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Obesity continues to be one of the major public health problems due to its high

prevalence and co-morbidities. Common co-morbidities not only include cardiometabolic

disorders but also mood and cognitive disorders. Obese subjects often show deficits

in memory, learning and executive functions compared to normal weight subjects.

Epidemiological studies also indicate that obesity is associated with a higher risk

of developing depression and anxiety, and vice versa. These associations between

pathologies that presumably have different etiologies suggest shared pathological

mechanisms. Gut microbiota is a mediating factor between the environmental pressures

(e.g., diet, lifestyle) and host physiology, and its alteration could partly explain the

cross-link between those pathologies. Westernized dietary patterns are known to be

a major cause of the obesity epidemic, which also promotes a dysbiotic drift in the

gut microbiota; this, in turn, seems to contribute to obesity-related complications.

Experimental studies in animal models and, to a lesser extent, in humans suggest

that the obesity-associated microbiota may contribute to the endocrine, neurochemical

and inflammatory alterations underlying obesity and its comorbidities. These include

dysregulation of the HPA-axis with overproduction of glucocorticoids, alterations in levels

of neuroactive metabolites (e.g., neurotransmitters, short-chain fatty acids) and activation

of a pro-inflammatory milieu that can cause neuro-inflammation. This review updates

current knowledge about the role and mode of action of the gut microbiota in the

cross-link between energy metabolism, mood and cognitive function.
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INTRODUCTION

The microorganisms inhabiting the mammalian’s intestinal tract (collectively termed microbiota)
include bacteria, viruses, protozoa, archaea, and fungi, with bacteria representing a majority (Gill
et al., 2006; Xu et al., 2007). This is an extremely complex ecosystem; in particular, the human
adult gut microbiota is estimated to comprise over 1000 different bacterial species with more
than 7000 strains (Ley et al., 2006a; Qin et al., 2010). The collective genome of the microbiota
(termed microbiome) exceeds the human genome’s size and is considered to act as a virtual organ
that participates in host physiological functioning (Wang and Kasper, 2014). Gut microbes play
a role in human physiology through several mechanisms including their contribution to nutrient
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and xenobiotic metabolism (e.g., synthesis of vitamins, digestion
of oligo, and polysaccharides, drugs, etc.) and to the regulation of
immune and neurodendocrine functions (Bäckhed et al., 2005).
Some of these effects are mediated by products of bacterial
metabolism, such as short-chain fatty acids (SCFA), including
propionate, butyrate or acetate, which influence the gut barrier,
the inflammatory tone and the metabolic homeostatic control in
different tissues (Topping and Clifton, 2001).

A large number of cross-sectional studies report that
alterations in the intestinal microbiota (termed dysbiosis)
are associated not only with diseases affecting the intestine
like inflammatory bowel disease (IBD) but also with extra-
intestinal organs and systems. These include, but are not
restricted to metabolic diseases [e.g., type-2 diabetes (T2D)
and obesity], autoimmune arthritis, and psychiatric disorders
(Cenit et al., 2017; Singh et al., 2017). Although it is still
unclear whether the general features of a healthy microbiota
can be defined at population level, disease seems to be
accompanied by shifts in an individual’s normal microbiota
toward a dysbiotic composition which could aggravate disease
pathogenesis, creating a vicious circle, though this is not
completely proven. In physiological conditions, by contrast,
the gut microbiota co-exist in mutualistic symbiosis with the
host, contributing to the body’s homeostatic control, through
the regulation of immune, endocrine and neural pathways and
functions (Romani-Perez et al., 2017). Obesity is a multifactorial
condition that depends on intrinsic individual factors as
well as on environmental variables. However, the dramatic
increase in obesity over the last 40 years is considered to
be a consequence of lifestyle changes such as a sedentary
lifestyle and high-fat and high-carb/sugar diets. Furthermore,
unhealthy dietary habits have been linked to alterations in
the intestinal microbiota that could also contribute to the
pathophysiology underlying obesity and its metabolic and
psychological complications (Agusti et al., 2017; Portune et al.,
2017). In this review, we focus on current knowledge of the
role of the microbiota in regulating the gut-brain axis and its
influence on mood and cognitive impairments linked to obesity.
We also analyze the mechanisms through which the microbiota
can alter the gut-brain communication, emphasizing effects on
the hypothalamic pituitary adrenal (HPA)-axis, immune system
and neurotransmission.

THE GUT-BRAIN AXIS

The gut-brain axis is a complex bidirectional communication
system (see Figure 1), mediated by hormonal, immunological
and neural signals, between the gut and the brain (Rhee et al.,
2009). This is also a route through which the gut microbiota may
impact on neurodevelopmental processes and brain functions.
Dysregulation of the gut-brain axis communication is associated
with metabolic diseases (Daly et al., 2011; de Lartigue et al.,
2011; Grasset et al., 2017) and psychiatric and comorbid non-
psychiatric disorders (Maes et al., 2007, 2008; Cryan and
O’Mahony, 2011; Grenham et al., 2011; O’Mahony et al., 2011).
In turn, these disorders are also frequently associated with
alterations in the gut microbiota composition or function, which

could also contribute to disruption of the molecular dialogue
existing within the gut and brain.

The gut-brain axis is formed by the central nervous system
(CNS), the enteric innervation that includes extrinsic fibers of
the autonomous nervous system (ANS) and intrinsic neurons
of the enteric nervous system (ENS), the HPA-axis and the
intestinal microbiota. The extrinsic innervations of the GI tract
connect the gut with the brain through vagal and spinal fibers,
while the brain sends efferent sympathetic and parasympathetic
fibers to the GI tract (Grenham et al., 2011; Browning and
Travagli, 2014; Foster et al., 2017). The HPA-axis is part
of the limbic system and the main regulator of the stress
response. Also, the HPA-axis regulates different body processes
including bowel function during digestion. Corticotrophin-
releasing factor (CRF) released by the HPA-axis and different
members of its family (e.g., CRF, urocortin 1, urocortin 2,
and urocortin 3) are known to affect gastrointestinal tract
function: bowel motility (Kihara et al., 2001; Czimmer et al.,
2006), bowel permeability (Söderholm et al., 2002; Zheng
et al., 2013) and bowel inflammation (Dinan et al., 2006;
Gill et al., 2006). Other body processes regulated by the
HPA-axis are immune functions, emotions and mood (Tsigos
and Chrousos, 2002). This is supported by different studies
demonstrating that activation of the stress response via the
HPA-axis leads to the secretion of glucocorticoids (GCs), which
in turn modulate immunity (Baschant and Tuckermann, 2010;
Zen et al., 2011), as well as by studies showing that mood
disorders are commonly associated with dysregulation of the
HPA-axis (Nemeroff et al., 1984; Rubin et al., 1996; Deuschle
et al., 1997). Stress is also linked to gastrointestinal diseases
like IBD or colitis (Reber, 2012). There are several mechanisms
by which gut microbiota may contribute to regulating the
communication and function of this axis, including the ability
to modulate immune mediators (e.g., cytokines and chemokines)
and vagal nerve signaling and to generate or regulate the
synthesis of neuroactive metabolites and endocrine secretions
(e.g., glucocorticoids, neuropeptides, etc.) or their receptors
(Moloney et al., 2014). For example, Bravo et al. (2011) observed
that the administration of L. rhamnosus JB-1 altered mRNA
GABA receptors in different brain regions in association with
attenuation of stress, anxiety and depressive-like behaviors in
normal healthy animals. They identified the vagus nerve as a
constitutive modulator of the communication pathway between
gut microbiota and brain when vagotomized animals could not
show neurochemical and behavioral effects. Desbonnet et al.
(2008) treated Sprague-Dawley rats for 14 days with a strain of
B. infantis. The administration of this bacterium to naive rats
significantly attenuated interferon (IFN)-γ, tumor necrosis factor
(TNF)-α and interleukin (IL)-6 secretion following mitogen
stimulation of whole blood immune cells. They also observed
a marked increase in plasma concentrations of tryptophan and
kynurenic acid, as well as a reduction in 5-HIAA concentration
in the frontal cortex and a decrease in DOPAC in the
amygdaloid cortex in the Bifidobacterium-treated rats when
compared to controls. These results indicate that gut microbiota
modulation could produce changes in immune, neuroendocrine
and monoaminergic activity.
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FIGURE 1 | Interplay between the microbiota and the gut-brain axis in obesity and associated mental disorders. Gut microbiota contributes to regulating the gut-brain

axis and maintaining health, while its alteration (dysbiosis) due to lifestyle factors (unhealthy diets, stress) is related to obesity and its adverse consequences on mood

and cognition. A healthy dietary pattern (e.g., rich in fibers, vegetables, etc.) is thought to increase gut microbiota diversity and, thereby, contribute to epithelial gut

integrity, immune homeostasis and normal CNS function through the gut-brain axis. On the contrary, Western-dietary patterns (rich in simple sugars and saturated fat)

seem to reduce microbial diversity, promote inflammation and contribute to the leaky gut syndrome; this facilitates the translocation of components of Gram-negative

bacteria, which increases the peripheral inflammatory tone and produces neuroinflammation and alterations in the CNS. The use of dietary strategies (e.g., probiotics,

healthier diets rich in fiber, prebiotics, etc.) could beneficially impact on obesity and mental complications, via restoration of a healthy microbiota and its regulatory role

in the gut-brain axis.

The Enteric Innervation
The functionality of the GI tract (gut motility, secretory function,
fluid fluxes or blood flow) is regulated by the integrated action of
both CNS and the ENS. While the CNS controls gut functions
through the extrinsic innervations of the ANS, the ENS may
act autonomously and independently of the brain. The extrinsic
innervations consist of vagal (first order cell bodies in nodose and
jugular ganglia) and spinal (first order bodies in thoracolumbar
and lumbosacral dorsal root ganglia) afferents which project
centrally to the brainstem or spinal cord for transmitting
sensory information from the gut to the CNS (Brierley and
Linden, 2014). In return, the CNS sends both sympathetic
efferents, which mainly induce inhibitory effects on GI tract
and parasympathetic efferents that exert both inhibitory and
excitatory actions (Browning and Travagli, 2014). Although the
ENS receives extrinsic efferent fiber endings, it is also capable of
acting as an independent nervous system. In fact, it is composed
by millions of neurons including intrinsic primary afferent
neurons (IPANs), which are sensory neurons, interneurons and
motor neurons contained in the myenteric and submucosal
plexus (Wood et al., 1999). These different neuronal populations
work together to regulate several aspects of GI function (Furness
et al., 2014).

The enteric innervations are separated from the intestinal
luminal content, including the microbiota, by the epithelial cell

barrier, the mucous layer and ion and fluid secretions (Saulnier
et al., 2013). Nevertheless, study models demonstrated that the
gut microbiota communicates with the enteric innervations via
several possible routes that may involve intermediate interactions
with immune cells and enteroendocrine cells (EECs) (Browning
and Travagli, 2014). For example, EECs produce gut hormones
(e.g., cholecystokinin (CCK) or glucagon-like peptide 1 (GLP-
1) in response to bacterial stimuli, which also modulate enteric
innervation activity; in turn, enteric neurons synapse onto EECs
allowing mutual feed-back. Therefore, the microbiota could
influence the ENS through its direct interaction with EEC
functioning. Similarly, the ENS could sense immune signals
primarily triggered by gut microbiota-immune interactions or
sense the microbial molecular environment and then activate an
immune response that could modify the microbiota.

Although we have limited understanding of how the
intestinal microbiota influences the gut-brain axis through neural
pathways and, therefore, the CNS, different study models have
confirmed such interactions. The most direct evidence of the
gut microbiota’s role in regulating the nervous systems comes
from comparing GF animals to conventionally colonized ones.
Dupont et al. (1965) demonstrated that the architecture and size
of the myenteric plexus were abnormal in GF rats. Anitha et al.
(2012) showed that in the myenteric plexus of the colon and in
the distal ileum there was a decrease in the number of nitrergic
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neurons in 4-week-old GF mice. The vast literature comparing
GF animal models to colonized models also provides evidence
that the microbiota can influence ENS development (Hyland and
Cryan, 2016). Furthermore, the gut microbiota is also involved
in gut barrier maintenance, since GF animals present a slower
turnover of epithelial cells (Abrams et al., 1963), which could also
impact on the translocation of molecules to the lamina propria
and the blood stream, and the signaling process from the gut to
the brain and its function.

In line with these findings, recognition of the intestinal
microbiota by Toll-Like Receptors (TLR’s) is essential to promote
epithelial cell proliferation and regulate innate immunity
(Rakoff-Nahoum et al., 2004). TLRs are also expressed by
enteric neurons in the GI tract and, therefore, constitute
signalingmolecules that couldmediate the cross-talk between the
microbiota and the ENS (Koppel and Balskus, 2016). TLR2 and
TLR4 play an important role in enteric innervations and small
intestinal function. Cario et al. (2004) showed that redistribution
of the tight junction protein zonula occludens-1 (ZO-1) was
directly elevated by TLR2 activation, suggesting that TLR2 may
enhance epithelial integrity. TLR2 is also involved in regulating
GI physiology and enteric neurochemistry, since TLR2 knock-
out mice present a reduction in the distal ileal neuron number,
glial cells and myenteric ganglion area, as well as structural
abnormalities in the submucosal plexus (Brun et al., 2013).
Similar alterations were observed in TLR4 knock-out mice
(Brun et al., 2013), showing a reduction in in vivo transit
coupled with important changes in neurochemistry (Anitha
et al., 2012). Recently, TLR2 has been shown to play an
important role in the serotonergic system in the small intestine.
Latorre et al. (2016) showed that TLR2 activation inhibits
the serotonin transporter (SERT), thereby increasing serotonin
(5-HT) contents in the small intestine. Dysregulation in the
serotonergic system has been related to chronic inflammatory
diseases such as intestinal bowel diseases (IBD) (Mawe and
Hoffman, 2013) or diarrhea (Spiller, 2008). Besides, TLR2 can
be activated by dietary saturated fatty acids (Hwang et al., 2016)
and by HFD-induced intestinal dysbiosis, leading to overgrowth
of potential pathogens like lipopolysaccharides (LPS)-producing
Proteobacteria, as reported in our previous study (Moya-Perez
et al., 2015; Agusti et al., 2017).

Central Nervous System (CNS)
The communication between CNS and gut is mediated by
secretion of signaling molecules by neurons, immune cells and
enterochromaffin cells (ECs), all of which are regulated by
the brain and strongly influence the gut microbiota (Carabotti
et al., 2015). The CNS, consisting of the brain and spinal
cord, is responsible for integrating and coordinating all bodily
information. As explained previously, there is a bidirectional
transmission of information from the gut to the CNS, and from
the CNS to the gut, via afferent and efferent neural, endocrine,
and immunological signals between the CNS and the GI system
(Romijn et al., 2008). This communication is classically known
to regulate energy balance through satiety signals, among other
factors (Wang and Kasper, 2014).

Central Regulation of the Energy Balance
The CNS integrates environment and internal signals with
information about energy needs and availability to produce a
behavioral response including satiation signals, which induce
fullness signals to stop eating (Woods andD’Alessio, 2008).Many
of these satiation signals are mediated by peptides produced
by EECs from the wall of the GI tract and transported from
the blood to the brain, although some of these peptides are
also produced in the CNS (Wang and Kasper, 2014). Many of
the satiety signals are anorexigenic hormones such as peptide
YY (PYY), GLP-1, gastric inhibitory neuropepetide (GIP), CCK,
oxyntomodulin (OXM), and prouroguanylin (Pimentel et al.,
2012). These signals together with those of neuropeptides,
such as pro-opiomelanocortin (POMC) and cocaine and
amphetamine regulated transcript (CART), are activated during
the postprandial period. However, during the fasting period,
orexigenic hormones like ghrelin are released mainly in the
stomach and excreted to the peripheral circulation (Müller et al.,
2015). Also, different neuropeptides like agouti-related protein
(AgRP) and neuropeptide Y (NPY) are activated in hypothalamic
neurons during fasting to produce a feeling of hunger and a
behavioral response: i.e., to start eating (Schwartz et al., 2000;
Leibowitz and Wortley, 2004; Valentino et al., 2011). Therefore,
changes in ingestive behavior in response to CNS appetite control
could influence the nutrient availability for the gut microbiota
and subsequently their composition. In turn, modulation of
gut microbiota and its activity by dietary intervention can also
modify satiety signals. When gut bacteria metabolize prebiotics
like oligofructose (OFS) or inulin, they produce SCFAs that can
increase the gene expression of GLP-1 (Delzenne et al., 2005)
and PYY (Karaki et al., 2006) in the intestinal tract inducing
satiety. Of the SCFAs, butyrate acts as the main energy source for
colonic cells and strengthens the gut barrier function and exerts
anti-inflammatory effects (Andoh et al., 2003). Sodium butyrate
administration also exerts an antidepressant effect related to
the increased expression of brain-derived-neurotrophic factor
(BDNF), which is diminished in mood disorders (Wei et al.,
2015). Therefore, SCFAs generated by the microbial metabolic
activity in the intestine are demonstrated to exert potential
beneficial effects acting via the gut-brain axis in different study
models. Bile acids also show a role in the regulation of the
metabolic pathway through its binding to specific receptors like
Farnesoid X receptor (FXR) involved in cholesterol production,
glucose metabolism and bile acid synthesis or TGR5 (G-protein
coupled receptor specific for bile acids) involved in energy
expenditure in brown adipose tissue, obesity prevention and
insulin resistance. Besides, microbiota is involved in the synthesis
of bile acids and converts primary bile acid in secondary bile
acids. This is evident in GF animals that show low bile acid
diversity than its controls (Greiner and Backhed, 2011; Tomkin
and Owens, 2016).

Central Regulation of the Peripheral Immune System
The CNS can regulate the transcription of peripheral immune
response genes (Dantzer et al., 2008) via HPA-axis or via
sympathetic nervous system (SNS) (McEwen, 2007). This
mechanism enables the CNS to modulate the activity of internal
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physiological processes to optimally adapt to external conditions,
like a threat in the environment. In this situation the HPA-axis
produces GCs, which in the periphery modify metabolic and
developmental processes, and suppress the pro-inflammatory
and antiviral immune response in the short-term (Besedovsky
et al., 1986; Berkenbosch et al., 1987; Sapolsky et al., 1987; Rhen
and Cidlowski, 2005). The SNS uses another neural pathway that
enables the CNS to modulate the innate immune system through
the nerve fibers that release noradrenaline (NA) into the primary
and secondary lymphoid organs, involved in haematopoiesis and
interactions between antigen-presenting cells and lymphocytes
(Nance and Sanders, 2007). The stored adrenaline can be released
to the systemic circulation from the adrenal glandule stimulated
by the nerve fibers from the SNS, suppressing type I interferon-
mediated antiviral response (Collado-Hidalgo et al., 2006) and
upregulating the transcription of pro-inflammatory cytokines
(Cole et al., 2007).

Neural and neuroendocrine signals like serotonin, dopamine
or cytokines can also be secreted into the gut lumen by neurons,
immune cells and ECs. For example, an intrathecal injection
of TRP (analog of thyrotropin-releasing hormone) into the
cerebrospinal fluid (central injection), which regulates the stress
response to cold temperatures, produces a stomach lumen
secretion of serotonin, possibly mediated by vagal activation of
gastric ECs (Stephens and Tache, 1989; Yang et al., 1992). Another
example is the secretion of tryptase and histamine (Mast-cell
products) into the human jejunum in response to stress produced
by cold pain. Other mast-cell products could be secreted into
the gut lumen, including serotonin and corticotrophin-release
hormone (CRH) (Santos et al., 1998).

Immune Modulation of the CNS
Some studies that have associated gut infections with CNS
alterations. For example, chronic infection with Helicobacter
pylori produces anxiety-like behaviors in mice, induces structural
and functional changes in the ENS, as well as changes in feeding
patterns increasing the frequency and decreasing the quantity
of food consumed. The latter are associated with a decrease in
POMC expression in arcuate nucleus and increases of TNF-α
in median eminence (Bercik and Collins, 2014). Campylobacter
jejuni infection also produces anxiety-like behaviors without
increasing inflammatory markers. In the latter case, the gut-brain
communication might be mediated through activation of vagal
ascending pathways (Goehler et al., 2008). Chronic infection
with Trichuris muris also induces anxiety-like behavior in mice,
decreased BDNF expression in the hippocampus, accompanied
by a mild increase of TNF-α and IFN-γ as well as kynurenine
in plasma. Administration of Bifidobacterium longum restored
the behavioral alterations and BDNF but not the cytokines
and kynurenine, proving that intervention in the gut modifies
behavior (Bercik et al., 2010).

Gut pathogens, such as enterohaemorrhagic E. coli
O157:H7, have been shown to have binding sites for enteric
neurotransmitters, NA and adrenaline (ADE), on their cell
surface, whose binding activates their pathogenic features and
the use of adrenergic antagonists blocked this activation (Hughes
and Sperandio, 2008). This suggests that the communication

between enteric neurotransmitters (produced by the host) and
the gut microbiota could be involved in gut infections and the
inflammation associated to this process.

Impact of Gut Microbiota on CNS: Role of

Neurotransmitters
Brain is the main modulator of gut homeostasis, controlling the
motility, secretion of acid, bicarbonates and mucus (Carabotti
et al., 2015). Studies have investigated how microbiota impacts
the CNS, both, physiologically and pathologically (see Figure 1).
The impact of gut microbiota on the CNS and behavior has
been demonstrated in intervention studies with probiotics or
antibiotics in rodents and, in a few cases, in humans. For example,
some probiotic strains belonging to the genera Bifidobacterium
and Lactobacillus have been reported to improve mood and
reduce anxiety symptoms in patients with IBD and chronic
fatigue syndrome (Logan and Katzman, 2005; Shadnoush et al.,
2013). Also, intestinal dysbiosis has been linked to intestinal and
systemic inflammatory tone, which is a mechanism contributing
to mood disorders such as depression (Dowlati et al., 2010) in
inflammatory conditions such as Irritable Bowel Syndrome (IBS)
(Dai et al., 2013) and presumably in obesity. The mechanisms
by which probiotics could mediate these effects include their
possible immune regulatory properties explained above and their
ability to modify neurotransmission. 5-HT is a monoamine
neurotransmitter produced from tryptophan, ingested with the
diet. This neurotransmitter is well known for its role in cognition
and mood in the brain. However, 95% of 5-HT is produced in the
gut, specifically by ECs of the mucosa and in the nerve terminals
of ENS neurons. The classical functions assigned to 5-HT in the
GI tract are related to its participation in GI motility, secretion
and pain perception. 5-HT also has neuroprotective, trophic
factor actions and pro-inflammatory actions in the gut (Mawe
and Hoffman, 2013; Moloney et al., 2014). The regulation of
mood and cognition depends on the availability of tryptophan on
the CNS, which in turn depends on the availability of peripheral
tryptophan, which is altered in GF mice. Clarke et al. (2013)
demonstrated that the absence of gut microbiota in GF mice
in early-life increased plasma tryptophan, suggesting a possible
humoral pathway by which the microbiota could influence CNS
serotonergic neurotransmission. Also, they observed an increase
in 5-HT and its main metabolite, hydroxyindoleacetic acid, in
hippocampus compared to normal animals. Furthermore, the
colonization of the GF animals post weaning was not sufficient
to reverse the CNS neurochemical consequences in adulthood
due to a lack of microbiota in early life, even though the baseline
values of tryptophan availability were restored. Nishino et al.
(2013) also showed that GF mice exposed during 24 h to the
SPF environment developed a normal (SPF) microbiota and that
was accompanied by a decrease in the anxious-like behavior and
an increase in ADE,DA and 5-HT brain levels. Other authors
showed that GF animals present a significant reduction of 5-
HT in serum compared to normal mice (specific pathogen-free,
SPF) (Yano et al., 2015). Yano et al. (2015) also reported that
indigenous spore-forming bacteria (Sp) from the mouse and
humanmicrobiota promote 5-HT biosynthesis from colonic ECs.
These authors also showed that increased luminal concentration
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of specific microbial metabolites elevated colonic and blood
5-HT in GF mice. This study showed that host-microbiota
interactions are very important in regulating essential 5-HT-
related biological processes. Agusti et al. (2017) showed that
5-HT is significantly decreased in hippocampus of HFD-fed mice
and this correlated with anhedonic-depressive-like behavior. The
administration of B. pseudocatenulatum CECT 7765 attenuated
the obesity associated depressive-like behavior and significantly
increased the 5-HT concentration in hippocampus by modifying
the gut microbiota. The use of probiotics in animal models
of depression has shown some efficacy. For example, a strain
of Bifidobacterium infantis restored the forced swimming test
(FST) and decreased pro-inflammatory cytokines regulating
tryptophan metabolism and the neurotransmitters in the CNS
in a rat model of depression induced by maternal separation
(Desbonnet et al., 2008, 2010).

GABA can also be affected by the gut microbiota. Bravo
et al. (2011), as we explain briefly in section 2, observed that
the administration of L. rhamnosus JB-1 altered mRNA GABA
receptors in different brain regions of mice. GABA b1b receptor
expression was increased in cortical cingulate and prelimbic
regions, whereas it decreased in the hippocampus, amygdala, and
locus coeruleus. In the prefrontal cortex (PFCx) and amygdala
there was a decrease in GABA Aα2 mRNA, but an increase in
the hippocampus. This was accompanied by attenuation of stress,
anxiety and depressive-like behaviors in healthy animals. Results
of the same study confirmed that communication between
the microbiota and the brain occurred partly via the vagus
nerve, which provided information from the lumen to the CNS.
This was evident when vagotomized animals failed to show
neurochemical and behavioral effects. Thus, the vagus nerve was
identified as a constitutive modulator of the communication
pathway between the gutmicrobiota and the brain. Other authors
have also shown that components of the microbiota are able to
produce molecules that act as local neurotransmitters in the ENS,
for example GABA, 5-HT, acetylcholine, melatonin or histamine
(Iyer et al., 2004; Portune et al., 2016).

The HPA-Axis
Gutmicrobiota is thought to play a role inmechanisms governing
the stress response via the HPA-axis, whose deregulation has
also been related to obesity. This connection was first evidence
in Cushing syndrome patients who present high levels of
cortisol, glucose intolerance, hypertension and upper body
obesity (Bjorntorp and Rosmond, 2000; Nieuwenhuizen and
Rutters, 2008).

The interconnection between the gutmicrobiota and the stress
response via the HPA-axis was initially evidenced in GF and
intentionally colonized rodents. In Sudo et al. (2004) showed that
the response to stress via the HPA-axis was exacerbated in GF
animals compared with SPF animals and it was accompanied by
an increase in BDNF expression in cortex and hippocampus. The
exaggerated response to stress was reversed by gut colonization
with a strain of B. infantis and partially reversed with SPF
stools at an early stage, but not later in life. This finding
indicates that exposure to microbes at an early developmental
stage is required for the HPA system to become completely

susceptible to inhibitory neural regulation. O’Mahony et al.
(2009) showed that early life stress induced by maternal
separation also produces changes in fecal microbiota, supporting
the idea that stress in early stages alters gut microbiota. On
the other hand, modification of gut microbiota by a probiotic
could also modulate the HPA-stress response. For example, Ait-
Belgnaoui et al. (2012) demonstrate that the oral administration
of L. Farciminis suppressed stress-induced hyperpermeability,
endotoxemia and prevented HPA axis stress response and
neuroinflammation.

As we indicate above, stress is an important factor in obesity
and eating behavior which could also be interlinked with the
microbiota. Numerous studies confirm that the HPA-axis plays
an important role in the onset of metabolic alterations and
obesity (Desbriere et al., 2006; Abraham et al., 2013; Champaneri
et al., 2013). There is a positive association between stress,
weight gain, adiposity and body mass index (BMI) (Torres and
Nowson, 2007; Block et al., 2009), as well as with basal glucose,
basal insulin and resistance to insulin (Sinha and Jastreboff,
2013). Furthermore, the connection between stress andmetabolic
dysfunction is stronger in individuals with higher BMI than
in those with lower BMI (Sinha, 2008), suggesting that stress
increases obesity risk especially in individuals with higher BMI.
Some studies have shown that adrenal steroids increase glucose
and insulin levels as well as high-caloric food intake (Sinha
and Jastreboff, 2013). Chronic high levels of GCs and insulin
boosted the increase in palatable food intake and abdominal fat
deposition (Dallman et al., 2005; Warne, 2009). Therefore, stress
could trigger metabolic dysfunction and modify eating behavior;
besides, obese individuals are more sensitive to stress.

The role of the microbiota in the connection between
stress and obesity has been demonstrated by, for example,
the administration of potential probiotic bacteria to animal
models of obesity. Thus, Agusti et al. (2017) demonstrated
that basal corticosterone levels were significantly increased in
mice with HFD-induced obesity. Obese animals also showed
increased corticosterone levels in response to acute social stress,
suggesting that obese mice were more susceptible to these
stressful situations. Administration of B. pseudocatenulatum
CECT 7765 reduced corticosterone levels in HDF-fed mice,
indicating that an intervention primarily targeting the gut was
able to reverse the anxiogenic obese profile.

Immune Mediators in the Gut-Brain Axis
The immune system plays an important role in the gut-brain axis,
considering that the GI tract contains the highest concentration
of immune cells in the body. In GF animal models, immune
defects have been observed at both levels: cellular and structural.
One the one hand, Round and Mazmanian (2009) showed that
there was a reduction in B-cell production of secretory IgA
(sIgA) and a decrease in the intestinal T helper 17 (Th 17),
CD4+ and CD8+ immune cells. They also found defects at
the structural level with a decrease in Peyer’s patches, lamina
propria and isolated lymphoid follicles. On the other hand, the
re-colonization of GF mice with a main commensal component
of the gut microbiota, Bacteroides fragilis, proved efficient in
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restoring the immune maturation in gut associated lymphoid
tissues.

The immune system also plays an important role in obesity
(see Figure 1). The chronic nature of obesity produces prolonged
low-grade activation (Gregor and Hotamisligil, 2011; Lumeng
and Saltiel, 2011). Both the increase of the permeability of
the gut barrier and the usual fat intake, that increases LPS
absorption, contribute to this endotoxaemia (Delzenne et al.,
2011; Torres-Fuentes et al., 2017). However, this endotoxaemia
could be prevented by some gut bacteria which preserve the
integrity of the gut barrier (Rooks and Garrett, 2016). Obesity
is also associated with neuro-inflammation as described in other
pathologies, including Alzheimer disease (AD) or depression
(Whitmer et al., 2007; Mayeux and Stern, 2012). Obese patients
are more prone to develop these types of pathologies and neuro-
inflammationmay underpin these associations (Guillemot-Legris
and Muccioli, 2017).

Peripheral inflammation associated with obesity may lead
to neuro-inflammation and could be due to the activation of
components of innate immunity like Toll-like receptors (TLRs)
and increased intestinal permeability (known as a leaky gut).
Leaky gut is a loss of intestinal barrier integrity making it less
able to protect the internal environment. This loss of integrity
allows bacteria, toxins and other molecules to arrive to the
bloodstream. In recent studies it has been demonstrated that gut
compositional changes and inflammation related with leaky gut
may contribute to the pathophysiology of several diseases like
depression, chronic fatigue syndrome, obesity, Type-2 diabetes
or IBS (Slyepchenko et al., 2017). Dietary saturated fatty acids
(SFAs) can induce inflammatory responses in different organs
like liver, pancreas, adipose tissue and muscle (Guillemot-Legris
and Muccioli, 2017). SFAs are able to activate the TLRs expressed
in intestinal epithelial and innate immune cells, specifically TLR2
and TLR4 (Hwang et al., 2016). TLR2 activation can mediate
signaling cascades through myeloid differentiation factor-88
(MyD-88) and NF-κB, (Kim et al., 2013; Hayward and Lee,
2014) and TLR4 activation can activate NF-κB as well as
activator protein 1 (AP-1), triggering cerebral inflammation
by the upregulation of proinflammatory cytokines (Guillemot-
Legris and Muccioli, 2017). The dysbiotic microbiota associated
with obesity can also contribute to increasing the inflammatory
tone via activation of TLRs and the subsequent production of
inflammatory cytokines (Sanz and Moya-Perez, 2014).

In addition, several environmental factors such as diets rich
in fats and poor in fibers, alcohol, stress, and intestinal dysbiosis
observed in obese patients (Ley et al., 2006a; Riva et al., 2017)
and animal models (Lin et al., 2014; Schneeberger et al., 2015)
can alter the gut epithelial barrier, possibly as a secondary
consequence of the inflammatory process (de Melo et al., 2017).
Disruption of the intestinal barrier facilitates the translocation of
components of mainly Gram-negative bacteria (e.g., LPS) from
the lumen to the mesenteric lymph nodes (MNLs) and peripheral
circulation (de Kort et al., 2011; Leonard and Maes, 2012). There,
bacterial motifs activate the immune system through TLR2 and
TLR4-biding, boosting the release of pro-inflammatory pathways
(NF-κB and Mitogen-Activated Protein Kinases [MAPK]) and
cytokines (e.g., TNF-α) (Chan and Riches, 2001; Wischmeyer,

2006) and increasing IgA and IgM responses to Gram-negative
bacteria (Maes et al., 2007, 2008). Proinflammatory cytokines can
also contribute to tight junction disruption leading to bacterial
translocation (Slyepchenko et al., 2017). In addition, hypertrophy
of adipose tissue increases pro-inflammatory signaling, creating a
vicious circle. Similar processesmay also disrupt the BBB allowing
leukocyte infiltration into CNS, contributing to the development
of mood disorders (de Melo et al., 2017) and producing
neuroinflammation. The translocation of Gram-negative bacteria
from the gut induce oxidative and nitrosative stress (O&N
stress) processes that produce redox-derived DAMPs (damage-
associated molecular patterns), which may activate TLR-2 and
4, leading to a vicious cycle known as the TLR2/4 radical
cycle (Lucas and Maes, 2013). Both, endotoxemia (increased
serum LPS), consequence of leaky gut, and adipose tissue-related
inflammation could lead to insulin resistance and hyperglycemia
(Fandriks, 2017). Peripheral insulin resistance may be essential to
initiate a sequence of pathophysiological events in obesity. Leaky
gut and consequent translocation of Gram-negative bacteria are
also detected in MDD. This is reflected in increased IgA and IgM
levels against Gram-negative bacteria, including Hafnia alvei,
Pseudomonas aeruginosa, Morganella morganii, Pseudomonas
putida, Citrobacter koseri, and Klebsiella pneumoniae (Maes et al.,
2007, 2008). Furthermore, inMDD, these IgA/IgM levels directed
to commensal bacteria are related with immune activation and
O&NS (Maes et al., 2013).

EFFECTS OF OBESITY ON COGNITIVE
FUNCTIONS AND MOOD

Obesity may contribute to cognitive damage (Johnson et al.,
2016) and behavioral alterations (see Figure 2), which may
partly be due to obesity-associated neuro-inflammatory processes
(Guillemot-Legris andMuccioli, 2017). Obesity in childhood and
adolescence could have a particularly relevant impact since these
are critical periods for neurodevelopment and neuronal plasticity
(Spear, 2000; Boitard et al., 2012), where negative experiences can
alter brain functions, behaviors and mood states in adulthood
(García-Pardo et al., 2015).

Learning and Memory in Obesity
Obesity, microbiota and diet may affect episodic and semantic
memory (Cheke et al., 2016; Noble et al., 2017). The explicit
memory helps us to store information intentionally and
consciously in order to remember past experiences. Using this
type of memory we can remember autobiographic and episodic
information, historical dates, vocabulary or different types of
language. Various authors have demonstrated the effect of HFD
or high-sugar diet on memory. For example, overfeeding in the
neonatal period can lead to hippocampus damage (the main
structure involved in memory tasks), causing microgliosis in
this area after only 14 days of overfeeding, which can persist
into adulthood (De Luca et al., 2016). In adolescents, memory
impairments have been described after 4 weeks of HFD (Del Rio
et al., 2016). Administration of sucrose to rats when they were
progressing through puberty and adolescence may cause deficits
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FIGURE 2 | Mood and cognitive alterations in obesity: the role of the gut-brain axis. The diversity and stability of the gut microbiota can be affected by high-fat diets

(HFD) or high carb diets leading to dysbiosis, which is a typical alteration observed in obesity. A dysbiotic microbiota is thought to alter the communication between

the gut and the brain axis contributing to mood alterations like anxiety, depression, sensitivity to stress, social behavioral alterations and cognitive alterations like

hippocampal dysfunction, impaired memory and reduction of attention or the executive function. The use of some probiotics has demonstrated to ameliorate some of

the mood alterations like anxiety or depression through different mechanisms in animal models.

in recognitionmemory tasks (Jurdak and Kanarek, 2009; Reichelt
et al., 2015).

However, other data are controversial, probably due to
methodological differences. Heyward et al. (2012) found that
mice fed with HFD over 23 weeks exhibited intact novel object
recognition but cognitive impairment in object location memory
task (OLM). Also, Krishna et al. (2015) showed that novel object
recognition memory was unaffected after HFD in female mice.
Underwood and Thompson (2016) showed that both sexes fed
HFD for 12 weeks were equally impaired in cognitive tasks.

The influence of diets rich in saturated fat on spatial learning
and memory has also been reported in animal models. Collison
et al. (2010) fed adult mice with a trans-fatty-acid (TFA)-enriched
diet, monosodium glutamate (MSG) or a combination of both
(TFA+MSG). TFA+MSG caused impairment in locating the
hidden platform in the Morris Water Maze (MWM), showing
a reduction in spatial cognition. Similar results were found
by Guimarães et al. (2017) using the novel object recognition
memory test in adult rats injected with MSG subcutaneously
during the first 5 days of life to induce obesity. In adolescent
animals, various authors also evidenced the relationship between
juvenile HFD and spatial cognitive deficits (Boitard et al., 2012;
Wang et al., 2015). Interestingly, this type of diet did not affect
spatial performance in adulthood (Boitard et al., 2014) and these
cognitive deficits could be reversed by exercise (Klein et al.,

2016). In adult animals, caloric restriction (CR) protected CNS.
Spatial memory was significantly increased in the MWM in
the CR group and significantly decreased in the high-calorie
(HC) group demonstrating that long-term high caloric intake
induces autophagy in the hippocampus, which may increase
risk to cognitive impairments (Dong et al., 2015). Mielke et al.
(2006), on the other hand, found that HFD did not affect spatial
memory in the MWM. Other authors have questioned whether
cognitive impairment precedes obesity or is a consequence of
obesity (Gurung et al., 2016). In order to test this hypothesis,
obesity sensitive and resistant strain rats were fed with a standard
chow diet from 4 through 20 weeks of age. At 12 weeks of age
sensitive rats showed significant memory impairment on MWM
compared to resistant rats. Alterations in implicit memory
associated with obesity have also been investigated. Implicit or
unconscious memory refers to non-intentional acts that we keep
in our brain. In the rodent, additional amounts of cholesterol
in the diet (0.5 % dry weight) significantly improved short-term
and long-termmemory (Apryatin et al., 2017). However, addition
of fructose, including in combination with HFD, significantly
worsened short and long-term memory in mice. Furthermore,
the effects of HFD on fear conditioning may differ in female and
male mice. Hwang et al. (2010) demonstrated that HFD produces
more cognitive impairment in male mice than females evaluated
with PAT.
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Animal studies have revealed a relationship between obesity,
neuro-inflammation and memory impairments. For example,
Wang et al. (2016) used an anti-inflammatory agent to show
that chronic rhein (the main ingredient of rhubarb plant
with anti-inflammatory properties) treatment prevented HFD-
induced recognition memory impairment. The rhubarb-exposed
rats also had an increased bacterial diversity in the ileum,
which could also contribute or reflect the beneficial effects
of the treatment (Peng et al., 2014). Wang et al. (2017)
demonstrated that teasaponin, an active component of tea
with anti-inflammatory effects, limit unfavorable gut microbiota
alterations, reduced body weight, improved glucose tolerance
and prevent recognition memory impairment in HFD-fed
mice; it also improved neuroinflammation, gliosis and BDNF
deficits in hippocampus. Bruce-Keller et al. (2015) reported
that mice receiving HFD microbiota had significant disruptions
in cognitive, exploratory and stereotypical behavior compared
with mice receiving control-diet microbiota in the absence
of significant differences in body weight. Maternal Western
diet during gestation and lactation was also shown to modify
offspring’s microbiota activity and cognitive responses in Yucatan
pigs with modifications in hippocampal neurogenesis (Val-Laillet
et al., 2017).

In humans, several studies demonstrate that obesity
is associated with cognitive decline and elevated risk of
neurodegenerative diseases during aging (Mazon et al., 2017).
Gunstad et al. (2007) demonstrated that obese adults, with a
BMI greater than 25 in an age range between 22 and 82 years
old, showed a poorer executive function test performance
than normal weight adults (BMI, 18.5–24.9 kg/m2) and some
differences in the attention test performance, suggesting
an association between elevated BMI and lower cognitive
performance, independently of age. Several studies with obese
children showed alterations in attention and attentional shifting
compared to normal children (Cserjési et al., 2007; Davis
and Cooper, 2011; Maayan et al., 2011; Wirt et al., 2015) and
visuospatial abilities (Li et al., 2008; Jansen et al., 2011; Martin
et al., 2016).

Research reports that fat and sugar intake at different life
periods may also impair cognition. For example, Francis and
Stevenson (2011) showed that healthy undergraduate students
with high (self-reported) fat and refined sugar intake presented
impaired memory tasks related to hippocampal function.
Similarly, Beilharz et al. (2015) showed that hippocampal-
dependent memory is sensitive to high-energy diet and they
found differences between chronic and acute exposure to high-
energy diets. Cournot et al. (2006) showed that higher body
mass index was associated with lower cognition scores in healthy,
middle-aged, non-demented participants. Another study in an
Australian cohort of school-aged children, reported that higher
intake of a Western diet at age 14 was associated with worse
cognitive performance 3 years later (Nyaradi et al., 2014).
Crichton et al. (2012) showed that the daily consumption of
low-fat foods may improve cognitive performance.

SFAs have also been associated with cognitive impairments.
SFA intake in young adulthood, mid and later life, increases
vulnerability to cognitive deficits and even neurological diseases

(Solfrizzi et al., 2011; Okereke et al., 2012). Likewise, a higher
intake of carbohydrates, particularly simple sugars, has been
associated with impaired cognitive functions (Roberts et al.,
2012), although these associations were not detected in all studies
(Halyburton et al., 2007; Brinkworth et al., 2009; Beilharz et al.,
2015). Higher intake of polyunsaturated fatty acids (PUFA) and
higher PUFA to SFA ratios have been associated with improved
memory functions (also in children) and decreased risk of
memory impairments (Kalmijn et al., 2004; Morris et al., 2004;
Devore et al., 2009).

There are also some studies reporting beneficial effects of
probiotics on cognitive functions in humans. For example, a
cocktail of different probiotics (Bifidobacterium bifidum W23,
Bifidobacterium lactis W52, Lactobacillus acidophilus W37,
Lactobacillus brevis W63, Lactobacillus casei W56, Lactobacillus
salivarius W24 and L. lactis W19 and W58) improved cognitive
reactivity to sad mood in normal individuals (Steenbergen
et al., 2015). A study of healthy woman treated with probiotic-
fermented milk showed that probiotics were able to modulate
brain activity (measured using fMRI) in brain regions involved
in mediating cognitive performance (Tillisch et al., 2013).

Anxiety and Depression in Obesity
Anxiety and depression are the most prevalent mental disorders
in developed societies (World Health Organization, 2017). These
often originate as a consequence of adverse experiences and
maladaptation to stress. In addition, they show bidirectional
associations with obesity and related metabolic disorders (e.g.,
type-2 diabetes, cardiovascular disease), as reported in both
animal and human studies, summarized below.

Animal studies have investigated the effects of stress and
Western diets leading to obesity on mood, and investigated
the possible interactions and mediating mechanism. Santos
et al. (2016) demonstrated that a high carbohydrate-containing
diet administered for 12 weeks was anxiogenic and induced
depressive symptoms after exposure to different stress paradigms.
Chronic stress can also increase the consumption of food
containing sugar and fat ingredients as a compensatory
mechanism (comfort food) to reduce stress-related anxiety,
which could lead to overeating and obesity long-term (Oliveira
et al., 2015). In support of this hypothesis, other studies have
shown that HFD administration to adult rats reduced anxiety
(Leffa et al., 2015; McNeilly et al., 2015). A recent study also
indicates that the combination of obesity (induced by diet) with
chronic unpredictable mild stress (induced by unpredictable mild
stressors like 8 h of food or water deprivation, confusing day and
night, soaking the cage with water or horizontal oscillation for
20min) induces depression and anxiety-like behaviors and the
down-regulation of leptin/LepRb signaling (Yang et al., 2016).
This is suggested as a possible mechanismmediating the negative
consequences of obesity and stress on mood (Yang et al., 2016).
In this regard, Haque et al. (2013) also indicate that leptin is
important for mood and emotion regulation. They observed
that animals exposed to stress (2 h immobilization) exhibited
behavioral deficits, but these were reversed by exogenous leptin
in a dose-dependent manner. Finger et al. (2010) showed

Frontiers in Neuroscience | www.frontiersin.org 9 March 2018 | Volume 12 | Article 155

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Agustí et al. Obesity, Microbiota and Cognitive Function

that leptin-deficient (ob/ob) mice displayed higher levels of
anxiety.

The connection between obesity and behavioral deficits is
further supported by evidence showing that some anti-obesity
therapies exert anxiolytic effects. Thus, several drugs used to treat
obesity have attenuated behavioral alterations in mice, such as
sibutramine (Santos et al., 2014), duloxetine (Chudasama and
Bhatt, 2009), pioglitazone (Kurhe and Mahesh, 2016), celecoxib
(Kurhe et al., 2014a), ondansetron (Kurhe and Mahesh, 2015), 3-
methoxy-N-p-tolylquinoxalin-2-carboxamide (QCM-4) (Kurhe
et al., 2014b, 2015), GPR120 agonist (Auguste et al., 2016). These
findings suggest that obesity and emotional disorders, such as
anxiety and depression, could share a common base. Recent
works propose that part of this common base could be the
gut microbiota coupled with its role in the regulation of the
inflammatory tone. In support of this notion, some probiotic
strains with anti-depressive effects also showed anti-obesity
effects, suggesting that modulation of microbiota composition or
their function could be beneficial for obesity-related depression
(Schachter et al., 2017). Thus, Ohland et al. (2013) showed that
administration of a strain of Lactobacillus helveticus restored
the Firmicutes/Bacteroidetes ratio altered in HFD-fed mice and
reduced anxiety-like behaviors. Abildgaard et al. (2017) showed
that a mix of eight different strains of Bifidobacterium and
Lactobacillus reduced depressive-like behaviors in HFD-fed mice
in association with lowered IL-6 and TNF-α levels in serum.
Therefore, the beneficial effects of some of these bacterial
strains could be partly mediated by their ability to reduce the
inflammatory tone affecting both obesity and mood disorders.

Epidemiological and clinical research studies in humans
also support bi-directional associations between obesity, dietary
patterns, and mood related disorders (see Figure 2). Systematic
reviews and meta-analysis of longitudinal studies indicate that
obesity increases the risk for onset of depression by 55% (de Wit
et al., 2010) and depression increases the risk for obesity onset by
58% (Luppino et al., 2010). Although not all results are consistent,
epidemiological data also suggest that a higher quality diet lowers
the risk of onset of depressive symptoms (Molendijk et al., 2018)
while consumption of high-sugar and high-saturated-fat diets
is associated with greater depressive symptoms and depressed
mood (Vermeulen et al., 2017). A couple of intervention studies
also show that improvements in dietary quality (Mediterranean-
style diet) led to improvements in depressive symptoms in adults
(Opie et al., 2017; Parletta et al., 2017), further supporting the role
of diet in depression. In addition, depression has been associated
with alterations in the gut microbiota in a few cross-sectional
studies (Cenit et al., 2017). Some of these studies also propose
possible mediating mechanisms by which gut dysbiosis could
contribute tomood alterations, such as changes in the tryptophan
metabolism (Kelly et al., 2016).

Social Behavior and Obesity
Research shows a link between obesity and social behavioral
alterations in animal models but evidence in humans is very
limited. In rodents, Takase et al. (2016) observed that social
interactions were altered by HFD consumption in adulthood,
independently of obesity, since both experimental groups, the

HFD-induced obesity group and a non-obese HFD-fed group,
presented social alteration. Changes in social interaction during
the prepuberty period, which could cause cognitive deficits in
adulthood, are modulated by diet type in rats. For example,
Arcego et al. (2016) demonstrated that rats exposed to 7 days
of social isolation showed memory impairment and reduced
BDNF, Na+, K+, ATPase activity, MAPK, AKT and phospho-
AKT levels in PFCx; however, rats exposed to this stress situation
but fed withHFD showed restoredmemory impairment as well as
the aforementioned biochemical alterations. However, Choi et al.
(2017) demonstrated that sugar-sweetened beverages consumed
by young mice significantly promoted social aggression in the
adult life, which represents one of the most detrimental long-
term outcomes of neurodevelopmental disorders (Lesch et al.,
2012). Maged1-deficient mice (MAGE family genes, related
with Prader-Willi syndrome (PWS), which includes hyperphagia,
repetitive and compulsive behaviors, and cognitive impairment)
developed progressive obesity associated with hyperphagia
and a complex behavioral syndrome including reduced social
interactions, memory impairments, deficient sexual behaviors,
as well as increased anxiety, suggesting a connection between
metabolic and behavioral outcomes (Dombret et al., 2012). They
also observed a reduction in oxytocin (important hormone
involved in social behavior) but not its precursor in the
hypothalamus of Mage1-defficient mutants, indicating that
decreased oxytocine could be responsible for the changes in social
behavior.

Microbiota may also be involved in diet-related social
behavioral alterations. (Buffington et al., 2016) showed
a link between maternal HFD (MHFD), gut microbial
imbalance, ventral tegmental area plasticity and social behavior
alterations in descendants. They also observed a fewer oxytocin
immunoreactive neurons in the hypothalamus of the offspring.
Administration of a strain of Lactobacillus reuteri (reduced
in microbiota of both, MHFD and their descendants) to the
offspring, corrected the oxytocin levels and social deficits
in MHFD progeny, suggesting that probiotics may relieve
abnormalities associated with neurodevelopmental disorders.
Other studies have suggested that obesity-related inflammatory
processes, originating either from the adipose tissue or gut
microbiota, affect the brain, leading to substantial changes in
different neuro circuitry, neuroendocrine activity (impaired
feedback response to cortisol), neurotransmitter metabolism
and activity (alteration in basal ganglia and dopamine system),
and neurogenesis (impaired in the hippocampus) (Castanon
et al., 2014). The findings indicate that obesity is related
to neuropsychiatric comorbidities like fatigue, anhedonia,
psychomotor slowing, decreased motivation, and depressed
mood (Castanon et al., 2014) as well as to social disorders like
autism spectrum disorder (Gareau, 2016).

CONCLUSIONS

The associations established between obesity and mental
disorders (cognitive impairment and mood and social behavioral
alterations) in epidemiological and experimental studies
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point to shared contributing factors and pathophysiological
mechanisms. These associations could be related to dietary-
induced alterations in the intestinal microbiota that, in turn,
may contribute to (neuro) inflammation and dysregulation of
the neuroendocrine system associated with obesity comorbid
with mental impairments. This hypothesis has been confirmed
to some extent in experimental models, which have investigated
the effectiveness of some probiotics or compounds altering
the gut microbiota, in both attenuating obesity and associated
mental disorders. These studies, however, do not help us
discern whether interventions affecting the gut ecosystem play
a primary or secondary role in alleviating obesity-associated
mental impairments. Fecal transplants have, however, provided
more direct evidence for the role of dysbiotic microbiota in
neurobehavioral alterations, since the colonization of lean mice
with the HFD-induced microbiota of obese mice led to the
neurologic complications of obesity. Although we still lack a
full understanding of the mechanisms by which microbiota may
influence the gut-brain axis and, thereby, brain function and
behavior, studies have shed light on numerous factors, including:
regulation of the gut barrier, inflammation and signaling
through TLR that recognize bacterial motifs and mediate in

the communication with ENS, regulation of enteroendocrine
secretions and the HPA stress response, and production and
regulation of host neurotransmitter levels and their receptors.
However, further translational and functional studies are needed
to progress in the identification of molecular targets/pathways
that could be favorable modulated by microbiota-based
interventions to help reduce obesity associated complications.
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