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Relating disease status to imaging data stands to increase the clinical significance of

neuroimaging studies. Many neurological and psychiatric disorders involve complex,

systems-level alterations that manifest in functional and structural properties of the brain

and possibly other clinical and biologic measures. We propose a Bayesian hierarchical

model to predict disease status, which is able to incorporate information from both

functional and structural brain imaging scans. We consider a two-stage whole brain

parcellation, partitioning the brain into 282 subregions, and our model accounts for

correlations between voxels from different brain regions defined by the parcellations.

Our approach models the imaging data and uses posterior predictive probabilities to

perform prediction. The estimates of our model parameters are based on samples

drawn from the joint posterior distribution using Markov Chain Monte Carlo (MCMC)

methods. We evaluate our method by examining the prediction accuracy rates based

on leave-one-out cross validation, and we employ an importance sampling strategy to

reduce the computation time. We conduct both whole-brain and voxel-level prediction

and identify the brain regions that are highly associated with the disease based on the

voxel-level prediction results. We apply our model to multimodal brain imaging data from

a study of Parkinson’s disease. We achieve extremely high accuracy, in general, and

our model identifies key regions contributing to accurate prediction including caudate,

putamen, and fusiform gyrus as well as several sensory system regions.

Keywords: Bayesian spatial model, prediction, MCMC, posterior predictive probability, importance sampling,

Parkinson’s disease

1. INTRODUCTION

Functional and structural neuroimaging play important roles in understanding the neurological
basis for major psychiatric and neurological disorders such as Parkinson’s disease (PD),
schizophrenia, depression, and Alzheimer’s diseases. There is emerging interest in using imaging
and other clinical data to forecast or blindly classify subjects into subgroups, for example, defined
by disease status or more refined diagnostic categories. Classification or prediction of disease status
based on imaging data remains an active area of research and holds promise formaking a significant
clinical impact. Prediction models may have a range of applications and be beneficial for clinical
diagnosis, determining antecedents to a standard diagnosis, forecasting prognosis, and revealing
the underlying neural basis of disease, thus informing the development of future treatments.
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We use data from a study of PD as a motivating example
for our proposed methods (see section 2). Neuroimaging has
revealed various functional and structural alterations associated
with PD. There have been reports of cortical cortical thinning
in PD patients determined from T1-MRI scans (Lee et al.,
2013; Zarei et al., 2013; Zhang et al., 2015), decreased fractional
anisotropy in the substantia nigra revealed by diffusion tensor
imaging (DTI) (Vaillancourt et al., 2009), and functional
connectivity, structural connectivity, and volumetric PD-related
changes revealed by a multimodal imaging analysis (Bowman
et al., 2016). These and other related studies suggest the utility
of imaging data in revealing neuropathophysiology related the
loss of dopamine producing neurons in PD and prompt the need
for new methods to accommodate high-dimensional multimodal
data.

Regularization and variable selectionmethods such as the least
absolute shrinkage and selection operator (LASSO) (Tibshirani,
1996) and elastic-net (Zou and Hastie, 2005) as well as
support vector classifiers are commonly used to predict a single
scalar-valued outcome from high-dimensional data. Support
vector classifiers, which arise from support vector machines
(SVM), classify the data by constructing an optimal separating
hyperplane in a high dimensional space to which the data
are mapped (Cortes and Vapnik, 1995). Gaussian process (GP)
models provide an alternative approach, which finds the posterior
function that is closest to the training data based on Bayesian
theory (Marquand et al., 2010). Ham and Kwak (2012) propose
a boosted-principal component analysis (PCA) algorithm for
binary classification problems that combines feature selection
and classification.

Several methods have been proposed to predict follow-up
imaging scans from baseline scans (Guo et al., 2008; Derado et al.,
2013). Guo et al. (2008) propose a Bayesian hierarchical model
for functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) data; Derado et al. (2013) extends
the model by introducing both spatial correlations between
voxels and temporal correlations between baseline and follow-
up functional imaging scans. For structural data, Stonnington
et al. (2010) propose a relevance vector regression (RVR) model
to predict the clinical scores using MRI T1 weighted scans.

Predicting disease status utilizes a potentially massive number
of independent variables that exhibit unknown patterns of
correlation. The prediction and classification models described
above do not estimate the spatial correlations in imaging scans
or capture the associations between different imaging modalities.
We build on ideas of spatial modeling for correlated imaging
data for our prediction framework. Specifically, we propose a
novel Bayesian hierarchical model to predict disease status using
imaging scans of different modalities in both gray and white
matter to reflect the functional as well as the structural properties
of the brain. We consider a two-level brain parcellation, dividing
the brain into defined regions as well as subregions within
regions, and assume different spatial correlation structures
between voxels within a subregion, within a region, and in
different regions. We perform Markov Chain Monte Carlo
(MCMC) estimations via Gibbs sampling. The predictions for
disease status are conducted based on the predictive posterior

probabilities. Both whole-brain and voxel-level predictions are
performed using leave-one-out cross validation (LOOCV). Also,
we conduct feature selection to identify the regions that are
associated with the disease based on the voxel-level prediction
results. We apply our approach to a PD study and conduct
simulation studies to evaluate its performance.

2. PARKINSON’S DISEASE DATA

This research qualifies as Research of Existing Data, Records,
Specimens [Basic Exempt Criteira 45 CFR 46.101(b)(4)], and has
been deemed Not Human Subjects Research (HS Code 10 in
IPMAC II as reference in the manual chapter 7410) by NIH and
Columbia University Medical Center Institutional Review Board
(Protocol: IRB-AAAO0062).

The data were originally collected at Emory University (P50-
NS071669) and were supplied to Columbia with all subjects’
records de-identied. Written and informed consent was obtained
from all research participants at the time of data collection.

A total of 20 subjects, 11 of which are diagnosed as early
to moderate PD patients and the rest are healthy controls, are
included in the study. The average age is 66 (s.d.= 11) years, and
12 of the subjects are males. The mean duration of disease was 8.4
years (s.d. = 3.3). The average height is 175 cm and the average
weight is 79 kg. Resting-state fMRI scans, and T1-weighted MRI
scans, and diffusion tensor imaging (DTI) scans are obtained.

A Siemens Trio Tim 3T MRI scanner was used to capture all
the imaging scans. MPRAGE was used to acquire the structural
T1 scans (TR= 2,600 ms, TE = 3 ms, 192 sagittal slices at 1 mm;
256 × 232 1 mm isotropic pixels). The resting-state fMRI scans
were acquired using echo planar imaging (EPI) (TR = 3,000 ms,
TE = 30 ms, 48 axial slices at 3 mm, 128 × 128 2mm isotropic
pixels) for each subject. DTI data were captured using a biphase
approach with consecutive left-to-right and right-to-left phase
scans. The subjects followed a DTI protocol (TR = 8,700 ms, TE
= 94ms, 64 axial slices at 2mm, 128× 128 2mm isotropic pixels)
comprised of 64 directions (B= 1,000 s/mm2), with three leading
and three trailing B0 scans.

We extract voxel-level information from these three imaging
modalities, including fractional amplitude of low-frequency
fluctuation (fALFF) from resting-state fMRI scans, voxel based
morphometry (VBM) from T1-weighted MRI scans, and
fractional anisotropy (FA) from DTI scans. fALFF reflects
the amplitude of spontaneous blood-oxygen-level-dependent
(BOLD) signal fluctuations of each voxel. VBM measures the
localized gray matter volume changes in each voxel after spatially
normalizing all the images to a standard space, and extracting
gray matter from the normalized images (Ashburner and Friston,
2000). FA has a single value for each voxel, measuring the
difference in directions along different axes of the random
motion of water molecules in the brain, which reflects the
physical orientation of white-matter fibers at that location. In
summary, fALFF provides functional information, while FA and
VBM describe structural properties of the brain.

The image preprocessing was performed using statistical
parametric mapping (SPM) (Wellcome Department of Cognivite
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Neurology, http://www.fil.ion.ucl.ac.uk/spm) and FMRIB
(Functional Magnetic Resonance Imaging of the Brain) Software
Library (FSL) (Smith et al., 2004). Resting state preprocessing
consisted of a despiking stage, slice time correction, motion
correction, spatial normalization to MNI and smoothing by
6 mm FWHM. The time courses were filtered to the band
0.01–0.1Hz.

3. METHODS

We propose a novel Bayesian hierarchical model to predict
disease status using imaging data from different modalities,
including fALFF, VBM, and FA. For resting-state fMRI scans
and DTI scans, the functional and structural information lies in
gray matter and white matter, respectively. Most VBM analyses
focus on gray matter, which will be the focus of our upcoming
data example; however, applications of VBM in white matter has
also been found to be associated with psychiatric diseases such as
Alzheimer’s diseases and schizophrenia (Di et al., 2009; Li et al.,
2011). Potentially, our prediction model involves the voxels in
gray and/or white matter for different imaging modalities.

3.1. Model and Estimation
We consider a two-level brain parcellation, initially consisting
of G = 90 brain regions defined by the automated anatomic
labeling (AAL) system (Tzourio-Mazoyer et al., 2002). In each
region g, we define Lg subregions, ranging from 1 to 9, for g =

1, . . . ,G. The subregions are built based on the brain parcellation
algorithms described in Appendix 1 (Supplementary Material).
Each subregion l is composed of Vl voxels. Let Xilg(v), Yilg(v)
and Zilg(v) respectively denote the observed fALFF, FA and VBM
measures for subject i at voxel v in subregion l and region g, for
i = 1, . . . , n, v = 1, . . . ,Vl, l = 1, . . . , Lg . Let Ng(l) ⊆ {1, . . . , Lg}
denote the neighboring subregions of subregion l, constrained to
fall within region g, and nlg is the number of members in Ng(l).
In our model, all the subregions in region g are considered as
neighbors of subregion l; therefore, we have Ng(l) = {1, . . . , Lg},
and nlg = Lg . LetDi ∈ {0, 1} denote the disease status (here, PD),
where 1 indicates PD; and Wi = (Wi1, · · · ,WiQ) denotes the
vector ofQ covariates. LetB,W and G respectively represent the
whole brain region, the white matter region and the gray matter
region.

We propose a model that accounts for the spatial correlations
between voxels within the same subregion, between subregions
within the same region, and between regions. Building spatial
correlations into our model captures associations between
different brain regions and generally improves the precision
of estimates by borrowing strength from other (sub)regions.
First, our model assumes consistent correlations between voxels
in a same subregion. Then the spatial correlations between
subregions within the same AAL region are described by
a conditional autoregressive (CAR) model, which allows the
estimates at subregion levels to borrow strength from their
neighbors within the same AAL region. In addition, we introduce
unstructured spatial correlations between AAL regions.

Our model reflects the assumption that for each voxel v in the
gray matter, the fALFF value Xilg(v) follows a normal distribution

conditioning on the VBM value Zilg(v); for each voxel v in the
white matter, the FA value Yilg(v) follows a normal distribution
conditioning on the VBM value Zilg(v); and for each voxel v
included in the analysis, the VBM value Zilg(v) follows a normal
distribution. The proposed model has the following hierarchical
structure:

For any v ∈ G, [Xilg(v) | Zilg(v),Di,Wi, • ] ∼ N
{

µxz
lg (v), δ

xz
lg

}

,

for any v ∈ W , [Yilg(v) | Zilg(v),Di,Wi, • ] ∼ N
{

µ
yz

lg
(v), δ

yz

lg

}

,

for any v ∈ B, [Zilg(v) | Di,Wi, • ] ∼ N
{

µz
lg(v), δ

z
lg

}

,

where

µxz
lg (v) =

∑

k=0,1

[cxzklg(v)(Zilg(v)− Z̄lg(v))+Wiγ
x
klg(v)+ βx

klg(v)

+ αx
ilg + ηxkg]I(Di = k),

µ
yz

lg
(v) =

∑

k=0,1

[c
yz

klg
(v)(Zilg(v)− Z̄lg(v))+Wiγ

y

klg
(v)+ β

y

klg
(v)

+α
y

ilg
+ η

y

kg
]I(Di = k),

µz
lg(v) =

∑

k=0,1

(Wiγ
z
klg(v)+ βz

klg(v)+ αz
ilg + ηzkg)I(Di = k).

We assume that the probability of disease status P(Di = ki)
is a constant, and independent of all the parameters. Also, we
assume conditional independence among voxel measures of the
same modality within the same subregion. The mean structure
of the model is composed of several parameters, conditional on
disease status. cklg(v) is the slope term for centered VBM values;
γ klg(v) = (γklg1(v), · · · , γklgQ(v))

′ is the parameter vector for
covariates; βklg(v), αilg , and ηkg are the voxel-level intercept term,
subregion level random effect, and region level intercept term,
respectively. Each imaging modality is assumed to have the same
subregion-level variance δlg for both subject groups.

The prior beliefs about the parameters included in the
likelihood function are expressed in the second or lower levels
of the model.

We also assume that

cxzklg(v) ∼ N(ζ xz
klg ,ω

xz
klg), ζ xz

klg ∼ N(aζ , bζ ), ωxz
klg ∼ InvG(aω , bω),

c
yz

klg
(v) ∼ N(ζ

yz

klg
,ω

yz

klg
), ζ

yz

klg
∼ N(aζ , bζ ), ω

yz

klg
∼ InvG(aω , bω),

γm
klgq(v) ∼ N(0, smklg), smklg ∼ InvG(as, bs),

βm
klg(v) ∼ N{βm

klg , λ
m
klg}, λmklg ∼ InvG(aλ, bλ),

The slope cklg(v) follows a normal distribution, whose mean
and variance are drawn from noninformative hyperpriors.
Each covariate parameter γklgq(v) is assumed to arise from a
normal mean-zero distribution with variance sklg , which has a
noninformative hyperprior distribution. Parameters βklg(v) that
fall within the same subregion are assumed to follow normal
distributions with common mean βklg , and variance λklg . We
assume a noninformative distribution for λklg , and as described
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in detail below, we use a spatial prior for βklg to incorporate
spatial correlations between subregions. ηk follows a multivariate
normal distribution with mean 0 and covariance matrix 6k

whose off-diagonal elements capture spatial dependence between
AAL regions. Spatial associations between voxels within each
subregion are introduced by the individualized random effect
term αilg , which follows a mean-zero normal distribution with
variance τlg , thus assuming the same spatial correlations between
voxels in the same subregion.

We assume a CAR model for βm
klg

as follows:

[βm
klg | {β

m
kl′g}l′ 6=l, • ] ∼ N







ρm
g

nlg

∑

l′∈Ng (l)

βm
kl′g ,

φm
g

nlg







,

ρm
g ∼ U({0, 0.05, 0.1 · · · , 0.8, 0.81, · · · , 0.9, 0.91, · · · , 0.99}),

φm
g ∼ InvG(aφ , bφ),

αm
ilg ∼ N(0, τmlg ), τmlg ∼ InvG(aτ , bτ ),

ηmk = (ηmk1, . . . , η
m
kG)

′
∼ N(0,6m

k ), 6m
k ∼ InvW(3, ν),

δxzlg ∼ InvG(aδ , bδ), δ
yz

lg
∼ InvG(aδ , bδ),

δzlg ∼ InvG(aδ , bδ), wherem ∈ {x, y, z}.

By assuming a subregion level CARmodel, we capture the spatial
dependence between subregions within each AAL region. In the
model, ρg represents the overall degree of spatial dependence

in region g and
φg

Lg
is the conditional variance of βklg . The

neighborhood of subregion l ∈ g, is defined as all the other
subregions in AAL region g. The spatial neighborhood effect ρg
is assumed to follow a discrete uniform distribution (Gelfand and
Vounatsou, 2003). As we would like to identify the similarity of
the neighboring subregions, we impose 0 ≤ ρg < 1. Specifically,
equal mass is put on the following 36 values: 0, 0.05, 0.1, ..., 0.8,
0.81, 0.82, ..., 0.90, 0.91, 0.92, ..., 0.99, which includes a more
refined set of values in the upper range of ρg since estimation of
ρg for imaging data often tends toward large values.

For any disease status k, the covariance between the voxels
within a same subregion l in region g is contributed by
the variance from three components: βklg , αilg , and ηkg ; the
covariance between the voxels in two subregions l and l′, but
the same AAL region g, comes from the covariance between βklg

and βkl′g , and the variance of ηkg ; and the covariance between
the voxels in two AAL regions g and g′ is determined by the
covariance of ηkg and ηkg′ .

We perform estimation using Markov chain Monte Carlo
(MCMC) implemented via Gibbs sampling. The full conditional
posterior distributions are shown in Appendix 2 (Supplementary
Material).

3.2. Prediction
3.2.1. Whole Brain Prediction

The objective of our model is to predict PD status, given
imaging data and other covariates. To achieve this goal, we use

the posterior samples drawn from estimation to calculate the
posterior predictive probability of disease status.

Let θ denote the parameter space, Bi = (Xilg ,Yilg ,Zilg) denote
the observed imaging data for subject i, and Ai = (Bi,Di) denote
the combination of the imaging data and disease status. Suppose
we have n training subjects, and we want to predict the disease
status Dn+1 for a new subject indexed by n + 1. The posterior
predictive distribution for Dn+1 is given by

P(Dn+1 = k | Bn+1, {Ai}
n
i=1)

=
P(Dn+1 = k,Bn+1 | {Ai}

n
i=1)

∑

k′=0,1 P(Dn+1 = k′,Bn+1 | {Ai}
n
i=1)

=
P(Dn+1 = k)

∫

θ
P(Bn+1 | Dn+1 = k, θ)P(θ | {Ai}

n
i=1)dθ

∑

k′=0,1 P(Dn+1 = k′)
∫

θ
P(Bn+1 | Dn+1 = k′, θ)P(θ | {Ai}

n
i=1)dθ

,

(1)

where

P(Bn+1 | Dn+1 = k, θ) =
∏

v∈G

P(Xn+1(v) | Zn+1(v),Dn+1 = k, θ)

P(Zn+1(v) | Dn+1 = k, θ)
∏

v∈W

P(Yn+1(v) | Zn+1(v),Dn+1 = k, θ)

P(Zn+1(v) | Dn+1 = k, θ), (2)

Suppose we draw T posterior samples, denoted θ (t), from P(θ |

{Ai}
n
i=1), for t = 1, · · · ,T. Letting π

(t)
k

= P(Bn+1 | Dn+1 =

k, θ (t)), the posterior predictive probability can be expressed by

P̂(Dn+1 = k | Bn+1, {Ai}
n
i=1) =

P(Dn+1 = k)
∑T

t=1 π
(t)
k

∑

k′=0,1 P(Dn+1 = k′)
∑T

t=1 π
(t)
k

.

(3)

Then ultimately the prediction of Dn+1 is given by

D̂n+1 = argmax
k

(

P(Dn+1 = k)

T
∑

t=1

π
(t)
k

)

. (4)

To evaluate the performance of our method, we calculate the
prediction accuracy using LOOCV.

Applied directly, LOOCV is very computational expensive
because it involves multiple posterior simulations with tens of
thousands voxels included in the analysis. Therefore, we employ
an importance sampling approach to reduce the computation
for LOOCV of our model (Gelfand et al., 1992; Gelfand, 1996;
Alqallaf and Gustafson, 2001; Vehtari and Lampinen, 2002).
Specifically, the LOOCV predictive probabilities can be expressed
by

P(Di = k | Bi,A−i) =
P(Di = k)Qkdi

∑

k′=0,1 P(Di = k′)Qk′di

, (5)

where

Qkdi =

∫

P(Bi | Di = k, θ)

P(Bi | Di = di, θ)
P(θ | {A}ni=1)dθ , (6)
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and di is the observed disease status for subject i. Next, we provide
the details of how Qkdi is derived. The posterior predictive
probability can be written as follows:

P(Di = k | Bi,A−i)

=

∫

P(Di = k | Bi, θ)
P(θ | Bi,A−i)

P(θ | Bi,Di = di,A−i)

P(θ | Bi,Di = di,A−i)dθ . (7)

Therefore,

P(Di = k | Bi,A−i)

P(Di = di | Bi,A−i)
: =

P(Di = k)

P(Di = di)
Qkdi . (8)

By using the fact that
∑

k=0,1 P(Di = k | Bi,A−i) = 1, we have

P(Di = di | Bi,A−i) =
P(Di = di)

∑

k=0,1 P(Di = k)Qkdi

, (9)

thus leading to the above LOOCV predictive probability
Equation (5). For i = 1, · · · , n and k = 0, 1, compute

Q̂kdi =
1

T

T
∑

t=1

P(Bi | Di = k, θ (t))

P(Bi | Di = di, θ
(t))

. (10)

The estimate of Di is

D̂i = argmax
k

(

P(Di = k)Qkdi

)

. (11)

Since there are only two possible values for Di, we only need to
calculate P(Bi | Di = k, θ (t)) and P(Bi | Di = di, θ

(t)), where
k 6= di, for each subject i.

3.2.2. Voxel-Level Prediction

We also consider the use of imaging data Bi(v) =

(Xilg(v),Yilg(v),Zilg(v)) for subject i at voxel v to predict
the disease status Di. Similar to Equation (5), the voxel-level
LOOCV predictive probabilities can be expressed by

P(Di = k | Bi(v),A−i) =
P(Di = k)Qkdi

∑

k′=0,1 P(Di = k′)Qk′di

, (12)

where

Qkdi =

∫

P(Bi(v) | Di = k, θ)/
∑

k′=0,1 P(Bi(v) | Di = k′, θ)P(Di = k′)

P(Bi | Di = di, θ)/
∑

k′=0,1 P(Bi | Di = k′, θ)P(Di = k′)
P(θ | {Ai}

n
i=1)dθ , (13)

which is estimated by

Q̂kdi =
1

T

T
∑

t=1

P(Bi(v) | Di = k, θ (t))/
∑

k′=0,1 P(Bi(v) | Di = k′, θ (t))P(Di = k′)

P(Bi | Di = di, θ
(t))/

∑

k′=0,1 P(Bi | Di = k′, θ (t))P(Di = k′)
. (14)

Then the estimate of Di is

D̂i = argmax
k

(

P(Di = k)Qkdi

)

, (15)

which is equivalent to

D̂i = argmax
k

(

P(Di = k)
1

T

T
∑

t=1

P(Bi(v) | Di = k, θ (t))

)

. (16)

Qkdi is derived in the similar way as in the whole brain analysis.
The derivation of Equation (14) is described in Appendix 3
(Supplementary Material).

The voxel-level prediction result can be used as a way to select
the regions that are highly associated with PD if the prediction
accuracy is high in these regions. An alternative approach
to perform feature selection using our model is discussed in
section 5.

4. RESULTS

4.1. Parkinson’s Disease Data
We applied our proposed Bayesian spatial model to PD data,
which has T1 and resting-state fMRI images available; therefore,
ourmodel reduces to one which includes two imagingmodalities,
VBM and fALFF, and only considers data in the gray matter.
We generate predictions of PD based on multimodal imaging
data aggregated across the whole brain, and we provide voxel-
level predictions as well. By evaluating the prediction accuracy
at each voxel, we are able to identify brain regions that are
highly associated with Parkinson’s disease as an alternative to
performing feature selection.

In the estimation procedure, the hyperparameters for the
prior distribution are set to provide vague information to
ensure that the results are dominated by the information in the
data. Specifically, all the hyperparameters in the inverse-gamma
distribution are set to 10−3 (Spiegelhalter et al., 1994/2003), the
normal prior for ζklg is assumed to have mean aζ = 0 and

variance bζ = 105. In the inverse-Wishart distribution, the
degrees of freedom ν should be greater than G − 1 to build a
proper distribution, so we set ν = G, which provides the least
information based on our data. The scale matrix 3 is set as
10−3 × IG, where IG is a G× G identity matrix.

We perform a total of 10,000 MCMC iterations including
5,000 burn-in iterations, and store the results thinning by 10. Due

to the massive number of parameters in our model, we randomly
check trace plots for parameters at the voxel-level, subregion-
level, and region-level, respectively. We provide some examples
in Appendix 4 (Supplementary Material).
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FIGURE 1 | The distribution of average accuracy rates for prediction across

subjects for all the voxels included in the analyses.

TABLE 1 | Summary of average accuracy rates for prediction across subjects.

Accuracy rate [80%, 85%) [85%, 90%) [90%, 95%) [95%, 100%) 100%

Number of voxels 5,993 9,663 12,878 14,236 12,764

(Percentage) (9.97) (16.07) (21.42) (23.68) (21.23)

After estimating the model parameters, we perform a whole-
brain and voxel-level prediction using posterior samples based
on procedures described in section 3.2. Here, we have a total
of 500 posterior samples after thinning. By assuming an equal
probability for classification as a PD patient and a control
subject, our model achieves 100% accuracy from the whole-brain
prediction based on LOOCV.

The results from voxel-level prediction provide interesting
information as well. The highest voxel-level accuracy rate is
100%, and the lowest is near 50%. Figure 1 shows the distribution
of the average accuracy rate across subjects for all the voxels
included in the analysis. Table 1 gives the number of voxels
(percentage) achieving accuracy rates higher than 80%. Also, an
average whole-brain prediction map based on the results from
voxel-level prediction across subjects are presented in Figure 2.

To identify the regions which are predictive for disease status,
we compute the average accuracy rates across voxels within a
region, and Table 2 shows the regions that have accuracy rate
above 95%. Table 2 also shows the percentage of voxels exceeding
90% accuracy rates for those regions. The right rectus gyrus,
which is associated with cognitive impairment in PD patients,
and is shown to have different gray matter density between PD
and controls (Nagano-Saito et al., 2005), is identified in our
analysis. The precentral gyrus, which is part of the primary motor
cortex, is identified among the most accurate brain regions,
and its performance is consistent with the involvement of this
region in planning and initiating motor movements, which
is critically impaired in patients with PD. We also find the

TABLE 2 | List of regions with above 95% average accuracy rate across voxels.

Region Accuracy rate Percentage of voxels

with accuracy rate > 90%

Left postcentral 99.9% 42.6%

Right rectus 99.3% 52.2%

Left inferior parietal 99.3% 90.2%

Right superior medial frontal 99.0% 61.1%

bilateral caudate and the left putamen as regions with accurate
predictions. The caudate and putamen, two regions comprising
the dorsal striatum, exhibit marked pathologic changes from PD,
linked to the loss of dopaminergic neurons in the substantia
nigra which projects to striatal neurons in the caudate nucleus
and putamen (Spencer et al., 1992). The right fusiform gyrus,
which is believed to related to impaired ability to correctly
identify negative facial expressions (Geday et al., 2006), and the
left inferior parietal lobule which is involved in the perception
of emotions in facial stimuli, may play a role of differentiating
healthy controls and PD patients as well. Other regions which are
involved in face perception such as the right mid-temporal pole
are also identified. The left postcentral gyrus, the left superior
parietal lobule, and the right superior medial frontal gyrus also
stand out since all of them are part of the sensory system. A
region-level prediction map based on the average accuracy rates
across voxels within a region is shown in Figure 3.

4.2. Simulation Studies
We conduct a simulation study to evaluate the performance of
our proposed model. The purpose of this simulation study is
to show that the MCMC generated samples from our model
accurately target the true values and that the whole-brain
prediction is accurate. In addition, we demonstrate that our
model can distinguish regions that are predictive of disease status.

We assume that the imaging data are generated from the
likelihood function of our model. We simulate data for 25
subjects from three AAL regions, the number of subregions
within an AAL region has a mean and variance of 3, and the
number of voxels within a subregion has a mean and variance of
50.We specify the true values for the parameters in the likelihood
function, i.e., cklg(v), γklg(v), βklg(v), αilg , ηkg , and δlg , which are
the most relevant parameters for voxel-level inference and future
prediction. In this way, we can compare our posterior estimations
with specified true values. All the other parameters are updated
from the posterior distributions. And the hyperparameters are
set to be the same as in data from PD study. We select some
subregions to be the ones that are associated with PD, and a
region is classified into this category if it contains those selected
subregions. We set different true values of parameters for disease
and non-disease group if they are within the pre-specified regions
and otherwise assume that the true values are the same the for
two groups. A total of 100 data sets are drawn in the simulation
study. The programming is implemented in Matlab, and the
computation is performed on a Linux cluster with 16 GB of RAM.
Execution time is approximately 3–4 h for one data set.
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FIGURE 2 | The average prediction map based on the voxel-level prediction results across subjects.

FIGURE 3 | The region-level prediction map based on the average accuracy rates across voxels within a region.

First, we evaluate the posterior estimates by comparing the
posterior means to the true values. Instead of examining a
total of five thousand parameters which have known true values
separately, we calculate the mean structure and variance of

the likelihood function from posterior samples and compare
them to the truth since they are the most essential for
inferences and predictions. The average bias (percentage change)

in mean structure is 3.52 × 10−2 (0.54%), and in variance

is 1.04 × 10−5 (1.04%). Secondly, we calculate the accuracy
of whole-brain prediction. The LOOCV achieves 100% for

the whole-brain prediction for all 100 simulated data sets.
Thirdly, we identify the regions that are highly associated
with disease status by evaluating the voxel-level accuracy rates
for prediction. We compare the average accuracy for voxel-
level prediction between the pre-specified regions and the
others. Within the pre-specified regions, the average accuracy
rate is 99.8%; for voxels which are in the other regions,
the average accuracy rate is 71.7%. Here, we can see an
improvement in prediction when voxels are from the pre-
specified regions.

In comparison, we apply the elastic-netmodel to the simulated
data as described above, and the LOOCV achieves an average of
86% accuracy rate for the whole-brain prediction.

In summary, our model accurately performs posterior
estimation with small bias, provides accurate prediction of PD
status using whole-brain imaging data, and correctly identifies
the regions that are highly associated with disease.

5. DISCUSSION

We propose a Bayesian spatial model to predict PD using
different modalities of imaging data, including fALFF, VBM, and
FA in gray and white matter. Our framework performs voxel-
level estimation for imaging data and conducts whole-brain
and voxel-level prediction of disease status based on posterior
predictive probabilities. Our model estimates both the mean and
covariance structures of imaging data, predicting disease status
using whole-brain imaging data, and identifying the regions
which are highly associated with the disease based on voxel-level
prediction results.
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In our framework, we consider spatial correlations at
voxel level, subregion level, and region level, and specify
different correlation structures such as exchangeable, CAR, and
unstructured correlation matrices for them. The rich hierarchical
spatial correlation structures captured by our model extends
previous spatial modeling frameworks by Bowman et al. (2008)
and Derado et al. (2013). The intra-subregion correlation in our
model is described by a single value within each subregion; the
inter-subregion correlation is modeled by a CAR model which
borrows information from the subregions within the same parent
AAL region; the inter-region correlation is assumed to have a
unstructured correlation matrix.

We derive the posterior predictive probability using whole
brain data and data from a single voxel. Due to the complexity
of computation, we adopt an importance sampling strategy to
conduct LOOCV. The importance sampling techniques estimate
the LOOCV error rate based only on one-model fitting using
all samples and produces very accurate estimate on the LOOCV
error rate. We evaluate the accuracy rate of the whole-brain
prediction and identify the regions that are predictive for disease
based on the results from voxel-level accuracy rates. Our model
accounts for spatial correlations embedded in the data; however,
additional multiple testing strategies could be explored to
account for potential dependence inherent in the data. Ourmodel
increases localization compared to some approaches by offering
voxel-level predictions. While we incorporate information from
multiple modalities, we are unable to dissociate the relative
predictive accuracy generated by each modality.

One weakness of our method is computational time since
we use a joint model that performs estimation at the voxel-
level. However, by applying the importance sampling strategy,
we only need to perform the posterior estimation once, and
then the posterior predictive probabilities can be computed fairly
efficiently.

Compared to the existing feature selection methods, e.g.,
LASSO or elastic-net, our model uses a different modeling
strategy and different criteria for selection. LASSO and elastic-
net model the probability of PD, while our method starts from
modeling the imaging data. This distinction leads to an important
advantage that we are able to estimate and borrow strength from
the spatial correlations in the data, whereas highly correlated
predictors often lead to poor performance of the LASSO and
related methods. Also, we use posterior predictive probability
as the criteria to select the features, which is the exact target
of prediction problems; on the other hand, LASSO and elastic-
net, from a Bayesian perspective, use posterior modes to perform
feature selection. Ourmodel also has interpretive advantages over
SVM and GPmodels by identifying particular voxels, subregions,
or regions that contribute significantly to accurate prediction.
Compared to the methodology of scalar-on-image regression

(Goldsmith et al., 2014; Reiss et al., 2015; Kang et al., 2016; Wang
et al., 2017), our method models the images as the response,
which is a natural generative process, and then we predict the
disease distribution given the imaging scans.

In summary, the advantages of our proposed Bayesianmethod
are three fold. First, it is more straightforward to incorporate
prior knowledge regarding brain function and structure, which

is extremely useful to improve the prediction accuracy and to
provide a better understanding of the etiology. Second, it yields
estimates and inference from the full posterior distribution, e.g.,
rather than point estimates. In particular, it can provide measures
of uncertainty of the predictions based on the posterior predictive
distribution. In addition, the posterior computation based on the
MCMC algorithm is more robust to complex imaging data, while
the optimization algorithms for other frequentist prediction
methods are more likely to be trapped at the local modes, which
may reduce the prediction accuracy.

In our method, we select features based on the posterior
predictive probability of each voxel; ideally, we would like to
identify the voxels v ∈ V s.t.

P(Di = k | {Bi(v)}v∈V ,A−i) = P(Di = k | Bi,A−i), (17)

which could be a possible extension of our proposed approach.
For Parkinson’s disease, our model may not immediately

supplant current clinical standards to diagnose patients at or
near the manifestation of motor symptoms. However, our model
stands to provide insights into the useful information for the
diagnosis of PD, underlying neurophysiological basis of the
disease, potentially early pre-motor alterations, and effective
strategies to design studies examining potential neuroprotective
treatments with consideration of the cost and complexity as well
as extensive validation and comparison to current standards.
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