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The parallel updating scheme of RRAM-based analog neuromorphic systems based on

sign stochastic gradient descent (SGD) can dramatically accelerate the training of neural

networks. However, sign SGD can decrease accuracy. Also, some non-ideal factors of

RRAM devices, such as intrinsic variations and the quantity of intermediate states, may

significantly damage their convergence. In this paper, we analyzed the effects of these

issues on the parallel updating scheme and found that it performed poorly on the task of

MNIST recognition when the number of intermediate states was limited or the variation

was too large. Thus, we propose a weighted synapse method to optimize the parallel

updating scheme. Weighted synapses consist of major andminor synapses with different

gain factors. Such a method can be widely used in RRAM-based analog neuromorphic

systems to increase the number of equivalent intermediate states exponentially. The

proposed method also generates a more suitable 1W, diminishing the distortion caused

by sign SGD. Unlike when several RRAM cells are combined to achieve higher resolution,

there are no carry operations for weighted synapses, even if a saturation on the minor

synapses occurs. The proposed method also simplifies the circuit overhead, rendering

it highly suitable to the parallel updating scheme. With the aid of weighted synapses,

convergence is highly optimized, and the error rate decreases significantly. Weighted

synapses are also robust against the intrinsic variations of RRAM devices.

Keywords: weighted synapses, neural networks, sign stochastic gradient descent, online learning, resistive

random-access memory (RRAM)

INTRODUCTION

Deep learning has made significant advances in many areas, such as image/speech recognition and
natural language processing (LeCun et al., 2015). Currently, a powerful deep neural network often
means huge networks scaled together with massive training data, which demands a learning system
with excellent computational efficiency. However, conventional computer systems suffer from the
von Neumann bottleneck between separate data processing (CPUs and GPUs) and data storage
(memory). Thus, alternative technologies beyond the von Neumann bottleneck are attracting
increased attention.

One emerging solution is resistive random access memory (RRAM)-based neuromorphic
computing. Numerous studies have used RRAM-based neuromorphic systems as inference
accelerators for neural networks (Li et al., 2015; Wang et al., 2015; Chi et al., 2016). RRAM-
based neuromorphic systems can implement efficient matrix-vector multiplication in a large-scale
crossbar array (Chi et al., 2016). Recently, some researchers discovered that RRAM-based analog
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neuromorphic systems can also dramatically accelerate the
training of neural networks by carrying out certain parallel
update schemes (Burr et al., 2015; Kataeva et al., 2015; Gokmen
and Vlasov, 2016; Fuller et al., 2017; Gokmen et al., 2017). For
a fully connected neural network layer that maps N neurons to
M neurons, the weights updating time complexity of carrying
out parallel update schemes is much lower than the usual time
complexity of O(N × M). Parallel update schemes are generally
based on stochastic gradient descent (SGD) (Bottou, 2010) or
mini-batch gradient descent (GD) (more details will be discussed
in section Online Learning). For SGD, the 1W can be directly
factorized to themultiplication of column and row vectors, which
is ideally suited to O(1) parallel update schemes. For mini-batch
GD, the time complexity of the corresponding update schemes
is O(mb), where mb is the size of the mini-batch (Gokmen
et al., 2017). Additional extra storage is required, however, for
mini-batch GD.

Some researchers (Burr et al., 2015; Kataeva et al., 2015; Fuller
et al., 2017) proposed one type of parallel update scheme based
on variable-amplitude operation voltage Vop. However, for some
types of RRAM devices, multiple studies have demonstrated that
the change in conductance at every step (G) is very sensitive to
Vop (Woo et al., 2016; Wu et al., 2017), and it is very difficult
to find a compact relation between them, such as linear or
exponential. It is also challenging to design a variable-amplitude
training scheme for such types of RRAM devices. Gokmen et al.
(Gokmen and Vlasov, 2016) proposed another type of parallel
update scheme based on stochastic computing. Their method,
however, requires an extra circuit module to generate stochastic
bit streams.

A simplified parallel update scheme based on sign SGD is
a sensible way to reduce the hardware overhead of 1-weights
computation and bit stream generation. Thus, the magnitude
of 1W is ignored, and only its sign information is relevant.
However, this type of scheme decreases accuracy. For SGD,∇J (t)
will be quite small when J (cost function) approaches its local
minimum, ensuring that the algorithm converges even if the
learning rate is constant. However, this scheme fails when the
gradient vector’s magnitude information is ignored. Considering
the limited number of intermediate states (Woo et al., 2016;
Fuller et al., 2017; Wu et al., 2017) and intrinsic variations of
RRAM devices (Wong et al., 2012), the problem is even greater.

For these reasons, it is challenging to achieve an RRAM-
based analog system with high performance. In this paper, we
propose a new method to optimize the simplified parallel update
scheme based on weighted synapses. The idea of combining
several RRAM cells to achieve higher resolution in a digital
system has been proposed by many studies (Chi et al., 2016;
Song et al., 2017). For PipeLayer (Song et al., 2017), 16-bit
weights are stored in four groups of RRAM cells. Each group
stores 4-bit weights for the 15-12, 11-8, 7-4, and 3-0 segments,
respectively. A carry operation occurs when a saturation on the
less significant RRAM cell is encountered. The weighted synapses
method differs, however, because weighted synapses are relatively
equal, which means that there will be no carry operations even
if a saturation on the minor synapse is encountered. There are
two significant advantages of avoiding carry operations. The first
advantage is speed. Carrying out the read operation row by row

on an N ×N RRAM-based crossbar array is inefficient with time
complexity O(N). It does not match the parallel update scheme,
whose time complexity is O(1). The other advantage is circuit
overhead. Without carry operations, there are no extra control
logic and ADC (analog to digital converter) circuits (which are
designed to read the resistance of a certain RRAM cell) because
there is no need to set the accurate resistance for a certain RRAM
device.

With the assistance of weighted synapses, algorithm
convergence is greatly optimized, and the error rate is
significantly decreased for the task of recognizing handwritten
digits trained on the Modified National Institute of Standards
and Technology (MNIST) database with a two-layer perceptron,
even if the number of intermediate states is small or the variation
is large. The proposed method makes it much simpler for RRAM
devices to meet the requirements of an analog neuromorphic
system.

RRAM-BASED NEUROMORPHIC SYSTEM

This section provides background information about electronic
synapses and RRAM technology and demonstrates a multilayer
neuromorphic architecture.

RRAM-Based Synapses
Electronic synapses were first made by circuits with
complementary metal-oxide-semiconductor (CMOS) transistors
and capacitors (Indiveri et al., 2006). Recently, electronic
synapses based on memristor (Chua, 1971; Strukov et al., 2008)
have received significant attention for their high density and
extreme low-power potential (Yu et al., 2011; Burr et al., 2015;
Kataeva et al., 2015; Li et al., 2015; Prezioso et al., 2015; Sheri
et al., 2015; Soudry et al., 2015; Wang et al., 2015; Chi et al., 2016;
Eryilmaz et al., 2016; Gokmen and Vlasov, 2016; Fuller et al.,
2017; Gokmen et al., 2017; Yao et al., 2017). Significant progress
has been made on applying such synapses to neural networks,
such as Multilayer Perceptron (MLP) (Burr et al., 2015; Kataeva
et al., 2015; Prezioso et al., 2015; Soudry et al., 2015; Fuller et al.,
2017; Yao et al., 2017), Restricted Boltzmann Machine (RBM)
(Sheri et al., 2015; Eryilmaz et al., 2016), and Convolutional
Neural Network (CNN) (Gokmen et al., 2017; Song et al., 2017).
For neuromorphic system learning, researchers have proposed
different types of parallel update schemes (Burr et al., 2015;
Kataeva et al., 2015; Gokmen and Vlasov, 2016; Fuller et al.,
2017; Gokmen et al., 2017). Efforts have also been made to
address the problems caused by high-precision computation and
storage, which are difficult to realize in neuromorphic hardware
(Neftci et al., 2017).

RRAM could also be treated as one type of memristor. In
general, the basic structure of RRAM is a switching medium
sandwiched between two electrodes. Nonvolatile storage is based
on resistive switching between a low-resistance state (LRS or
ON state) and a high-resistance state (HRS or OFF state) under
voltage or current stimulation.

Recently, significant progress has been made in the
performance of analog RRAM-based synapses (Woo et al.,
2016; Fuller et al., 2017; Wu et al., 2017). Rather than utilizing
the conventional multilevel characteristics of RRAM to construct
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a digital system (Chi et al., 2016; Song et al., 2017), attempts
have been made to use analog synapses to achieve adaptive
learning. The greatest benefit of an analog synapse is to change
the conductance gradually, which is called its analog behavior.
This process is achieved by applying a number of training pulses
with equal intensity, rather than by varying the pulses’ amplitude
(Woo et al., 2016; Wu et al., 2017).

Ideally, the conductance of an analog synapse will increase by
a fixed value (G) after applying a SET pulse and will decrease
by the same value after applying a RESET pulse. However,
G of an RRAM-based analog synapse device varies randomly
after applying a certain training pulse due to device-to-device
and cycle-to-cycle resistance switching variations (Wong et al.,
2012). In addition, the number of intermediate states of an
RRAMdevice is limited. According to state-of-the-art studies, the
quantity of intermediate states is in the order of 50∼200 (Woo
et al., 2016; Fuller et al., 2017; Wu et al., 2017), which brings
additional challenges to RRAM-based analog neuromorphic
systems (Gokmen and Vlasov, 2016).

Neuromorphic Architecture
Figure 1 demonstrates a multilayer neuromorphic architecture,
which consists of RRAM-based synapse crossbar arrays, CMOS
neurons, and a synapse update logic circuit. It is built on a
previous RRAM-based neuromorphic system (Kataeva et al.,
2015; Fuller et al., 2017).

RRAM-based synapses connect the neurons of adjacent layers,
and their conductance represents the weights in a neural
network. Previous studies (Li et al., 2015; Wang et al., 2015; Chi
et al., 2016) have shown that the matrix-vector multiplication
in neural networks can be implemented efficiently in a crossbar
structure as follows:

Ii =
∑

WijVj, (1)

where Vj consists of the input signals and a constant bias,
Wij are the adjustable synaptic weights, and Ii serves as the
neuron’s original output. As shown in Figure 1B, a normal
synapse consists of two RRAM devices, and the value is given by
Wij = G+

ij − G−

ij , where G
+

ij and G−

ij are the conductance of the

corresponding differential RRAM devices. In our neuromorphic
system, inference pulses serve as Vj, including positive and
negative pulses. Matrix-vector products Ii are integrated by an
integrator, changing the potential of the integral capacity. The
potential is conversed by a specific circuit, which serves as the
activation function. Next, it is compared to a set of voltage
sources, which manage the inference pulses fired out by the pulse
generator, as shown in Figure 1C.

A weighted synapse consists of four RRAM devices, and their

value is represented by Wij =

(

G+

ijH − G−

ijH

)

+ k · (G+

ijL − G−

ijL).

Here
(

G+

ijH − G−

ijH

)

is the conductance of the high significant

synapse (major synapse), (G+

ijL − G−

ijL) is the conductance of the

low significant synapse (minor synapse), and k is a scale factor
between 0 and 1 related to the relative width and voltage of
inference pulses applied to the major and minor synapses. For

example, if the width of inference pulses applied to the major
synapses is 10 ns and the width of inference pulses applied to the
minor synapses with the same voltage is 2 ns, the integrator will
integrate 5 times the charge from themajor synapses (Q =

V
R ×t),

so k = 0.2. Currently, a value of 15 on the major synapses means
15 and a value of 15 on the minor synapses means 15× 0.2=3.

Synapses update logic takes charge of executing the simplified
parallel update scheme, including calculating the error and
derivative. More details will be discussed in section Online
Learning.

ONLINE LEARNING

This section demonstrates the computational process of the
customized backpropagation (BP) algorithm based on sign SGD.
Then it describes the updating logic of the proposed parallel
update scheme. Finally, it demonstrates a two-layer perceptron
(784 × 200 × 10) for the task of handwritten digit recognition
trained on the MNIST database and analyzes the effects of
some non-ideal factors of RRAM devices. Poor convergence and
large error rate were observed, especially when the number of
intermediate states was small.

Customized BP Algorithm
Error BP algorithms (Schiffmann et al., 1992; Neftci et al.,
2017), the most successful learning method, are widely used in
many types of neural networks, such as MLP, Recurrent Neural
Networks (RNNs), and CNNs. However, there is no obvious
advantage in utilizing the multilevel characteristics of an RRAM
synapse in a digital system for implementing a BP algorithm. It is
not easy to set the resistance of a certain RRAM cell accurately;
it requires a large number of program operations and highly
accurate circuit design.

As mentioned in section Introduction, we performed a
simplified parallel update scheme based on sign SGD. Its time
complexity was O(1), and its updating logic circuits were simple.
The SGD method is an iterative procedure for obtaining the
parameter values that minimize a function. As applied in a
BP algorithm, the weights of a neural network serve as the
parameters of the error function; at each training iteration, their
values are modified in the direction where the error function
decreases most rapidly (Rumelhart et al., 1988). Geometrically,
the error function specifies an error surface defined over weight
space. The procedure can be described as follows:

W (t + 1) = W (t) − η · ∇J (t) , (2)

where W(t) is the matrix of weights at time t, η is a constant
learning rate, and J(t) is the cost function to be minimized.

Figure 2A shows the inference of a two-layer perceptron. The
activation function is a hyperbolic tangent, and the cost function
is the cross entropy. The output of the hidden layer is given by
the following:

αoutput = tanh(Whidden × αhidden) (3)

The output of the output layer is given by the following:

y = softmax(Woutput × αoutput), (4)
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FIGURE 1 | (A)The multilayer neuromorphic architecture. (B) RRAM-based synapses crossbar arrays. A normal synapse is implemented with two differential RRAM

devices, and a weighted synapse is implemented with four RRAM devices. (C) CMOS neurons.

where α is the input vector and W is the weight matrix of the
corresponding layer.

Figure 2B shows the training of a two-layer perceptron. β is
the error vector backpropagated from the next layer. The error
vector of the output layer is given by the following:

βoutput = y− ytarget , (5)

where ytarget is the desired output of the output layer. The error
vector of the hidden layer is given by the following:

βhidden = dtanh(Whidden × αhidden) · (W
T
output × βoutput), (6)

where dtanh is the derivative of the activation function.
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FIGURE 2 | Procedures of inference (A) and learning (B) for a two-layer perceptron (Rumelhart et al., 1988).

For SGD, the increment of the weights matrix is calculated by
the following:

1W = −η · α · βT (7)

The key concept of sign SGD is its focus on the sign information
of1W rather than its magnitude. Thus, Equation (7) is translated
to the following:

1W = −1Wm · α′
· β ′T , (8)

where α′ = sign(α) and β ′ = sign(β) represent the sign
information of α and β and 1wm is determined by the number
of intermediate states of the corresponding RRAM devices.

Obviously, 1wm cannot be arbitrarily small because the number
of intermediate states of RRAM devices is limited.

Updating Logic of the Parallel Update
Scheme
Figure 3 demonstrates an example of executing the simplified
parallel update scheme. α′ and β ′ represent the sign information;
they can only consist of+1,−1, and 0. The bias pulses applied on
word lines depend on the value of α′, and the bias pulses applied
on bit lines (BLs) depend on the value of −β ′. Figure 3A shows
the given example (left) and the waveform of the programming
pulses (right). The red cells need a SET operation, and the yellow
cells need a RESET operation.
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FIGURE 3 | Simplified parallel update scheme for a single layer with four inputs and four outputs. The update scheme for the corresponding differential crossbar array

is just the opposite, and it is carried out simultaneously. (A) Considered example (left) and the waveform of operation pulses (right). The red cells need a SET

operation, and the yellow cells need a RESET operation. (B) Cycle 1–SET pulses are applied to adjust the devices whose corresponding inputs α′ = +1 and error

β ′ = −1 (red); Cycle 2–RESET pulses are applied to adjust the devices whose corresponding inputs α′ = −1 and error β ′ = −1 (yellow); Cycle 3–RESET pulses are

applied to adjust the devices whose corresponding inputs α′ = +1 and error β ′ = +1 (yellow); and Cycle 4–SET pulses are applied to adjust the devices whose

corresponding inputs α′ = −1 and error β ′ = +1 (red).

The updating scheme is carried out in 4 cycles, as shown in
Figure 3B: Cycle 1–SET pulses are applied to adjust the devices
whose corresponding inputs α′ = +1 and error β ′ = −1
(red); Cycle 2 –RESET pulses are applied to adjust the devices
whose corresponding inputs α′ = −1 and error β ′ = −1
(yellow); Cycle 3–RESET pulses are applied to adjust the devices
whose corresponding inputs α′ = +1 and error β ′ = +1
(yellow); Cycle 4–SET pulses are applied to adjust the devices
whose corresponding inputs α′ = −1 and error β ′ = +1 (red).

Simulation Results and Analyses
A two-layer perceptron (784 × 200× 10) trained on the MNIST
database for the task of recognizing handwritten digits was
demonstrated. The MNIST training set was split into two parts—
one with 50,000 images was used for training, and another with
10,000 images was used for validation. For convenience, the
corresponding Wij of a synapse was scaled to [−1, 1], and the
initial value was chosen randomly. It was assumed that 1wm =
1
n and n was the number of intermediate states. As shown in
Figure 4A, when the number of intermediate states was low,

convergence was poor. It is a commonly known problem that
if the learning rate is too large, the cost function J may not
decrease on every iteration, and SGD may never converge. Due
to the limited quantity of intermediate states of RRAM devices,
1wm will be quite large and cause a similar problem. Accuracy
is apparently lost, however, when the number of intermediate
states increases to 500 due to sign SGD. For SGD, ∇J (t) will be
relatively small when J approaches its local minimum, ensuring
that the algorithm converges even if the learning rate is constant.
However, it fails when the gradient’s magnitude information is
ignored. As shown in Figures 4B,C, the average amplitudes of
1W do not decrease as learning iterations increase, meaning that
∇J (t) does not decrease even if J approaches its local minimum.
The result is accuracy loss.

Figure 4D demonstrates the effects of variation for RRAM
devices with 200 intermediate states; the results are similar for
RRAM devices with 50 or 500 intermediate states. To develop a
compact RRAM model with variation, we assumed that 1G is
subject to Gauss distribution (so is 1wm). The variation can be
evaluated by the ratio of the standard deviation and the mean
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value. The results show that large variation also damages the
performance of the parallel update scheme.

WEIGHTED SYNAPSES

This section proposes a new method based on weighted synapses
and explains why it optimizes the convergence of the simplified
parallel update scheme. With the help of weighed synapses,
algorithm convergence is greatly optimized, and the error rate
decreases significantly, even if the number of intermediate states
is small. Weighted synapses are also robust against the variation
of RRAM devices.

Optimization With Weighted Synapses
As analyzed above, the limited number of intermediate states
of RRAM devices causes a problem similar to the too-large
learning rate. Sign SGD brings apparent accuracy loss. Therefore,
these parallel update schemes have at least two major issues: (1)
it is challenging to generate a small enough 1wm due to the
properties of RRAM devices; and (2) too much valid information
is ignored by sign SGD. A 1-bit SGD (Seide et al., 2014; Wen
et al., 2017) is a potential solution to the second issue, although
it requires extra control logic circuits and storage. The problem
caused by the limited quantity of intermediate states, however,
still exists.

To optimize an O(1) update scheme, we propose a novel
method based on weighted synapses. It can also be applied in
1-bit SGD after slight modifications.

Asmentioned in section RRAM-basedNeuromorphic System,
a weighted synapse consists of four RRAM devices, and the value

is given byWij =

(

G+

ijH − G−

ijH

)

+k ·(G+

ijL−G−

ijL). With weighted

synapses, there are only slight changes in the calculation of 1W.
Now 1W is also calculated as Equation (7), but β ′ is no longer
sign (β). Only when the error vector from backpropagation
(β) is greater than a given threshold (T) will its corresponding
major synapse be updated. When β is greater than k · T, its
corresponding minor synapse will be updated. Otherwise, there
will be no updating procedure.

Thus, a smaller 1wm can be achieved with the same quantity
of intermediate states. Moreover, ∇J (t) decreases as J (cost
function) approaches its local minimum because there is no
updating procedure if the error vector from backpropagation (β)
is smaller than k · T.

Choosing Proper Parameters (k,T)
A proper threshold (T) can be chosen by testing some values
(such as 0.3, 0.1, 0.03, etc.), similar to choosing a learning rate.
In practice, we found that a growing threshold results in better
performance, but it also causes more difficulties in circuit design.
For a two-layer perceptron, a fixed threshold is effective.

The simulation results for different k values are demonstrated
in Figure 5. The results show that the method works well with a k
between 0.03 and 0.1. For later simulations, we chose k = 0.1.
When k is equal to 0 or 1, there is no updating procedure if
the error vector from backpropagation (β) is smaller than T. Its
updating frequency will be lower than the original parallel update
scheme; thus, its performance is comparatively better.

Simulation Results
Figure 6A shows the test error with weighted synapses. The
convergence is greatly optimized, and the error rate decreases
significantly, even if the number of intermediate states is small.
For RRAM devices with 50 intermediate states, the error rate
decreases more than fivefold (obtaining 4.9%). With more
intermediate states, the error rate declines further. For RRAM
devices with 200 intermediate states, an error rate around 3%

FIGURE 5 | Test error on the MNIST dataset after 100,000 training iterations

with different k (Taking the RRAM devices with 50 intermediate states as an

example).

FIGURE 4 | (A)Test error on the MNIST dataset by the parallel update scheme with normal synapses. The RRAM devices have 50, 200, and 500 intermediate states,

respectively. (B) The average amplitudes of 1W against learning iterations for RRAM devices with 50 intermediate states. (C) The average amplitudes of 1W against

learning iterations for RRAM devices with 200 intermediate states. (D) The effect of variation for RRAM devices with 200 intermediate states. The ratios of the

standard deviation and mean value are 0% (no variation), 100%, and 300%, respectively.
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FIGURE 6 | (A) Test error on the MNIST dataset by the parallel update scheme with weighted synapses (k = 0.1). The RRAM devices have 50, 200, and 500

intermediate states, respectively. (B) The average amplitudes of 1W against learning iterations for RRAM devices with 50 intermediate states. (C) The average

amplitudes of 1W against learning iterations for RRAM devices with 200 intermediate states. (D) The effect of variation for RRAM devices with 200 intermediate

states. The ratios of the standard deviation and mean value are 0% (no variation), 100%, and 300%, respectively.

can be achieved in 100,000 learning iterations (2 epochs of the
training set). With further learning iterations and a growing
threshold (T), the error rate can be reduced to around 2.3%,
which is comparable with the performance of other RRAM-
based systems (Burr et al., 2015; Kataeva et al., 2015; Gokmen
and Vlasov, 2016; Fuller et al., 2017). Comparing with the
average amplitudes of 1W in Figures 4B,C, the corresponding
values in Figures 6B,C are much smaller. Moreover, the values
are apparently decaying as the learning iterations increase,
guaranteeing that the equivalent ∇J (t) is quite small when
J approaches its local minimum. Both result in significantly
improved accuracy.

Figure 6D demonstrates the effect of variation for RRAM
devices with 200 intermediate states; the results are similar for
RRAMdevices with 50 or 500 intermediate states. Thus, weighted
synapses are robust against variation.

CONCLUSION

This paper proposes a new method based on weighted synapses
to optimize the parallel updating scheme in RRAM-based neural

networks. It helps address some critical issues of implementing
a parallel update scheme, such as the limited number of
intermediate states of RRAM devices and the substantial gradient
distortion. The proposed optimization method is also robust
against variation. For example, in RRAM devices with 50
intermediate states, the error rate decreases more than fivefold
(obtaining 4.9%).
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