REST, average reference (AR), and linked mastoids
(LM), and the evaluation metrics is the relative error between the
true scalp potential/music and the re-reference potential/music.
Finally, a real data music was comparatively investigated.

MATERIALS AND METHODS

Music Materials for Simulation
Since the neural activities in the brain may be musical, we use
some classical music pieces as the EEG source to test the scalp
potential. The music piece Two Part Inventions (BWV 772),
which wrote by composer Johann Sebastian Bach (1685–1750),
was used as one-source and two-source signals for simulation.
The music was firstly translated from MIDI format to waveform
before using as the one source signal in the brain.

The next, the original MIDI file was separated into two
parts according to the polyphonic principle, translating into two
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series of audio waves, and then used as two source signals for
simulation. BWV772 was a typical polyphonic music style, which
contained two related independent melody and the two parts or
two voices were skillfully interweaving in the work according to
the polyphonic principle.

Another classical music piece used in the simulation was one
of the famous works of Wolfgang Amadeus Mozart (1756–1791),
Quartet No.14 in G for strings (K387), which was used as four-
source signals. A quartet was wrote for four instruments, thus
we can easily divide the work into four simultaneous parts in
the MIDI sequences, and then translate them into four channel
waveforms, finally put these signals in the head modal as four
sources. Figure 1 has shown 10 s of the MIDI and waveform
format files of these music pieces.

Simulation Process
Before the simulation, all the music pieces were prepared in
waveform format (the file name was ∗.wav) with sampling rate
44,100Hz, and it can be read into MATLAB as matrixes. The
music data were represented asM, which was a 1∗N, 2∗N or 4∗N
matrix for the three cases in Figure 1. Here N was the time point
length of the music and 1, 2, or 4 represented the number of the
music parts, also of the sources. For simulation, the forward EEG
calculation is given by

V = GS (1)

where G is the transfer matrix referenced at infinity, only
dependent on the headmodel, source configuration and electrode
montage; S is the distributed source; and V is the scalp EEG
recording with a reference at infinity generated by S. Scalp
noise is not considered in this model and is assumed to be
zero. To simulate a source in a brain model, the transfer matrix
(G) must be established by using the location information of
an electrode cap system. In this work, with known electrode
location, source locations, and a three-layer spherical head
model, the transfer matrixG can be obtained.With known source
temporal processes, matrix S, it can be further assumed that the
sources are all radial dipoles (Yao, 2000). Therefore, the signals
on the scalp (V) were obtained by forward modeling Equation
(1), and V was the standard signals with reference at infinity in
the simulation.

In this study, the head model for all cases was a three-
concentric-sphere model. The normalized radii of the three
concentric spheres were 0.87 (inner radius of the skull), 0.92
(outer radius of the skull) and 1.0 (radius of the scalp). The
normalized conductivities were 1.0, 0.0125, and 1.0 for the brain,
skull and scalp, respectively. The center of the spheres was
defined as the coordinate origin. The x-axis was oriented from the
origin to the direction of the right ear, and the y-axis was oriented
in the posterior–anterior direction. The z-axis was oriented from
the origin to the vertex.

With known simulated V with zero reference, or actual scalp
recordings V with one point such as Cz or left ear, etc. as
reference, it is easy to translate them to data with any one of
the three references: REST, average reference (AR), and linked
mastoids reference (LM) (Yao, 2001). Here, we adopt the free

software REST to do it (www.neuro.uestc.edu.cn/rest). And we
chose a classical 10-20 system with 32 electrodes.

The Comparison of Three References
To compare the influences of the REST, AR, and LM, we should
first calculate the standard scalp signals at different electrodes
according to the sources, and then translate into the three
references occasions. For the simulation, signals on the scalp
were the music with distortion by the references, so that we can
listen to these music pieces for further investigation. In order to
quantify the differences, relative error and correlation coefficients
between the standard signal and the three re-referenced signals
were calculated. Relative error demonstrated the relative value
difference between the estimated signals and the standard at
every time point, while the correlation coefficients can explain the
variations in a holistic view. For all the simulations in this study,
the head model was a three-concentric-sphere model mentioned
in section Simulation Process. The locations of sources were used
as another factor in the comparison. For one source situation, we
tested 300 locations, which picked up from the 3,000 locations
according to the positions of the headmodal proposed in transfer
matrix calculating (Yao, 2000). And for two sources situation, we
tested 380 pairs of locations that means each source was put in
20 locations, respectively. At last, 360 pairs of location for four
sources were performed.

Real EEG to Brainwave Music With
Different References
We also used real EEG data with different references to generate
brainwave music. The data was recorded in an orthodontic
pain control experiment (Huang et al., 2016). This study was
approved by the Ethics Committee of the West China Hospital
of Stomatology. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. In the experiment,
24 subjects (23 ± 5 years old) were right-handed, had mild
dental crowding. There were two groups (each group 12 subjects):
subjects group 1 (brain music group) were just listening the
brainwave music of their own; those in group 2 (control group)
without any interfering. The brainwave music used in group 1
was generated from the EEG before the subjects been treatment,
in that time they did not suffer the pain. The EEG data adopted
in this study were recorded on the second day after the initial
archwire placement for the subjects.

EEG signals were recorded by the SymTop EEG system
(SymTop Instrument, Beijing, China) with 16 Ag/AgCl surface
electrodes fixed in a cap at the standard positions according to
the 10–20 system. The EEG was referenced to the mean of the
signals recorded at the participants’ mastoids (LM). Impedances
were kept below 5 k�. EEG signals were sampled at 1000Hz,
0.3–45Hz band-pass filter. These parameters were used for all the
EEG recordings in this study. The data, recording in the second
day after the pain beginning, were chosen for translating into
music pieces to compare the differences of the three references.

The method for brainwave music generation in this paper was
proposed in 2013 (Wu et al., 2013), which deriving a quartet from
multi-channel EEGs with artistic beat and tonality filtering. EEG
data from multiple electrodes were first translated into MIDI
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FIGURE 1 | Music materials for simulation in MIDI and waveform format (10 s for example). (A) MIDI and waveform of Bach, BWV 772, with one voice. (B) MIDI and

waveform of Bach, BWV 772, with two voices. (C) MIDI and waveform of Mozart, K387, with four instruments.

sequences by scale free brainwave music method (SFBM) (Wu
et al., 2009), respectively. Then, these sequences were processed
by a beat filter which adjusted the duration of notes in terms
of the characteristic frequency. And the sequences were further
filtered from atonal to tonal according to a key defined by the
analysis of the original music pieces. The note which lasted for the
longest time in the music was determined as the main note of a
certain key, and after that the musical filter would chose the notes
which supported the key from the original sequences produced
by the EEG.

The original reference of the recorded EEG data was the LM
reference, and we changed it to the AR and REST reference
for comparison. The EEG of three different references were
translated into music pieces, respectively. The features of music,
such as pitch, tempo, note duration, scale free exponent of pitch,
and the weight of every electrode in the music generation were
calculated.

RESULTS

Single Source Simulation
The signal used as a single source in the simulation was BWV
772 (Figure 1A) that composed by Bach. The source was put in
300 different locations of the head modal, and I calculated the
relative errors between the standard signals and the re-reference.

The average relative errors of the 300 locations were 0.72 ±

2.88 (REST), 4.93 ± 16.69 (AR), and 4.39 ± 7.79 (LM). The
one way ANOVA were used to test the differences between the
three groups (p < 0.01). And the results of post-hoc test showed
significant differences between REST and AR, REST, and LM
(Tukey’s honestly significant difference criterion).

As an example, the coordinate of one source location was
(0.087, 0.859, 0.097), and marked by a red dot in Figure 2A.
Relative errors of the three different electrode references were
calculated compared to the standard signals and showed in
Figure 2B. In this location, the REST method showed a
significant smallest relative errors, about 0.049 ± 0.006; next was
the AR, 0.41 ± 0.05; and the LM was the highest, 1.52 ± 0.20,
averagely. Figure 2C showed correlation coefficients between the
standard signals and the three references, respectively. It was
obvious that all the three re-referencedmethods highly correlated
to the standard signal, especially the REST, the coefficients of
all the 32 electrodes were 1. For AR and LM, coefficient values
for several electrodes were −1, which means just a phase shift
during the process. For AR, its overbearing assumption, that
the average of the whole recordings would be zero, definitely
result part of the scalp positive and other part negative, for LM,
the electrodes with signals smaller than the average of the two
ears will be negative, and the larger one will be positive if the
actual value of LM is positive relative to infinity. Four music

Frontiers in Neuroscience | www.frontiersin.org 4 March 2018 | Volume 12 | Article 148

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wu Hearing the Sound in the Brain

FIGURE 2 | Comparison of the three reference electrode methods for the one source of BWV772 shown in Figure 1A. (A) The location of the source is (−0.65674,

−0.06352, 0.56552). The red dot indicates the projected position of the source on the scalp surface. (B) Relative errors of the music signals with three references

compared to the standard signals. (C) Correlation coefficients of three references with the standard signals.

pieces, including the standard signal, the signal from electrode
CP1 on the scalp of REST, AR, and LM, were provided in the
Supplementary Material. It was easy to find that the standard
signal and REST music sounded the same, while the AR and LM
music had small volume compared to the formers.

Two Sources Simulation
Testing 20∗19 pairs of sources, which were chosen from all
the 3,000 locations according to the head modal, I found that
the waveform/music showed distinct differences in the three
references. The average relative errors of the 380 pairs were 0.17
± 0.26 (REST), 2.29 ± 1.71 (AR), and 4.12 ± 3.18 (LM). The
one way ANOVA were used to test the differences between the
three groups (p < 0.01). And the results of post-hoc test showed
significant differences between REST and AR, REST, and LM,
AR and LM (Tukey’s honestly significant difference criterion).
Here two location pairs were shown because of their typical
distributions for the AR and LM references, respectively.

Figure 3 has shown the situation with source locations at (-
0.264, 0.352, 0.750) and (0.278, 0.457, 0.689), so that AR reference
was deflected from the standard signal mostly. The two sources
were marked as Source 1 and Source 2 in Figure 3A. The relative
errors of the three different electrodes were calculated compared
to the standard signals and showed in Figure 3B. For the location
pair, the REST method showed a significant smallest relative
errors, about 0.053 ± 0.060; next was the AR, 1.38 ± 0.96;
and the LM was the highest, 2.74 ± 2.14, averagely. Figure 3C
showed correlation coefficients between the standard signals and
the three references, respectively. In this situation of source pair,

it was obvious that REST was almost the same with the standard
signals; the coefficient of every electrode was 1. For AR reference,
most regions were accordant with the standard, but at electrode
T7 was 0.05, and P7 was 0.35. For LM reference, the electrodes,
T7 was 0.99, but P7 was 0.33, CP5 was −0.97, also showed a
low correlation to the standard signal. Four music pieces, lasting
30 s, from the electrode T7 on the scalp, including the standard
signal, REST, AR, and LM, were provided in the Supplementary
Material. To listen to these music, it can be found that in the
standard signal and REST music, the volume of channel two
was larger than channel one, while in AR music, channel one
was larger. LM music sounded a little larger volume than the
standard.

Figure 4 has shown the situation when the two source were
at (0.254, 0.124, 0.822) and (−0.678, −0.267, 0.473) so that
LM reference was deflected from the standard signal mostly.
The two sources were marked as Source 1 and Source 2 in
Figure 4A. For such location pair, the REST method showed
a significant smallest relative errors, about 0.036 ± 0.017; next
was the AR, 0.90 ± 0.67; and the LM was the highest, 4.13
± 2.24, averagely. These results have shown in Figure 4B. The
correlation coefficients between the standard signals and the
three references were shown in Figure 4C, which demonstrated
that the REST reference was the same as standard signal. The
LM reference dedicated low correlation coefficients in many
electrodes, especially in the occipital of the cap. For example, P8
was−0.89 andO1was−0.87. Compared to LM, the AR reference
was the almost high correlated with the standard, P8 of AR was
0.95, O1 was 0.93, but in FC5 and FC6, the correlation was down
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FIGURE 3 | Comparison of three reference electrode methods for the two sources of BWV 772 shown in Figure 1B. (A) The location of the sources are (−0.264,

0.352, 0.750) and (0.278, 0.457, 0.689). The red dots indicate the projected positions of the source on the scalp surface. (B) Relative errors of the music signals with

three references compared to the standard signals. (C) Correlation coefficients of three references with the standard signals.

to 0.85 and 0.71. By listening the music from the electrode P8
on the scalp, it was observed that channel one in LM music was
hardly been heard compared to the other three pieces.

Four Sources Simulation
Three hundred and sixty pairs of electrodes which were chosen
from all the 3,000 locations of the head modal were tested
in the four source simulation, and the average relative errors
were 0.07 ± 0.03 (REST), 0.77 ± 0.13 (AR), and 2.28 ± 0.75
(LM), respectively. The one way ANOVA were used to test the
differences between the three groups (p < 0.01). And the results
of post-hoc test showed significant differences between REST and
AR, REST, and LM, AR, and LM (Tukey’s honestly significant
difference criterion).

Figure 5 have shown an example of four source simulation
with the locations were (0.087, 0.859, 0.097), (0, 0, −0.076),
(0.342, 0.643, 0.473) and (0.495, −0.638, 0.320). These sources
were marked in Figure 5A. Relative errors were calculated
and the results were showed in Figure 5B: these of REST
method were lower (0.10 ± 0.10) than the others during all the
music pieces; while the AR method was 0.95 ± 0.81; the LM
method demonstrated highest variance (1.28 ± 1.04) among the
three in such source locations. In such situation, AR method
demonstrated a quite low coefficient (0.29) to the standard signal
in FP1. And REST method was also almost the same with the
standard signals; the coefficient of every electrode was 1. For LM
reference, the electrodes, O1 and O2, showed low correlations
(0.28 and 0.26) to the standard signal, while in FP1 it was 0.89.
Four music pieces from the electrode FP1 on the scalp, including
the standard signal, REST, AR and LM, were provided as the

Supplementary Materials. Listening to these music, it can be
found that in standard and REST music at FP1, the four parts
of the melody were not the same as the original music, for
channel three had been emphasized. However, in music of AR,
this channel was not so prominent.

Another situation of four sources, including (0.087, 0.859,
0.097), (−0.865, −0.030, −0.076), (0.495, −0.638, 0.320) and
(0.342, 0.643, 0.473) were represented in Figure 6. The four
sources were marked in Figure 6A as red dots. Relative errors
were calculated and the results were showed in Figure 6B, we can
find that these of RESTmethod were lower (0.05± 0.04) than the
others during all the music pieces; while the AR method was 0.52
± 0.41; the LM method demonstrated highest variance (3.34 ±

2.48) among the three in such source locations. In such situation,
LM reference demonstrated a quite low coefficient −0.85 and
−0.68 to the standard signal in PZ and P4, respectively. And
RESTmethod was also almost the same with the standard signals;
the coefficient of every electrode was 1. For AR reference, in all
the electrodes, showed high correlations (>0.8) to the standard
signal, while in PZ it was 0.98. In LM music from the electrode
PZ on the scalp, melody of channel four was decreased, and that
made the music sounded different from the others.

Brainwave Music From Real EEG
The brainwave music generated from real EEG recorded in the
pain control experiment was analyzed for the comparison of
the references. After EEG segments were translated into quartet
music pieces (Wu et al., 2013), there were totally 24 × 3 music
sequences from two group’s subjects with three references. The
music features, note pitch, note duration, tempo, scale free
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FIGURE 4 | Comparison of the three reference electrode methods for the two sources of BWV 772 shown in Figure 1B. (A) The location of the sources are (0.254,

0.124, 0.822) and (−0.678, −0.267, 0.473). The red dots indicate the projected positions of the source on the scalp surface. (B) Relative errors of the music signals

with three references compared to the standard signals. (C) Correlation coefficients of three references with the standard signals.

FIGURE 5 | Comparison of the three reference electrode methods for the four sources of K387 shown in Figure 1C. (A) The location of the sources are (0.087, 0.859,

0.097), (0, 0, −0.076), (0.342, 0.643, 0.473) and (0.495, −0.638, 0.320). The red dots indicate the projected positions of the source on the scalp surface. (B) Relative

errors of the music signals with three references compared to the standard signals. (C) Correlation coefficients of three references with the standard signals.
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FIGURE 6 | Comparison of the three reference electrode methods for the four sources of K387 shown in Figure 1C. (A) The location of the sources are (0.087,

0.859, 0.097), (−0.865, −0.030, −0.076), (0.495, −0.638, 0.320) and (0.342, 0.643, 0.473). The red dots indicate the projected positions of the source on the scalp

surface. (B) Relative errors of the music signals with three references compared to the standard signals. (C) Correlation coefficients of three references with the

standard signals.

exponent of pitch, and consonance fluctuation were calculated.
In MIDI file, the pitch range is from 1 to 127, and 60 represent
the middle C. The average pitch of REST was 49.6 ± 10.9; AR
was 49.5 ± 11.2; LM was 43.36 ± 10.7. And the differences were
significant between REST and LM (t-test, p < 0.01), AR and LM
(t-test, p< 0.01). However, the REST and AR were not significant
different. For all the three references, the differences of music
pitch between the two groups were not significant different. The
average note duration of REST was 0.71 ± 0.17 s; AR was 0.70
± 0.15; LM was 0.79 ± 0.18. The REST was significant different
from LM (t-test, p <0 .01), while AR was significant different
from LM (t-test, p < 0.01). The note duration of REST and AR
seem to be similar.

The scale free exponents of the music pitch are important in
our study. The results were showed in Figure 7. The exponents
of Group 1 were 1.25 ± 0.16 for REST, 1.28 ± 0.10 for AR,
1.32 ± 0.18 for LM. And for Group 2, REST was 1.38 ± 0.18,
AR was 1.45 ± 0.19, and LM was 1.46 ± 0.25. The trend for
both two groups was the same: REST < AR < LM. The REST
was near 1, which means a more “aesthetic” music, similar
with the EEG activities. A two way ANOVA showed significant
differences between Group 1 and 2, but no differences between
the three references and no interaction of the references and
groups. Furthermore, between the two groups, the differences
were significant with REST (t-test, p < 0.05) and AR (t-test,
p < 0.05); while the differences were not significant with LM
reference. By listening to the music pieces, it might be easier for
distinguishing the two groups when the REST was used.

FIGURE 7 | The scale-free exponents of the brainwave music pitch. The scale

free exponents of the music pitch were calculated by the Zipf’s law. Group 1

was the brainwave music group, while group 2 was the control group. For

REST and AR, there were significant differences between the groups. (t-test,

*p < 0.05).

The consonance fluctuation of these brain music pieces
were compared. To calculated the consonance fluctuation,
the consonance, which was quantified in terms of the pitch
frequency’s numerical proportions, at every time point were
calculated at first, then the curve of consonance can be obtained,
at last, the DFA(detrended fluctuation analysis) were used to
analyze the scale exponents of the consonance fluctuation. The
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more details can be found in my paper of 2015 (Wu et al., 2015).
The scale exponents of consonance fluctuation of REST was 0.85
± 0.05, AR was 0.86± 0.04, and LM was 0.88± 0.04. The results
of REST was significantly different from LM (t-test, p < 0.05),
however the differences between REST and AR, AR, and LM,
were not significant.

Furthermore, the weight of every electrode in the music
generation was analyzed. In the translating process of EEG to
music, after the data from all the electrodes were changed into
music respectively, the notes were selected by a musical filter
from the original sequences, so I analyzed the electrodes or
regions which were providedmore notes in themusic generation,
which was the weight of electrodes. At last, dividing the number
of notes originated from an electrode (weight of electrode) by the
total number of notes, I can obtain the probability of electrodes.
Figure 8 demonstrated the topographic map of the probability of
electrodes being represented for REST, AR, and LM references.
The main region of the music generation was the frontal of head
in both two groups, though the group 2 (control group) was more
concentrated to the frontal. For the distribution of probability,
the REST was significant different from AR at electrode P3, and
from LM at FP1, FP2, C4, P3, and P4 (t-test, p < 0.05). These
results mean that the frontal region may play an important role
in music generation.

The differences of electrodes’ probability between the two
groups for the three references were also tested respectively. The
results showed that for REST, there were significant differences
between Group 1 and Group 2 in electrodes FP1, FP2, and T6.
And for AR, FP1, FP2, and T6 were also different. Furthermore,
FP1, FP2, T6, C4, P3, P4, and O1 were significantly different for
LM reference.

DISCUSSIONS

We can listen to the brain activities through the brainwave
methods proposed previously; whether the music is real
reflection of the mental, it depends on whether the data is a
true represent of the soul. In the proposed work, I inspect the
distortion caused by non-zero reference in the scalp recordings
and the corresponding music by simulation and real data. This
study draws a picture for us that the “musical” dipoles in the
brain generating a piece of music sequence, and then how the
different references influence the music we can hear outside the
brain. The results of the simulation have shown that the music on
the scalp is varied accompanying with the number of the source
and distorted by different non-zero reference. When there was
more than one source, the scalp music distribution is based on
the sources’ locations. Therefore, it is important to use a proper
reference technology to minimum the errors between real values
and the scalp recording values when we plan to preserve the
musical information of the EEG.

From the View of Brain Signal
Some previous studies compared the three different references
method by using simulated dipoles and real EEG data. And
the results of simulated data showed that through all the
EEG frequency bands including theta, delta, alpha, beta, the

features, like power spectra (Trujillo et al., 2017), non-linear
features (Chella et al., 2017), the different network connectivity
structures, such as default mode network (Qin et al., 2010), the
EEG center of mass (Qin et al., 2017), sensor level functional
connectivity graphs (Huang et al., 2017), the large-scale brain
network (Lei and Liao, 2017), obtained from the REST were more
accurate than other references. For real EEG data, there were
significant differences existing in the statistics for REST and other
references, for example, the ERPs in the audiovisual stimulus,
REST changed in the experimental effect (Tian and Yao, 2013).
In this study, music is used as the signal source to provide a
new view of EEG analysis. Although there are many differences
between music waveforms and real EEG data, certain common
rhythm exists in the both, i.e., the scale free law (Levitin et al.,
2012; Tomasi et al., 2017).

The electrode density and head model are important factors
in the reference methods. The previous studies found that
the relative error values for Cz and LM references are not
noticeably affected by the EEG electrode density. And when
electrode density was increasing, the distortion induced by the
AR reference may increase (Chella et al., 2017). For the tested
montage with 21-channel or 71-channel, REST shows a more
reliable reconstruction than AR and LM either with a realistic
or a three-layer spherical head model (Liu et al., 2015). Head
model is crucial to REST, the more accurate the head model
is, the performance of REST is better, so realistic head model
usually show better results than the spherical model. However,
even in the case of a spherical headmodel, the REST performance
was better than the ones of AR and LM. In this study, 32-
channel and the three-concentric-sphere head model were used
for simulation, and they are the typical choices in current
practices.

The previous studies found that AR reference produced results
that were much closer to those of REST, when applied REST, AR
and LM references to both simulated and real resting-state EEG
data. In the proposed study, the application of the music through
the different referencemethods demonstrated the same tendency.
For most location pairs, REST shows the best, then AR showed
high correlation coefficients with the standard signals, and LM is
the last one. It means to get the true signal wave, we need to use
REST.

From the View of Brain Music
It is interesting when some music concepts and analysis are
introduced in the study. After the simulation, the music pieces
of three references were compared. There were no significant
differences between the music on the scalp when there is one
singer in the brain (the single source case). Two parts of themusic
would be restructured on the scalp when there are two singers
in the brain, and the variations of the scalp music compared to
the inner actual music depend on the position of the two singers
and the reference adopted. However, REST is always much better
than LM and AR. For four singers in the brain, the phenomena
is similar as two singers. Based on simulation, we can recognize
the melody because every voice has its own regular. That means
themusical conceptionmay be an inspiration of the neuroscience
data analysis.
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FIGURE 8 | The topographic map of the probability of electrodes being represented for REST, AR and LM references. The topographic map was the average

probability for 24 subjects, group 1 (12 subjects) was the brainwave music group, group 2 (12 subjects) was the control group.

Using music as the source signal have two main advantages.
First, it can be recognized very easily through our auditory
way when there are some varieties of the original signals.
Compared with other generated signals, such as random signal,
for simulation, music can be heard when it is analyzed. The
distorted music parameters, pitch, volume, tempo, melody, and
harmony can be preserved. Second, for two or more sources, it is
reasonable that using signals of different music parts as sources.
Because each part or voice in the music has its own melody line,
but when all of the parts are gathered, they become an integrated
work. That is similar to the brain. There may be several active
centers or network hubs working separately, and all of them
constructing the brain. In the simulation, the comparison of the
music parts reveals that the influence of the reference choice
when the brain having two or more active sources in a novel
perspective.

However, music waveform signals are quite different from
real EEG in both frequency and amplitude. To investigate the
influence, music pieces may be translated to signals which have
the same range of frequency and amplitude of EEG, according to
the method proposed in my 2009’s paper (Wu et al., 2009). Using
these generated EEG as sources for simulation, the comparisons
are performed with the three references by calculating the relative
errors and coefficients. The details of results are shown in
Supplementary Materials. The results indicate that the REST
causes the least distortion of the sources, then is AR, and the last
is LM. When the EEG sources are put in the same location with
the music waveform sources, the coefficients’ distributions in the
two situations are quite similar (see the figures in Supplementary
Materials). However, when using EEG or EEG-like signals as
sources, we can’t identify the differences between the references
by just listening, because the method in Wu’s paper (Wu et al.,
2009) is mainly for EEG to monophonic music, how to translate
EEG into two or four channels is still an open problem.

For Real Data Exploration
The real EEG data were used as the materials for generating brain
music pieces, and the references have caused some differences
in some musical parameters. In the exploration, EEG data from
two groups were translated into four voices music which is called
quartet, according to twomain principles: the first is the scale free
law that obeyed by both EEG and music (Wu et al., 2009), and
the second is a music tone filter method that finding important
note and obtaining a sequence with certain tonality (Wu et al.,
2013). The references have influenced the musical melodies, for
parameters of music represents the features of EEG data. During
music generation, EEG amplitude can be indicated by note pitch
and EEG period are related to note duration, therefore the data
accuracy was one of the most important factors for the data
sonified expressing and analyzing. Furthermore, the brain quartet
are consisting of notes which picked up by the music tone filter
from certain electrodes. The references have also influenced the
effects of music filter, making a various note distribution for the
quartet. All of these can result in the differences of pitch and
duration among the three references.

The scale free exponents of the music are the crucial property
of data analyzing, for that is the bridge and connection between
EEG andmusic according to the translation. First, it is interesting
that music of REST’s exponents are the most close to 1, the
next is AR and the last is LM. Previous studies revealed that
scale free, of say the 1/f distribution, is a natural feature of
human, from the body movement (Torre and Wagenmakers,
2009) to ion channel (Lowen et al., 1999), and brain activity
is no exception (Freeman and Breakspear, 2007; Palva et al.,
2013). In music, scale free law exists in pitch, tempo, rhythm,
and even harmony. The brain music obtained in the experiment
maintains such property during the translation from EEG to
music note. If it is believed that the brain music indicates the
intrinsic rhythm of brain, REST has provided the most faithful
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signals on the scalp because of its most standard exponents.
Second, the exponents of scale free are sometimes regarded as
an index for states identification, for example, the sleep stages. In
our experiment, the difference between two groups are identified
by REST and AR, not the LM. Such results reflect the effects
of references on comparing data. Consequently, more accurate
data can turn out more useful and meaningful results in data
analysis.

The weight of every electrode which were showed in Figure 8

demonstrate the proportion of information provided by each
electrode in the music. The filtering criterions, determining
which electrodes to be expressed, are derived from the music
theory. These criterions make the most stable rhythm and
important activities to be represented in the melody. The
electrode’s weight of three references are different. Although both
the brain music group and control group are focused on the
frontal region, the distribution of REST can be found with more
expressing of the central and occipital region especially in group
1. Such variability makes the identification of the two groupmore
easily.

CONCLUSION

The simulation of music as signal sources in the brain indicates
that the references deduce the different scalp music which
has been heard. The REST showed the smallest relative errors
compared to the AR and LM references, and the highest
correlation coefficients with the standard sources. The results
of real EEG data proved that REST can provide more accurate
and natural topographies on the scalp to represent the inner

activities. As an inspiration of the neuroscience data analysis,
hearing sound in the brain reveals some essential properties with
the help of REST.
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