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Event-related potentials (ERPs) are often used in brain-computer interfaces (BCIs) for

communication or system control for enhancing or regaining control for motor-disabled

persons. Especially results from single-trial EEG classification approaches for BCIs

support correlations between single-trial ERP detection performance and ERP

expression. Hence, BCIs can be considered as a paradigm shift contributing to new

methods with strong influence on both neuroscience and clinical applications. Here, we

investigate the relevance of the choice of training data and classifier transfer for the

interpretability of results from single-trial ERP detection. In our experiments, subjects

performed a visual-motor oddball task with motor-task relevant infrequent (targets),

motor-task irrelevant infrequent (deviants), and motor-task irrelevant frequent (standards)

stimuli. Under dual-task condition, a secondary senso-motor task was performed,

compared to the simple-task condition. For evaluation, average ERP analysis and

single-trial detection analysis with different numbers of electrodes were performed.

Further, classifier transfer was investigated between simple and dual task. Parietal

positive ERPs evoked by target stimuli (but not by deviants) were expressed stronger

under dual-task condition, which is discussed as an increase of task emphasis and brain

processes involved in task coordination and change of task set. Highest classification

performance was found for targets irrespective whether all 62, 6 or 2 parietal electrodes

were used. Further, higher detection performance of targets compared to standards was

achieved under dual-task compared to simple-task condition in case of training on data

from 2 parietal electrodes corresponding to results of ERP average analysis. Classifier

transfer between tasks improves classification performance in case that training took

place on more varying examples (from dual task). In summary, we showed that P300
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and overlaying parietal positive ERPs can successfully be detected while subjects are

performing additional ongoing motor activity. This supports single-trial detection of ERPs

evoked by target events to, e.g., infer a patient’s attentional state during therapeutic

intervention.

Keywords: P300, prospective positivity, single-trial classification, classifier transfer, human-machine interaction

1. INTRODUCTION

In many brain-computer interface (BCI) applications (Vidal,
1973;Wolpaw et al., 2002) the detection of the well-known event-
related potential (ERP) P300 is used for communication (Farwell
and Donchin, 1988; Riccio et al., 2011) or control of
computer programs and machines, including complex virtual
environments such as a virtual apartment (Bayliss, 2003) or
robots (Kim et al., 2014), which can be used with the goal of
compensating for motor actions that a patient cannot carry out.
In such settings, the attention of the user is clearly focused on
the presented stimuli used for control purposes or the control
task itself. On the other hand, in embedded Brain Reading (eBR)
applications (Kirchner et al., 2010, 2013; Woehrle and Kirchner,
2014b,a; Kirchner et al., 2016) a P300 might be evoked by stimuli
that are part of an human-machine interaction (Kirchner et al.,
2016). For example, in our previous study (Kirchner et al.,
2016), the strength of P300 expression evoked by stimuli that
are inherently part of the interaction task can directly be used
to estimate the workload of the user in, e.g., a teleoperation
scenario. Thus, it was not necessary to add an extra task which
has usually been performed to investigate the effect of different
parameters on the workload such as in previous studies (Isreal
et al., 1980; Allison and Polich, 2008; Käthner et al., 2014). This
indicates that single-trial ERP classification can be used not only
for control purposes in BCIs but also as ameasure for the strength
in expression of ERPs in single trial to infer e.g., on the workload
of a user online. This is a good example that BCIs can contribute
to a paradigm shift in EEG analysis.

BCIs have also been applied to detect motor-related brain
activity in single trials for rehabilitation purposes (McFarland
et al., 2010; Folgheraiter et al., 2012; Ramos-Murguialday et al.,
2013; Donati et al., 2016; Osuagwu et al., 2016). As with the
P300-based BCIs that are applied for control purposes, online
estimation of the attentional state of a patient might also be
of relevance in rehabilitation application. During a therapeutic
intervention it might be useful to combine both the detection of
activity evoked by target recognition as well as activity evoked
by the planning of motor activity. For example, the task of
a patient in a therapeutic intervention is to try to move the
affected arm. This task can be commanded by an event in a
serious game for rehabilitation or given by the therapist (Wöhrle
et al., 2017). Based on the strength of P300 expression, the strain
on the patient could be estimated and the game automatically
be adapted. Hence, for motor rehabilitation applications, i.e.,
therapeutic interventions, it is very relevant to infer how well
a patient is able to attend therapy to avoid to overstrain him
or her and consequently get best results in therapy. Our earlier

work showed that motor activity can be detected in conditions
that are highly interactive, i.e., involving complex mental and
motor activities of the human (Kirchner and Drechsler, 2013;
Kirchner et al., 2013; Woehrle and Kirchner, 2014a) and not only
under conditions in which a subject tries to mentally control a
rehabilitation device. However, the influence of multi-tasking on
ERP expressions that are related with target recognition has not
been well investigated for multi-motor-tasking but often only for
a combination of a mental, visual or audio task with a visual or
visual-motor task (Isreal et al., 1980; Kramer et al., 1995; Käthner
et al., 2014; Ke et al., 2016).

In the presented study, we developed a scenario which allows
to investigate the effect of multi-tasking on ERP expression
that is related with recognition of task-relevant information,
which elicits a combination of P300 components. P300 is a
well-known ERP evoked by infrequent stimuli which is in some
way perceived and attended by subjects (Isreal et al., 1980;
Polich, 2007). Depending on the application and relevance of
the infrequent stimuli, different types of P300 components are
expected to be evoked. The more frontocentral P3a is known
to be evoked by deviant non-target events, the parietocentral
P3b is evoked by the evaluation of stimuli that require an
overt or covert response, and the frontal novelty P3 mainly
reflects involuntary attention shifts (Squires et al., 1975; Duncan-
Johnson and Donchin, 1977; Verleger et al., 1994; Polich, 2007).
In most eBR applications and many other BCI applications,
a combination of P300 sub-components is likely evoked. For
example, when teleoperating robots with an interface that gives
additional feedback on the situation within the environment of
the robot or on the situation of the robot itself (see for example
Kirchner et al., 2016), information might be presented that has
a task-relevance for the operator, i.e., the operator has to react
on them. Other information might be infrequent but irrelevant
for the behavior of the operator. A similar example can be
given for rehabilitation applications. An instruction given by the
therapist is usually task-relevant. Additional information, e.g.,
on performance of the patient that is infrequent and will be
attended but is not directly task relevant can be provided by,
e.g., a serious game or the therapist. Hence, in both types of
application, it is expected that different P300 components can be
evoked, i.e., P3a on task-irrelevant infrequent stimuli, P3b evoked
by task-relevant infrequent stimuli and even frontal novelty P3
can be expected to be evoked by novel unexpected events. This
is different to classical experimental settings under controlled
conditions of, e.g., an oddball discrimination task (Picton, 1992),
where only specific stimuli are presented that are expected
to evoke specific ERPs, i.e., task-irrelevant infrequent stimuli
will evoke a P3a and not a P3b. It is therefore of interest to
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investigate ERP activity under less controlled application-close
conditions.

Most studies using multi-tasking paradigms which are
related to target recognition have investigated P300 expression
depending on different task conditions (e.g., different workload
levels). Indeed, it is well known that P300 in amplitude is
influenced by changes in workload and attention and the
workload can affect different P300 components (see Kok,
2001; Miller et al., 2011). These findings are consistent with
our previous findings that P300 amplitude was reduced by
unattended target stimuli or in case of lacking resources
to cognitively process target stimuli (Woehrle and Kirchner,
2014b,a; Kirchner et al., 2016). In Kirchner et al. (2016),
a reduction in single-trial P300 classification (caused by a
reduction in P300 amplitude) was used as an indicator that
an operator of a robotic systems is overstrained in a complex
interaction scenario. Furthermore, we observed that the operator
missed task-relevant information (targets) in a very complex
interaction scenario and in this case the missing of a P300
and thus the failure in detection of a target trial (i.e., correct
classification of non-target) due to the missing of a P300
can be used as a sign of too much strain on the interacting
subject or inattentiveness (Kirchner et al., 2016). However, in
our previous studies, we did not compare the multi-motor-
task condition in the eBR application with a simple-motor-task
condition and similar studies investigating this are missing as
per to our knowledge. Therefore, we developed a scenario which
contains two conditions, i.e., a simple-task condition (visual-
motor oddball) and a dual-task condition involving a visual-
motor oddball and a competing complex motor behavior. In
the developed scenario in the presented study, subjects were
overtrained in both tasks to avoid too much strain under the
dual-task condition which may result in a strong reduction of
P300 amplitude (cf. a complex interaction scenario in which an
operator of a robotic systems is overstrained (Kirchner et al.,
2016).

While the effect of workload on P300 expression has been
investigated very well under dual-task condition contributing
strongly to the early roots of a framework of multiple resource
theory (Kahneman, 1973; Isreal et al., 1980; Parasuraman and
Davies, 1984; Wickens, 1992, 2008; Polich, 2007), the effect
of competing motor tasks was rarely investigated. One study
from literature that comes close to our setting was published
by Fowler (1994). In this study, both, the competing motor
tasks, i.e., flying and landing a virtual aircraft and responding
to a secondary oddball task, requesting a motor response
were combined. However, task-irrelevant infrequent stimuli
(deviants) were not presented and investigated concurrently.
Studies that make use of the oddball paradigm typically
make use of either (1) task-irrelevant frequent (standards)
and task-irrelevant infrequent stimuli (deviants) (see for
example Kramer et al. (1995) making use of the irrelevant-
probe technique Papanicolaou and Johnstone, 1984) or (2)
task-irrelevant frequent (standards) and task-relevant infrequent
stimuli (deviants) (Isreal et al., 1980; Kramer et al., 1983).
While under such separate conditions a P3a is expected to

be evoked under condition (1) by task-irrelevant infrequent
stimuli, a P3b is expected to be evoked under condition
(2) by task-relevant infrequent stimuli. To our knowledge
there is no study combining (1) and (2) with a complex
sensor-motor task as in the presented study under dual-task
condition and no study with a visual-motor oddball as primary
task.

In human-machine interactions that require multi-motor
behavior of the human, the importance and effects of multi-
tasking on the attention and recognition as well as differentiation
between task-relevant and infrequent but task-irrelvant events
are of high relevance. In our recent BR applications it was
of relevance, whether task-relevant stimuli are recognized
and cognitively processed. A failure in recognition can stem
from mental overload, attentional shifts or cognitive failures
in processing, e.g., failure in recognition of task relevance.
All these conditions are relevant for different applications
(e.g., teleoperation, rehabilitation, etc.). Based on the earlier
mentioned expectations on involved brain processes and
expected ERP activities, we focus our analysis on ERPs
at parietal electrodes. Further, electrode reduction, which
is considered for applicability in BCI applications, is also
focused on parietal electrodes. Hence, in the presented study
we investigate a physiologically supported electrode reduction
schemata concentrating on parietal electrodes. Further, we
investigate the effect of classifier transfer between conditions on
single-trial ERP detection, since for BCI applications (including
eBR applications) classifier training can take place on examples
of classes that are similar to the one of interest. Classifier
transfer is applied for different reasons: (1) not enough training
data is available (Kirchner et al., 2013; Woehrle and Kirchner,
2014b,a), (2) training data is time-consuming to acquire (Kim
and Kirchner, 2013, 2016; Kim et al., 2017), or (3), as
presented in this study, classifier transfer promises a better
distinguishability. The impact of such transfer approaches on
the physiological interpretability is not well investigated and will
therefore be investigated in the presented study. The question
that comes along with classifier transfer is, whether the general
distinguishability of classes or the commonality of patterns is
more relevant for the outcome of single-trial classification and
how this can be interpreted regarding underlying brain processes.

In summary, the main goal of this study is to answer the
following questions:

1. Is the general observed pattern in averaged partietal ERP
activity mirrored by single-trial classification performance as
suggested by preliminary investigations in Kirchner et al.
(2013)?

2. Are the strong parietal ERP expressions found in BR
applications (Kirchner et al., 2013, 2016; Woehrle and
Kirchner, 2014a) likely to result from overlaying parietal ERP
activity?

3. What impact a knowledge-driven electrode reduction
approach has on classification performance and physiological
interpretability of results? Can the obtained classification
performance be expected from knowledge on evoked ERP
components?
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4. What influence a classifier transfer (e.g., see Kirchner et al.,
2013; Kim and Kirchner, 2013, 2016; Kim et al., 2017 ) has on
the interpretability of single-trial classification performance?

5. What is the relevance of the results obtained in the presented
study for neuroscience methods as well as rehabilitation
robotics?

To answer these questions the paper will be structured as
follows. First we perform an average ERP analysis to investigate
activity expected at parietal electrode sides. Next, we investigate
separability of EEG activity in single trial under different
conditions with respect to electrode selection by performing
a single-trial analysis. This analysis should give an insight
into the issues whether performance in single-trial classification
correlates with the strength of expression of average ERP
activity at parietal electrode sites. Especially, we investigate
how strongly ERP activity at parietal electrodes can contribute
to the classification performance. To this end, we perform
a single-trial analysis with three binary classifications: task-
relevant infrequent events (targets) vs. task-irrelevant frequent
events (standards), task-irrelevant infrequent events (deviants)
vs. task-irrelevant frequent events (standards), and task-relevant
infrequent events (targets) vs. task-irrelevant infrequent events
(deviants). Before these binary classifications we performed
a multi-class classification to check distinguishability between
the three classes (standards, targets, deviants). Additionally,
we investigate the effect of classifier transfer between different
task conditions on classification performance and physiological
interpretability of results. Furthermore, we visualize the xDAWN
spatial filter, which is especially well-suited for ERP components
(see for example for P300 activity Rivet et al., 2009, 2012), to
investigate the spatial distribution of relevant features used for
single-trial detection. Finally, the obtained results are discussed
in the scope of their relevance for neuroscience and BCI research
as well as different application domains such as rehabilitation
robotics.

METHOD

Ethics Statement
The study has been conducted in accordance with theDeclaration
of Helsinki and approved with written consent by the ethics
committee of the University of Bremen. Subjects gave informed
and written consent to participate.

Experimental Design
Since the intended investigation is not very straightforward
in a complex eBR interaction application during the control
of, e.g., several robots (Kirchner et al., 2016) or within a
complex rehabilitation scenario (Seeland et al., 2017), the
experimental setup “Labyrinth Oddball” was developed that
allows to investigate ERP activity evoked by task-relevant and
task-irrelevant stimuli (see Figure 1). Our experimental setup
makes use of a visual oddball discrimination paradigm (Picton,
1992) which can either be performed without an interfering
task (simple task: simple oddball task) or while performing
a continuous sensor-motor, i.e., manipulation task (dual task:

FIGURE 1 | Experimental design “Labyrinth Oddball.” The upper part of the

figure shows a subject performing in the experimental setup. Types and

number of stimuli presented, session design is indicated in the lower part of

the figure. The individual subject has given written informed consent to publish

this image.

oddball task while playing a labyrinth game). In our case, the
oddball task is the primary task instead of the secondary task in
dual-task experiments for workload estimation (Isreal et al., 1980;
Fowler, 1994; Kramer et al., 1995). The oddball task requires
a response by the subject on infrequent task-relevant stimuli
(targets) while ignoring infrequent task-irrelevant (deviants)
and frequent task-irrelevant (standards) visual stimuli. In the
developed experimental setup, infrequent task-relevant stimuli
are expected to evoke a P3b and infrequent task-irrelevant stimuli
are expected to evoke a P3a (Kok, 2001; Polich, 2007).We assume
that the P300 component on infrequent task-irrelevant stimuli is
smaller in amplitude compared to the P300 component evoked
by infrequent task-relevant stimuli under both task conditions
(simple task and dual task) caused by differences in task relevance
or overlaying additional ERP activity. Additional overlaying
ERP activity is supported by results of our former studies in
complex BR applications mentioned above, where we found an
unexpectedly strong expression of parietal positive ERP activity
under multi-tasking conditions (e.g., Kirchner et al., 2013). In
our study, under the dual-task condition, the subjects will also
perform an additional ongoing task, i.e., to play the labyrinth
game while remembering to respond when a specific stimulus,
i.e., the task-relevant target stimulus, is presented to them and
to finally execute the response behavior when the task-relevant
target stimulus is recognized.

In the presented study thirteen subjects (two female, 11 male,
age between 27 and 39 years; Master or PhD students, right-
handed; normal or corrected-to-normal vision) participated
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in the experiments (see Figure 1). Each subject performed
two experiments: a simple task and a dual task within two
counterbalanced sessions that were performed the same day. In
each session, subjects performed an oddball task and responded
to infrequent task-relevant target stimuli (randomly mixed
among frequent standard and infrequent deviant stimuli with
a ratio of 1:12:1 and an Inter-Stimulus Interval (ISI) of 900
and 1, 100 ms) by pressing a buzzer. The type and number of
stimuli presented per stimulus type and per task condition are
depicted in Figure 1. Frequent task-irrelevant standard stimuli
were words in white color (such as “speed 17 kn”) that gave
irrelevant information, infrequent task-relevant target stimuli
were the display of the word “PRESS” (displayed in red color),
infrequent task-irrelevant deviant stimuli were the display of the
word “press SOON” (displayed in orange color). Each stimulus
was presented for 100ms on a monitor that was placed directly
behind the labyrinth game. Only in case that a task-relevant
stimulus was presented, the subject had to press a buzzer which
was located approximately 30 cm away from the left side corner
of the game board.

During the simple-task condition, subjects were asked to
hold both wheels of the labyrinth game that are designed to
play the game (see below) while focusing on a ball placed
in the middle of the game board; whereas during the dual-
task condition, they were requested to play the labyrinth game
(Figure 1) simultaneously (in addition to performing the oddball
task). The labyrinth game consists of a maze with a track (marked
by a continuous line on the game board) along which the player
should maneuver a ball by tilting the board around two axes that
are positioned perpendicularly to each other. Each axis can be
turned by a wheel that is positioned on the right and left hand
side of one corner of the game. Walls and holes are positioned
along the trace. The walls can be used by the player to stay on the
trace or to temporarily keep the ball in a safe position (e.g., in the
corner between two walls). The holes must be avoided.Whenever
the ball falls into a hole the player has to start again. The trace
leads the player to a goal. Whenever the goal is reached the player
has to move the ball back to the start position to play again.
Playing the labyrinth game is an ongoing task in our experiments.
It requires continuous and demanding senso-motor activity of
the subject, namely to keep moving the ball through the maze
while avoiding to lose the ball in one of the holes. To respond
to a target stimulus during the dual-task condition the player
has to let go of the left wheel to press a buzzer positioned on
the left hand side of the labyrinth game. We chose the left hand
to respond to buzzer press since it is more comfortable for the
subject. Especially in case where the subject is putting the ball
back to start position it would be impossible to respond with the
right hand in case of a target event. For this reason only right
handed subjects were chosen to attend the experiments. A run
was finished based on the number of presented stimuli (a total of
60 targets, 60 deviants and 720 standards were presented under
each condition) not on the quality of the play or progress in the
labyrinth game.

All subjects that participated in the experiments were
interviewed beforehand on how well they were able to play the
game. All subjects performed a training session on a different

day in which they only trained to play the game. Subjects that
reported to have never played the game before were provided
with a game for practical training several days to weeks before
the experiments. Training progress was controlled by interviews.
This procedure was chosen to assure that subjects would not
be overstrained with the complicated senso-motor task with the
unwanted result that they might give up to perform the game
during the dual-task condition.

Data Recording
EEGs were recorded with 62 active electrodes (extended 10-20
actiCap system) and amplified by two 32-channel BrainAmp
DC amplifiers (Brain Products GmbH, Munich, Germany).
Electrodes were referenced to electrode FCz. Impedance was kept
below 5 k�. Sampling rate was set to 2, 500Hz and data was
bandpass filtered between 0.1Hz to 1, 000Hz.

Analysis of Behavioral Data
We analyzed subject’s performance on correct behavior (response
on target stimuli) and incorrect behavior (commission error:
response on deviant stimuli and standard stimuli, and omission
error: missing response on target stimuli). In case of correct
behavior (response on target stimuli) response time was analyzed
for both the simple-task and the dual-task condition as time
between onset of stimulus presentation and the buzzer event.

Analysis of Event Related Potential (ERP)
EEGs were analyzed off-line with Brain Vision Analyzer Software
Version 2.0 (Brain Products GmbH, Munich, Germany). First,
EEGs were re-referenced to an average reference and filtered
between 0.1Hz and 30Hz. Segments from 100ms before to
1, 000ms after stimulus onset were averaged based on stimulus
of interest. Segments containing artifacts were rejected semi-
automatically (amplitude > 100 and < −100µV, gradient >

75µV). Target trials required a response within 200–2, 000ms
after stimulus onset to be counted as successful target trials.
Only these successful target trials were used for calculating the
average activity on target stimuli. By manual inspection it was
found that the broad parietal ERP complex evoked by infrequent
target stimuli and infrequent deviant stimuli showed differences
between conditions (simple task vs. dual task) in a later time
window starting at about 600ms, while such differences were
not so obvious for an earlier time window starting at 350ms.
Since the highest positive amplitudes were found in the earlier
time window (before 600ms) the late positive ERP complex was
analyzed within two time windows (early: 350–600ms; late: 600–
850ms) with respect to its maximum in amplitude. The definition
of two time windows for maximum positive peak estimation was
required to allow to analyze the observed differences in the later
time window (absolute maximum peak amplitude was reached
in the earlier time window). ERP activity before 300ms was not
investigated since we found in a similar experimental setting as
used here that a classifier trained on ERP activity from early
time windows, i.e., 0ms to 350ms after stimulus presentation
was performing significantly worse (Kirchner et al., 2013). Thus,
earlier activity was not assumed to be too relevant for single trial

Frontiers in Neuroscience | www.frontiersin.org 5 March 2018 | Volume 12 | Article 188

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kirchner and Kim Effect of Multi-Tasking and Choice of Training Data

detection and therefore not investigated here. Besides, this work
focuses on later positive parietal ERP components.

Single-Trial Detection Using Machine
Learning
Dataset
One dataset for each task condition was recorded from 13
subjects. Each set contained 60 targets, 60 deviants, and 720
standards. However, for single-trial classification we used less
than 60 examples for the target and deviant class and less than 720
examples for the standard class for each subject for two reasons:

1. Only artifact-free trials (as detected by artifact rejection for
average ERP analysis) were used to make results of single-trial
classification comparable with results of average ERP analysis

2. Only examples with correct behavior (i.e., with response on
targets and no response on deviants) were used.

We merged datasets across all subjects for each task condition
into one dataset and thus we obtained one dataset for simple-task
and one set for dual-task condition. This procedure was chosen
to minimize the effect of subject specificity and to compensate
for different numbers of training examples for different subjects.
Here, the total number of examples for each stimulus type
was slightly different depending on each task condition (simple
task: 7,000 trials for standard class, 463 for target class, 628
for deviant class; dual task: 6,255 for standard class, 363 for
target class, 535 for deviant class). This procedure was chosen
again tomake results of single-trial classification comparable with
results of average ERP analysis. Single trial detection analysis was
performed using pySPACE (Krell et al., 2013).

Preprocessing
The continuous EEG signal was segmented into epochs from 0
to 1 s after each event type (standard/deviant/target). All epochs
were normalized to zero mean for each channel, decimated to
25Hz, and bandpass filtered between 0.1 and 4Hz. The low-
pass filter was used to assure that the classifier could only make
use of data in the frequency range of mainly ERP activity. For
a fair comparison with the results of average ERP analysis, the
classifier used for single-trial detection was trained on EEG
trials that were also used for average ERP analysis. Thus, only
artifact-free trials were used. Moreover, we merged the data set
across all subjects for each task condition to minimize subject-
specific effects. This was especially relevant for the performed
investigations of classifier transfer between task conditions.

Feature Extraction
We used data points in the time domain as features. For multi-
class classification (distinction between standards, deviants, and
targets), we used all available 62 channels for feature extraction.
For binary classification (standards vs. deviants, standards vs.
targets, deviants vs. targets), besides using all available 62
electrodes, the definition of alternative electrode constellation
was based on the characteristics of P300 (e.g., a maximum of
averaged P3b was observed at electrodes Pz and CPz). Therefore,
we chose a set of only these two parietal electrodes and a more
extended set of parietal electrodes around Pz and CPz. In total,

three electrode constellations were used to extract features: (a)
All electrodes (62 channels), (b) Six parietal electrodes (CPz, CP3,
CP4, Pz, P3, P4), and (c) Two parietal electrodes (CPz, Pz). For
both binary and multi-class classification, the xDAWN (Rivet
et al., 2009) was used as a spatial filter to enhance the signal-
to-noise ratio, since it is especially suited for the analysis of
EEG activity in the ERP domain (Rivet et al., 2009, 2012). After
applying the xDAWN algorithm, the physical channels were
reduced to the different numbers of pseudo-channels depending
on electrode constellation (62 channels → 8 pseudo-channels,
6 channels → 1 pseudo-channel, 2 channels → 1 pseudo-
channel). For the comparison between single-trial classification
and ERP activity, we used two different time windows for feature
extraction to investigate the different pattern of the late parietal
positive ERP complex between the simple and dual task: early
time window (400–600ms) and late time window (600–800ms).
Features were extracted from 8 pseudo-channels (8 channels ×
6 data points = 48) for each window and 1 pseudo-channel (1
channel× 6 data points= 6) for each window, respectively.

Classification
The features were normalized over all trials and used to
train the classifier. We used a linear support vector machine
(SVM) (Chang and Lin, 2011) for classification. For multi-
class classification (distinction between standards, deviants,
targets), one classifier was constructed per class pair (one-vs-
one approach). In total, three classifiers were built and three
classification results were aggregated to one final result. The
class with the largest number of votes (the highest aggregated
classification confidence, i.e., highest scores) was selected. For
evaluation, we calculated the rates of correct classified instances
of each class, i.e., true positive rates [TPR = TP/P, where P is the
number of real positive instances (i.e., P = TP + TN)]. Note that
each class has true positives (e.g., standard predicted as standard)
and two types of false negatives (e.g., standard predicted as target
(TN target) or deviant (TN deviant)). As a performance metric,
we used the arithmetic mean of TPR of each class, i.e., (TPR
standard + TPR target + TPR deviant)/3. We also calculated
accuracy (ACC), i.e., (TP standard + TP target + TP deviant)/(TP
standard + TP target + TP deviant + TN standard + TN target
+ TN deviant). However, ACC is sensitive when the ratio of
classes is unbalanced (in case of imbalanced dataset). Hence, we
used the arithmetic mean of TPR of each class (bACC), which is
less sensitive to data with an unbalanced ratio of classes (details,
see Straube and Krell, 2014). Additionally, we performed binary
classifications for each class pair: target vs. standards, deviant
vs. standards, target vs. deviants. Again, we used bACC, i.e., the
arithmetic mean of the rate of correct classified instances of each
class (positive or negative class), i.e., true positive rate (TPR) and
true negative rate (TNR), where the target or deviant trials were
the positive class.

For the no-transfer case (i.e., the case of no transfer between
simple and dual task), a stratified 10 × 10 fold cross validation
was used for evaluation. For each training, the cost parameter of
the SVM (i.e., regularization constant Schölkopf et al., 2000) was
optimized with a stratified five-fold cross validation using a grid
search among the predetermined values (100, 10−1, ... , 10−6).
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Note that only 9 splits that were used for training were divided
into 5 splits for the parameter optimization of the SVM. Due to
the unbalanced ratio of target and standard trials (1:12) as well
as deviants and standard trials (1:12), different penalty constants
were used for the different classes (Veropoulos et al., 1999). We
determined a class weight of 2 for the under-represented class
as penalty. Hence, making errors on under-represented instances
was costlier than making errors on over-represented instances.
For the transfer case, the classifier trained on each task condition
was used for evaluation. For example, the classifier trained on the
data from simple task was used to evaluate the data from dual
task. Hence, two different classifiers were build to detect single-
trial ERP detection and there are two types of transfer cases: (a)
simple task→ dual task and (b) dual task→ simple task.

Statistical Analysis
Behavior Performances
Two different types of response behaviors were expected: (a)
Commission errors (response on deviant stimuli) and (b)
Omission errors (“missed targets,” i.e., absence of response after
target stimuli). We observed only two commission errors for two
subjects in total under the dual-task condition and none for the
simple-task condition. Thus, we did not analyze the commission
errors statistically. The omission errors were analyzed for each
task (simple/dual) by Wilcoxen test. To evaluate the response
time on target stimuli, the median of response time for each
subject was estimated. Note that the median of response time
had to be calculated, since the response times were not normally-
distributed for all subjects. The median value of each subject
was averaged across subjects for each task and between-task
difference was tested by paired t-test.

Averaged ERP
To investigate the topography of the expected parietal positive
broad ERP complex for each task condition, and furthermore
to find out how the two different tasks (simple task, dual task)
influence the expected positive broad parietal ERP complex, the
positive peak amplitude of the mean ERP activity within two
time windows (350–600 ms and 600–850 ms) was measured
for each subject. The beginning and the end of each window
were chosen based on: (a) the observed shape of averaged
ERP activity on subject level and (b) the chosen procedure
to divide the observed window of interest into two windows
of the same size. Activity after 850 ms was not investigated
to avoid overlap in ERP activity of consecutive trials possibly
caused by the jitter in ISI of 200 ms. Note that the choice
of window size did slightly differ from single-trial detection
analysis, caused by the procedure in preprocessing and feature
generation during single-trial detection analysis. However, the
border between both windows was in both cases (ERP and
single-trial detection analysis) chosen at 600 ms. The average
amplitude values were analyzed across subjects by repeated
measures ANOVA with four within-subjects factors: (a) Stimulus
type (three levels: standards, targets, deviants), (b) Time window
(two levels: 350–600 ms vs. 600–850 ms), (c) Parietal electrode:
(three levels: CPz, Pz, POz), and (d) Task condition: (two
levels: simple task, dual task). Electrodes CPz, Pz, POz were

chosen, since the maximum amplitude of P3b was expected at
electrode position Pz (Polich, 2007), while CPz was the next
more frontal and POz the next more occipital central electrode
to Pz. If necessary, Greenhouse-Geisser correction was applied.
For pairwise comparisons Bonferroni correction was applied.
Additionally, the normalized amplitude values based on Urbach
and Kutas (2002) were analyzed with the same statistical design.
Note that the statistical analysis on missed targets was not
performed, since not all subjects missed targets in both task
conditions.

Single-Trial Detection Performances
Multi-class classification performances were analyzed by
repeated measures ANOVA with two within-subjects factors: (a)
time window (two levels: early window/late window), (b) task
condition (two levels: simple task/dual task). Binary classification
performances were analyzed by repeated measures ANOVA with
four within-subjects factors: (a) time window (two levels: early
window/late window), (b) task and transfer condition (four
levels: simple task/dual task/dual task → simple task/simple
task → dual task) (c) ERP detection type (three levels: target
detection (t/st: targets vs. standards)/deviant detection (d/st:
deviants vs. standards)/target detection (t/d: targets vs. deviants),
and (d) number of channels used for training and testing (three
levels: all 62 channels, 6 parietal channels/2 parietal channels).
In the post-hoc tests, all levels of factors were compared (see
Figures S3–S7). Again, Greenhouse-Geisser correction was
applied where necessary. For pairwise comparisons, Bonferroni
correction was applied.

RESULTS

Behavioral Performances
When analyzing response behavior we found only two
commission errors for two subjects in total under the dual-
task condition and none for the simple-task condition. Further,
we found in total 50 (Mean: 3, 85, SD: 4, 69) omission errors
under the simple-task condition and 67 (Mean: 5, 15, SD:
5, 06) omission errors under the dual-task condition (see also
Figure 2). There was no significant difference between both task
conditions. Figure 3 illustrates the median of response time
on target stimuli for each subject under both task conditions
(simple vs. dual-task condition). First, the median of response
time was calculated for each subject and each task. The median
values of each subject were normally distributed for each task.
To compare between both tasks the median values were averaged
across all subjects resulting in an averaged median value of
0.79 s for the simple oddball task (simple task) and of 0.77 s for
the labyrinth oddball task (dual task). There was no significant
difference in response time between both tasks [t(12)=−1.25,
p=0.23].

Averaged ERP
Figure 4 illustrates the average ERPs for each subject and the
grand average ERPs across all subjects on the three different
types of visual stimuli (standards, targets, deviants at electrode
Pz for each task (simple and dual-task). Additionally, grand
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average ERPs across all subjects on missed targets are depicted
in Figure 4 lower part. We observed a similar pattern in the
grand average ERP on missed targets in both task conditions.
We obtained the grand averages by averaging the average curves
of all participating subjects for each task condition separately.
Figure 5 depicts grand average ERPs at parietal electrodes CPz,
Pz, POz, P3, P4, CP3, and CP4. Average ERPs of individual
subjects are illustrated in Supplementary Materials in Figure
S1.

We observed a maximum positive broad ERP complex at
parietal sites which was evoked by infrequent task-relevant target
stimuli as well as by infrequent deviant stimuli if compared to
frequent standard stimuli. These positive ERP activities evoked

FIGURE 2 | Omission errors. Omission errors (number of missed targets)

under both task conditions (simple task and dual task) are illustrated.

by targets and deviants were found under both task conditions
(simple task and dual task), for all three investigated electrodes
(CPz, Pz, POz) and for both time windows (early window and
late window).

The statistical evaluation shows a significant difference
between three stimulus types [main effect: F(2, 24)=58.412, p <

0.001, standards vs. targets: p < 0.001, standards vs. deviants:
p < 0.002, targets vs. deviants: p < 0.002]. The results of
post-hoc analysis on differences between three stimulus types
for each window, each electrode, and each task condition are
reported next. Under dual-task condition for both windows at all
three electrodes, there was a significantly higher amplitude of the
broad positive ERP complex on deviants or targets compared to
standards (early window: p < 0.001 for standards vs. deviants as
well as standards vs. targets at all three electrodes; late window:
p < 0.001 for standards vs. deviants at all three electrodes,
p < 0.001 for standards vs. targets at CPz and Pz; p < 0.002 at
POz, see Figure S2). Further, we observed significant differences
between the amplitudes evoked by deviants and targets, i.e., a
higher amplitude on targets compared to deviants (early window:
p < 0.001 at Pz, p < 0.002 at CPz, and p < 0.005 at
POz; late window: p < 0.001 at Pz, p < 0.002 at CPz,
and p < 0.023 at POz, see Figure S2). Under simple-task
condition, we found again a significantly higher amplitude of the
broad positive ERP complex on deviants or targets compared
to standards in the early window (standards vs. targets: p <

0.005 at all electrodes; standards vs. deviants: p < 0.001 at all
electrodes, see Figure S2). For the late window, a significantly
higher amplitude of the broad positive ERP complex on deviants
or targets compared to standards were found as well except for
CPz in the comparison between standard and target (standards
vs. targets: p=n.s. at CPz, p < 0.017 at Pz, p < 0.015 at
POz; standards vs. deviants: p < 0.029 at CPz, p < 0.006
at Pz, p < 0.013 at POz). Moreover, significant differences

FIGURE 3 | Response time. (A) response time on oddball target stimuli under simple-task condition (subjects are performing the oddball task only). (B) Response

time on oddball target stimuli under dual-task condition (subjects are performing the oddball task while the ongoing task is to play the labyrinth game).
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FIGURE 4 | Average ERP and grand average of ERP activity at electrode Pz under both task conditions. Averaged ERP for each subject over all single-trials (thin lines)

and grand averaged ERP over all subjects (thick lines) are depicted on different types of visual stimuli (standards, targets, and deviants) under simple-task condition

and dual-task condition. A broad, sustained positive activity starting at 300ms was observed at parietal sites. This activity was stronger for target stimuli compared to

deviant stimuli. Additionally, standard error of mean (SEM) of grand average ERP is shown (in the middle), which was used for statistical analysis (pairwise

comparisons). In the upper images, grand average of ERPs on missed targets are depicted for both task conditions.
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FIGURE 5 | ERP activity at individual parietal electrodes. Grand averages of ERP activity evoked at electrodes Pz, CPz, POz, P3, P4, CP3, and CP4 show a broad

sustained ERP activity on deviant and target stimuli under both task conditions (simple and dual task) starting at 350ms. Most prominent differences in the amplitude

of the parietal positivity on targets compared to deviants can especially be observed for the late time window (starting at 600ms) under dual-task condition.

between the amplitude evoked by deviants and targets, i.e., higher
amplitude on targets compared to deviants were only found in
the early window at electrodes Pz (p < 0.037) and POz (p <

0.002), but not for CPz (p=n.s) and not for any of the three
parietal electrodes in the later window (p=n.s. for CPz, Pz, and
POz).

Furthermore, we found a significant difference between both
task conditions (main effect: F(1, 12)=6.846, p < 0.024). The
results of post-hoc analysis on differences between both task
conditions for each window, each electrode, and each stimulus

type are reported as follows. We observed a significant difference
between the simple and dual task only in the late window (simple
task vs. dual task: p < 0.001 at CPz and Pz, p < 0.008 at POz,
see Figure S2). This task-specific difference was observed in the
positivity evoked by targets, but not by deviants (simple task vs.
dual task: p=n.s., see Figure S2). In addition, we also observed
the task-specific difference which was shown only for targets in
the early window, but only at CPz and Pz (simple task vs. dual
task: p < 0.001 at CPz, p < 0.003 at Pz, p=n.s. at POz, see
Figure S2).
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In summary, we found a positive ERP activity that was
strongly evoked by targets than deviants for both time windows
under dual-task condition. Such significant differences could not
be found under simple-task condition for the late window and
only at electrodes Pz and POz for the early window. Furthermore,
we found a difference between both task conditions in the late
window when the positive ERP activity was evoked by targets,
but not by deviants. A similar pattern was also shown in the early
window except for CPz.

Single-Trial Detection Performances
Table 1 shows single-trial classification performances for the
distinction between standards, deviants, and targets (multi-
class classification). We achieved a high bACC of 0.73 under
simple task for both early and late window (chance level: 0.33
bACC). Under the dual-task condition, we also achieved a
higher performance for early window compared to late window
[early window (0.71 bACC) vs. late window (0.67 bACC): p <

0.001]. The classification performance was higher for the simple-
task condition compared to the dual-task condition for both
windows (simple task vs. dual task: p < 0.001 for both
windows).

Table 2 shows single-trial classification performance (bACC)
on two types of target detection and deviant detection: target
detection (t/st: targets vs. standards), deviant detection (d/st:
deviants vs. standards), target detection (t/d) targets vs. deviants.
Figure 6 illustrates classification performance as given in Table 2

over all conditions. Blue areas indicate balanced accuracy
(bACC) at chance level (0.5 bACC). We obtained a high single-
trial detection of both target detection and deviant detection
under both task conditions and both windows when using
all 62 channels [target detection (t/st): 0.95 to 0.93, deviant
detection (d/st): 0.77 to 0.71, target detection (t/d): 0.87 to
0.81; chance level: 0.5)]. We found a higher performance on
single-trial detection of target detection compared to deviant
detection for both windows and both task conditions in
case of using 62 channels [target detection (t/st) vs. deviant
detection: p < 0.001, target detection (t/d) vs. deviant
detection: p < 0.001, see color changes between target
detection and deviant detection, e.g., target detection (t/st):
light-yellow, target detection (t/d): orange, deviant detection:
green, also see Figure S3, where statistical values for comparison
between target (t/st or t/d) and deviant detection are reported].
Between both types of target detection, the performance of
target detection was higher when the classifier trained on targets
and standards was used for target detection [target detection
(t/st) vs. target detection (t/d): p < 0.001, statistical values for
comparison between both types of target detection, see Figure
S3].

Furthermore, we found that the reduction of the number
of channels had an impact on classification performance (see
Figure 7). The significant reduction of target detection (t/st
and t/d) due to reduced number of channels was shown
for both windows and both task conditions [statistical values
for comparison among 62, 6, and 2 channels for both types
of target detection (t/st and t/d), see Figure S4]. However,
target detection was still high in case of using 6 electrodes

[target detection (t/st): 0.80–0.78, target detection (t/d): 0.74–
0.71, see light-green areas for target detection (t/st and t/d)
in Figure 6] and well above chance level in case of using
2 parietal electrodes [see green or light-blue areas for target
detection (t/st or t/d) in Figure 6, see also Figure 7]. Such
reduction was also shown in deviant detection, but there was
no significant difference between 6 and 2 channels, since a
reduction to both 6 and 2 parietal electrodes led to classification
performance at chance level [statistical values for comparison
among 62, 6, and 2 channels for deviant detection (d/st), see
Figure S4].

This effect of number of channels on classification
performance was different depending on task condition
(i.e., task-specific effect). In case of using all 62 parietal channels,
we found a significantly higher performance under the simple-
task condition compared to the dual-task condition for both
types of target detection (t/st and t/d) and deviant detection
in the no-transfer case (see Figure 8, statistical values for
comparison between task conditions, see Figure S5). In case of
using 6 parietal channels, we found no performance difference
between simple-task and dual-task condition for both target
detection (t/st and t/d) and deviant detection in the no-transfer
case (simple task vs. dual task: p=n.s., statistical values for
comparison between task conditions, see Figure S5). In case
of using 2 parietal channels, we found a significantly higher
performance under the dual-task condition compared to the
simple-task condition for target detection (t/st) in case of using
a classifier trained on targets and standards, but not for deviant
detection in the no-transfer case [simple task vs. dual task:
p < 0.002 for target detection (t/st), p=n.s. for deviant detection,
statistical values for comparison between task conditions, see
Figure S5]. This superior target detection (t/st) performance
under the dual-task condition thus showed the opposite pattern
compared to using all 62 channels in the no-transfer case. For
target detection (t/d) in case of using a classifier trained on
targets and deviants, the same pattern as in the case of using 62
channels was observed, i.e., target detection was better under
the simple-task condition compared to the dual-task condition
in the no-transfer case (simple task vs. dual task: p < 0.001,
statistical values for comparison between task conditions, see
Figure S5).

In case of task transfer we obtained the following findings
(see Table 3). In case of using a classifier trained on targets and
standards, target detection (t/st) was slightly reduced while using
62 or 6 channels (simple task: 0.95 → 0.91, dual task: 0.94 →

0.93 in case of using 62 channels, see also color changes from
light yellow to dark-yellow area in Figure 6; simple task: 0.79
→ 0.79, dual task: 0.79 → 0.77 in case of using 6 channels, see
also Figure 6). However, when using only 2 electrodes, target
detection (t/st) was strongly improved in the transfer direction
from the dual task to simple task for both windows (early window:
0.64 vs. 0.73, p < 0.001, late window: 0.64 vs. 0.73, p < 0.001,
see Figure 9, and also changes in color range blue to green
in Figure 6, statistical values for comparison between transfer
conditions, see Figure S5). In the reversed transfer direction,
however, we did not observe such performance improvements
in target detection (t/st) (early window: 0.71 → 0.72, p=n.s. late
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TABLE 1 | Multi-class classification performance.

Simple task Dual task

Standard Target Deviant Standard Target Deviant

EARLY TIME WINDOW (0.4–0.6 s)

TPR 0.93 ± 0.03 0.77 ± 0.07 0.50 ± 0.09 0.88 ± 0.04 0.71 ± 0.08 0.54 ± 0.08

bACC 0.73 ± 0.03 0.71 ± 0.03

ACC 0.89 ± 0.02 0.84 ± 0.04

LATE TIME WINDOW (0.6–0.8 s)

TPR 0.90 ± 0.03 0.80 ± 0.06 0.48 ± 0.07 0.91 ± 0.04 0.69 ± 0.10 0.42 ± 0.10

bACC 0.73 ± 0.03 0.67 ± 0.04

ACC 0.86 ± 0.02 0.86 ± 0.03

Mean and standard error of mean were reported. TPR = TP/TP+FN (e.g., TP: standard predicted as standard; TN: standard predicted as target or deviant), bACC = (TPR standard +

TPR target + TPR deviant)/3. ACC = (TP standard + TP target + TP deviant)/(TP standard + TP target + TP deviant + TN standard + TN target + TN deviant). Details for metrics,

see text. Note that 62 channels were used for classification (Details, see text).

TABLE 2 | Binary classification performance (no transfer between task conditions). Mean and standard error of mean are reported.

Early time window (0.4–0.6 s) Late time window (0.6-0.8 s)

Simple task Dual task Simple task Dual task

(A) Single-trial detection of targets (distinction of targets vs. standards)

All channels 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.93 ± 0.01

Parietal channels 0.79 ± 0.01 0.79 ± 0.01 0.80 ± 0.01 0.78 ± 0.01

CPz,Pz 0.64 ± 0.01 0.71 ± 0.01 0.64 ± 0.01 0.72 ± 0.01

(B) Single-trial detection of deviants (distinction of deviants vs. standards)

All channels 0.77±0.01 0.75±0.01 0.73±0.01 0.71±0.01

Parietal channels 0.52±0.01 0.51±0.01 0.55±0.01 0.52±0.01

CPz,Pz 0.51±0.01 0.51±0.01 0.51±0.01 0.51±0.01

(C) Single-trial detection of targets (distinction of targets vs. deviants)

All channels 0.86±0.01 0.84±0.03 0.87±0.03 0.81±0.04

Parietal channels 0.73±0.04 0.73±0.04 0.74±0.04 0.71±0.04

CPz,Pz 0.69±0.04 0.65±0.05 0.70±0.01 0.67±0.01

window: 0.72 → 0.69, p=n.s., statistical values for comparison
between transfer conditions, see Figure S5).

However, when using a classifier trained on targets and
deviants, performance in target detection (t/d) was significantly
reduced in case of both directions of transfer (see Figure 9,
see also color changes (green to blue) in Figure 6). For deviant
detection, there was no large effect of task transfer, i.e., we
observed a slight difference between no-transfer case and transfer
case for all types of channel constellation and both windows
(see Figure 9, statistical values for comparison between transfer
conditions, see Supplementary Materials in Figure S5).

In summary, we achieved a very high performance in both
types of target detections and deviant detection in case of
using 62 electrodes. Both types of target detection (t/st and
t/d) were better than deviant detection for all conditions,
i.e., for both windows, both task conditions, and all types

of channel constellation. Further, target detection in case of
using a classifier trained on targets and standards was superior
compared to target detection when using a classifier trained
on targets and deviants for all conditions. When using less
electrodes (6 or 2 parietal electrodes), classification performance
was reduced in general (see Figure 7). However, classification
performance on target detection was still high compared to
deviant detection which was at chance level in case of using
6 or 2 parietal channels. Especially, target detection (t/st) was
extremely decreased due to reduced channel numbers under the
simple-task condition, but not under the dual-task condition
(see Figure 8). In fact, target detection (t/st) was better under
the simple-task condition compared to the dual-task condition
in case of using 62 channels. In contrast, in case of using 2
parietal channels (CPz/Pz), the opposite pattern was shown, i.e.,
target detection (t/st) was better under the dual-task condition
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TABLE 3 | Binary classification performance (classifier transfer between simple and dual task).

(A) Transfer between simple and dual task: single-trial detection of targets

(Classifier trained on targets and standards were used to detect targets)

0.4–0.6 s dual task (training) → simple task (test) simple task (training) → dual task (test)

All channels 0.91 ± 0.01 0.93 ± 0.01

Parietal channels 0.80 ± 0.01 0.79 ± 0.01

CPz,Pz 0.73 ± 0.01 0.72 ± 0.08

0.6–0.8 s Dual task (training) → Simple task (test) Simple task (training) → dual task (test)

All channels 0.91 ± 0.01 0.91 ± 0.01

Parietal channels 0.79 ± 0.01 0.77 ± 0.01

CPz,Pz 0.74 ± 0.01 0.69 ± 0.10

(B) Transfer between simple and dual task: single-trial detection of deviants

(Classifier trained on deviants and standards were used to detect deviants)

0.04-0.6 s dual task (training) → simple task (test) simple task (training) → dual task (test)

All channels 0.73 ± 0.01 0.73 ± 0.01

Parietal channels 0.50 ± 0.01 0.50 ± 0.01

CPz,Pz 0.51 ± 0.01 0.50 ± 0.01

0.6–0.8 s dual task (training) → simple task (test) simple task (training) → dual task (test)

All channels 0.69 ± 0.01 0.71 ± 0.01

Parietal channels 0.52 ± 0.03 0.51 ± 0.04

CPz,Pz 0.50 ± 0.02 0.53 ± 0.01

(C) Transfer between simple and dual task: single-trial detection of targets

(Classifier trained on targets and deviants were used to detect targets)

0.4–0.6 s dual task (training) → simple task (test) simple task (training) → dual task (test)

All channels 0.76 ± 0.01 0.73 ± 0.01

Parietal channels 0.66 ± 0.01 0.65 ± 0.03

CPz,Pz 0.61 ± 0.01 0.54 ± 0.01

0.6–0.8 s dual task (training) → simple task (test) simple task (training) → dual task (test)

All channels 0.72 ± 0.01 0.77 ± 0.01

Parietal channels 0.71 ± 0.01 0.66 ± 0.01

CPz,Pz 0.62 ± 0.02 0.61 ± 0.01

Mean and standard error of mean were reported.

compared to the simple-task condition. In particular, in case
of using 2 parietal channels, a significant increase in target
detection (t/st) in the transfer direction from dual task to simple
task compared to the reversed transfer direction was found (see
Figure 9).

Spatial Distribution by xDAWN Filter
Figure 10 shows the spatial distribution of the first retained
channel from xDAWN spatial filter, which was used for training
in case when all 62 recorded channels were retained. In general,
we observed stronger weights for parietal area in case of target
detection (t/st) compared to deviant detection. Further, slightly
stronger weights were observed for the late window compared
to the early window in case of target detection (t/st) under dual-
task condition. In general, the spatial distribution was more
spread over parietal and central area in case of deviant detection,
while the spatial distribution in case of target detection was

more focused on parietal area. This pattern was shown for
both types of target detection (t/st and t/d). Target detection
in case of training on targets and deviants (t/d) resulted in
reduced weights of the first retained channel compared to
target detection in case of training on targets and standards
(t/st).

DISCUSSION

Behavioral Data
Results of behavioral data analysis indicate that deviant and target
stimuli were successfully evaluated by the subjects under both
task conditions with respect to their task-relevance, shown by
very accurate performance in response behavior. Under both
task conditions a very low number of commission errors was
observed. The number of omission errors was not significantly
different between both task conditions and relatively low (all
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FIGURE 6 | Performances in single-trial detection of targets [targets vs. standards (t/st) or targets vs. deviants (t/d)] and deviants [deviants vs. standards (d/st)] for

both task conditions (simple/dual), both windows (early/late), and both no-transfer case and transfer case in case of using all 62 channels, 6 parietal channels (CPz,

CP3, CP4, Pz, P3, P4), or 2 parietal channels (CPz, Pz) for classification (E: early window, L: late window).

FIGURE 7 | Effect of reduction of channel number on classification performance (early: early window, late: late window, all ch: all 62 channels, CPz/Pz: 2 parietal

channels). Arrow direction refers to significant increases or decreases. Lines without arrow direction refer to no significant difference. Statistical values for comparison

are reported in Supplementary Materials in Figure S4 (comparison between all 62 channels (all Ch) and 2 parietal channels (CPz/Pz) in Figure S4).

subjects but one outlier under dual-task condition, see Figure 2).
This finding indicates that workload was not strongly increased
by adding the second task. This result is supported by the finding
that response time was not significantly different between both
task conditions. This is an important finding, since response
latency was found to have an effect on the amplitude of the
parietal ERP complex as shown in an earlier study (Kim and
Kirchner, 2012 and Figures S7, S8 in Supplementary Materials).
Hence, we can exclude effects of response time on the ERP
expression.

Average ERP Analysis and Results of
Spatial Filter

Our results show that a positive parietal ERP complex was
evoked by target as well as deviant stimuli under both simple-
task and dual-task condition. Our findings are supported by the
investigation of xDAWN filters that are relevant for the classifier
to learn the differences between classes. Features for single-trial
classification were chosen by xDAWN filter mainly from parietal
electrodes.
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FIGURE 8 | Effect of task condition on classification performance (early: early window, late: late window, simple: simple task, dual: dual task). Arrow direction refers to

significant increases or decreases. Lines without arrow direction refer to no significant difference. Statistical values for comparison are reported in Supplementary

Materials in Figure S5 (comparison between simple task (s) and dual task (d) in Figure S5).

FIGURE 9 | Comparison between no transfer and transfer in binary classification performance (bACC) in case of using 2 channels (CPz/Pz): dual task → simple task

(transfer) vs. simple task (no transfer), simple task → dual task (transfer) vs. dual task (no transfer). Arrow direction refers to significant increases or decreases. Lines

without arrow direction refer to no significant difference. Statistical values for comparison are reported in Supplementary Materials in Figure S5 (comparison between

dual task → simple task (d→s) and simple task (s) and comparison of between dual task → simple task (d→s) and dual task (d) in Figure S5).

While performing complex sensor-motor behavior during
human-machine interaction (dual-task condition) a broader
parietal positivity was elicited on infrequent task-relevant (target)
events compared to infrequent task-irrelevant (deviant) events
with higher amplitude at parietal electrodes in both investigated
time windows. The same pattern was found under simple-task
condition. Again, this finding can be supported by results of

spatial filtering. xDAWN features for deviant trials are weaker
than for target trials.

From literature we expect that P300 will contribute mainly
to the investigated early time window (Kok, 2001; Polich, 2007).
The stronger expression of the parietal positivity under simple-
task condition in the early time window on target stimuli
compared to non-target deviant stimuli is caused by differences
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FIGURE 10 | xDAWN images for target (t/st and t/d) and deviant detection for both task conditions and both windows (E: early window, L: late window, (t/st: target

detection using a classifier trained on targets and standards, d/st: deviant detection using a classifier trained on deviants and standards, t/d: target detection using a

classifier trained on targets and deviants). Details, see text.

in P300 expression, i.e., only targets will evoke a strong P3b
due to the task-relevance. In our results, in the early time
window P300 was not reduced under dual-task compared to
simple-task condition. P300 is usually found to be reduced
under dual-task compared to simple-task condition (Isreal
et al., 1980; Kramer et al., 1983). However, in more complex
application scenarios (e.g., multi-robot control Kirchner et al.,
2016) that require dual or multi-tasking, we often found a
strong and broadly expressed parietal ERP complex evoked
by task-relevant stimuli. As introduced earlier, most studies
that make use of the oddball paradigm typically make use
of either (1) task-irrelevant frequent (standards) and task-
irrelevant infrequent stimuli (deviants) Kramer et al. (1995)
or (2) task-irrelevant frequent (standards) and task-relevant
infrequent stimuli (targets) (Isreal et al., 1980; Kramer et al.,
1983). There are only few studies combining (1) and (2) as for
example in (Kramer et al., 1995) where subjects performed an
oddball task responding only to one of two infrequent auditory
stimuli interleaved with distinct frequent auditory stimuli as
a control condition for the irrelevant-probe experiment. Here,

the authors found significantly larger P300 amplitudes on
task-relevant infrequent stimuli (targets) compared to task-
irrelevant infrequent stimuli (deviants) at electrode Pz. Hence,
task-relevance of infrequent stimuli (targets) might be more
important for the expression of parietal ERP components than
subjective rarity of stimuli. Task-relevance of the stimuli is
known to influence the amplitude of the P3b (Kok, 2001;
Polich, 2007). Under this combined condition (oddball making
use of (1) deviants and (2) targets), we assume that not only
targets but also task-irrelevant infrequent stimuli (deviants)
will evoke a P3b (besides an overall weaker P3a on deviant
stimuli), since deviants must be evaluated regarding their task
relevance in case that both types of stimuli are difficult to
distinguish. Hence, besides a P3a, a P3b might be evoked by
task-irrelevant infrequent stimuli in case that task relevance
is difficult to be evaluated. Results of spatial filtering support
the finding that task-irrelevant infrequent stimuli (deviants)
might to some degree require evaluation with respect to its
task-relevance especially under dual-task condition requiring
multi-motor tasking, since for deviant stimuli a more posterior
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feature contribution can be found under dual-task compared
to simple-task condition. However, even under simple-task
condition, spatial features were chosen by xDAWN from parietal
sites with extension to central sites. This might result from the
experimental instruction that subjects should not focus the text
presented on the screen but focus the marble of the game at all
time and hence had more difficulties to distinguish deviant and
target stimuli.

Alternatively, the missing reduction of amplitude of the
positive parietal ERP complex under simple-task compared to
dual-task condition (for both deviant and target stimuli) could be
explained by the increase of task emphasis of the subjects under
the dual-task compared to the simple-task condition (see Kok,
2001; Miller et al., 2011 for discussion of factors influencing
the amplitude of P3b). In our study, subjects consistently
reported that the primary visual-motor oddball task in the
simple task was boring and they had a hard time staying
focussed on the task. Further, subjects reported that the dual
task was more interesting and seemed to last shorter than the
simple task. Other known influencing factors were eliminated
by experimental design. By counterbalancing both conditions
across subjects and by overtraining the subjects in playing
the labyrinth game, a training effect on the amplitude of P3b
could be excluded. Furthermore, we requested the subjects to
focus on the ball under both simple-task as well as dual-task
condition. Thus, stimuli from the visual oddball were presented
in the periphery of the field of view under both task conditions.
A possible influence of stronger visual focus on the oddball
stimuli was excluded by this procedure Differences between
task conditions are therefore also unlikely to result from eye
artifacts, which were mostly avoided by the instruction given to
the subjects. Additionally, EEG trials with eye artifacts (mainly
from blinking) were excluded from ERP as well as xDAWN
analysis. Further, a strong contribution of eye artifacts would
have resulted in xDAWN features with strong contribution from
frontal electrode sites. Such differences in xDAWN features could
not be found.

While the found missing reduction of evoked parietal ERP
activity on deviant stimuli can be explained as argued above,
the increase of the amplitude of the evoked parietal ERP activity
on target events deserves further discussion. For both time
windows it was found that the ERP activity was enhanced on
targets when the secondary task (playing the labyrinth game) was
added (except for POz, see Supplementary Materials in Figure
S2B). This was not found for deviant events (see Supplementary
Materials in Figure S2B). Additionally, differences in the
parietal broad positive ERP complex on target vs. on deviant
stimuli in the late time window were only observed under the
dual-task condition, not under the simple-task condition (see
Supplementary Materials in Figure S2A). In our study, under
dual-task condition subjects had to change their motor behavior
from controlling the game to responding to the infrequent
motor task-relevant (target) event only in case that a target
event occurred but not in case that a deviant stimulus was
presented. Our results indicate that complex senso-motor dual-
tasking behavior not only requires target recognition processes
that evoke a P3b (Kok, 2001; Polich, 2007), but additional

processes such as brain processes that are correlated with task
changes. For example, the retrieval of prospective memory (PM)
and configuration of PM tasks will evoke a parietal positivity, the
so-called prospective positivity in addition to a P3b (Bisiacchi
et al., 2009; West, 2011). PM paradigms investigate processes that
are associated with remembering to perform an intended action
as soon as a cue (PM cue) is recognized that reminds the subject
to perform the remembered task (see for example Bisiacchi
et al., 2009). By combining a complex senso-motor task with
a visual-motor discrimination task (both requiring a different
type of motor response behavior) our study was designed to
copy such a PM task situation to some degree: subjects were
instructed to remember to respond to targets by pressing the
buzzer, while he or she was playing the game. Hence, under dual-
task condition task-relevant target stimuli might also function
as PM cues and will evoke PM-related brain activity. In fact,
a previous study (West et al., 2003) found that task-relevant
stimuli evoke both target recognition and PM-related activity. In
this study, it was found that the P3b contributes to the parietal
positive ERP complex evoked in PM experiments. Their findings
support that PM performance requires target recognition. It was
also shown that the P3b is evoked earlier than the prospective
positivity, which can be found in the time window between 600
and 800ms and represents a later component of the parietal
positive ERP complex that is evoked during PM performance.
Furthermore, the prospective positivity was discussed as ERP
that is clearly distinguishable from brain processes that are
involved in the detection of infrequent target stimuli correlated
with the P3b (West et al., 2003). Hence, our assumption is
that other ERPs than P3b are evoked in complex multi-motor
task applications, i.e., under dual-task condition of the labyrinth
game. A strongly expressed and broad parietal positive ERP
complex was found in all of our P300-based eBR applications
(Kirchner et al., 2013; Woehrle and Kirchner, 2014a; Kirchner
et al., 2016).

Since the P3b is evoked earlier than the prospective positivity,
differences in the late time window between targets and deviants
under the dual-task condition but not under the simple-task
condition in our study can be explained by a later prospective
positivity. Similarly, in Fowler (1994) where subjects had to
control a virtual airplane and had to respond to targets with a
motor response it could be discussed that expected P300 activity
in their experiment was also superimposed by ERP activity
related to PM tasks. Indeed they reported multiple peaks as well
as slow waves evoked by task-relevant infrequent stimuli as an
indication for overlaying ERP activity.

In summary, our findings can be interpreted well when
assuming that under dual-task condition target stimuli evoke
a P3b, which is sensitive to task emphasis, and at least
one additional ERP component, i.e., a prospective positivity,
is evoked. This requires the assumption that the dual-task
condition in our experimental setup is also a PM task condition.

Single-Trial Classification Performance
Results of single-trial classification performance in case of
using 62 channels show that infrequent stimuli (deviants or
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targets) can very well be distinguished from frequent task-
irrelevant stimuli (standards) under both simple-task and dual-
task condition. Further, our results show that task-relevance
of target stimuli enhances differentiability under both task
conditions for both time windows and different numbers of
electrodes (see performance differences between target detection
(t/st or t/d) and deviant detection (d/st) in Figure S3). This is even
true for all investigated transfer cases. Thus, we could show that
EEG activity evoked by targets can be detected in single trials
with a higher performance. In particular, our results of single-
trial classification performance support our findings of average
ERP analysis (see Introduction question 1). Hence, findings of
both average ERP analysis and single-trial classification support
our assumption that motor-task relevance of stimuli affects
the expression of parietal ERP activity as well as classification
performance. These findings are also relevant for applications.
It supports our earlier assumption (see Introduction question 2)
that the capability of the user to recognize the task relevance of a
stimulus has an effect on the ERP expression and classification
performance of ERP activity evoked by task-relevant stimuli
(see also Kirchner et al., 2013; Woehrle and Kirchner, 2014b,a;
Kirchner et al., 2016).

The interesting finding that classification performance on
both types of infrequent stimuli (targets and deviants) was
significantly higher under simple-task compared to dual-task
condition in case of using 62 channels (see Supplementary
Materials in Figure S6) can be explained with the fact that overall
more brain resources are assigned to the visual-motor oddball
task under simple-task condition. This means that controlled
conditions together with the usage of all possible data will
not surprisingly result in best classification performance. Thus,
looking at the differences in spatial distribution of the first
retained xDAWN channel it can be seen that the xDAWN filter
makes strong use of activity from parietal electrodes irrespective
whether deviants or targets are classified from standards.

However, parietal activity is rather broad and a reduction of
electrodes results in a decrease of information that can be used
by the classifier and therefore results in an overall decrease in
classification performance. It was found to be not sufficient to use
6 or less parietal electrodes to distinguish EEG activity evoked by
infrequent task-irrelevant stimuli (deviants) from EEG activity
evoked by frequent task-irrelevant stimuli (standards). In fact,
deviant detection (d/st) was at chance level in case of using 6
or 2 electrodes. In contrast, target detection (t/st) was very high
even in case of using only two electrodes. These findings support
the assumption that EEG activity at parietal sites evoked by
deviants is more similar to EEG activity evoked by standards than
parietal EEG activity evoked by targets compared to standards.
Further, these findings are also supported by the case that training
took place on infrequent task-irrelevant (deviant) and infrequent
task-relevant (target) events. In this case, targets could still be
distinguished from deviants (t/d) with a reasonable performance
even in case of using only two electrodes. Overall all findings
support our assumption that parietal activity is relevant for the
classification of EEG activity evoked by task-relevant stimuli.
This clearly can be expected from average ERP expression at
parietal electrode sites (see Introduction question 3).

Furthermore, it is obvious from xDAWN results that relevant
features can be extracted from central areas for deviants
(especially under simple-task condition), which likely results
from a stronger weight of more centrally located processes
likely correlated with P3a (Squires et al., 1975; Duncan-Johnson
and Donchin, 1977; Verleger et al., 1994; Polich, 2007). Hence,
parietal activity contributes less to the classification performance
in case of the processing of deviant stimuli compared to target
stimuli. This again is supported by our findings from average
ERP activity that clearly show a less prominent expression of
positive parietal ERP activity evoked by deviants compared to
targets under both task conditions in both time windows.

When using two selected parietal electrodes (Pz and CPz)
which are expected to mainly record brain activity involved in
target recognition and PM processes, classification performance
for target detection (t/st) in early window was higher under
dual-task condition (which is assumed to involve target
recognition and PM processes) than under simple-task condition
(which is assumed to not to involve PM processes but only
processes related to target recognition). Moreover, performance
in target recognition (t/st and t/d) is similar between both task
conditions in case that 6 parietal electrodes are used. Hence,
controlled simple-task condition does no longer result in higher
classification performance as discussed for the case that all 62
electrodes covering the whole head are chosen. This finding again
supports that processes such as target recognition, task evaluation
and PM processes contribute strongly to the classification of
target events under dual-task condition (especially in case that
parietal electrodes are chosen). This finding is supported by the
finding that classifier transfer between task conditions for the
distinction of targets from deviants (t/d) is strongly reduced
in classification performance (see Figure 9), supporting a big
difference between activity evoked by targets under simple-task
compared to dual-task condition. Hence, especially ERP activity
evoked by the PM related processes under dual-task condition
is expected to contribute to the increase in classification
performance under dual-task compared to simple-task condition
in case that available data is limited to two parietal electrodes
(CPz/Pz). This again mirrors findings from average ERP activity
analysis.

Next, we want to address the issue of the effect of
classifier transfer on the interpretability of results of single-trial
classification performance (see Introduction question 4). While
we found a very strong and clear mapping between classification
performance and the expression of ERP components that are
expected to be most typical for the differences in experimental
design, results conducted after classifier transfer are likely more
strongly influenced by the separability of the training data per se
(see Ke et al., 2016 for discussion). Main differences between task
conditions are lost due to classifier transfer. This is supported by
the finding that classification performance is strongly increased
for both windows in case that training took place on data from the
dual-task scenario to distinguish between targets and standards
in the simple-task scenario when only two electrodes are used
(see Figure 9).

In the labyrinth oddball scenario investigated here, a transfer
of classifier from dual-task condition to simple-task condition
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increases the separability of EEG trials evoked by targets
compared to EEG trials evoked by standards in case that a very
limited amount of training data (i.e., few relevant electrodes)
is used. Especially, classification performance in distinguishing
between targets and standards, i.e., target detection (t/st), is
significantly higher in the transfer case (dual to simple) than in
the no-transfer case (i.e., under simple-task condition) in both
time windows (see Figure 9 and Supplementary Materials in
Figure S6). However, in the reverse transfer direction (simple
to dual), target detection (t/st) was significantly lower in the
transfer case (simple to dual) than in the no-transfer case (i.e.,
under dual-task condition) for the late time window. Under dual-
task condition the broader parietal ERP complex suggests higher
variability in single trials which helps to train a robust classifier.
This robust classifier improves classification performance in the
transfer case (see similar findings in Kim and Kirchner, 2016).

In future work, the question of relevance of our results for
rehabilitation robotics (see Introduction question 5) must be
further evaluated. It must be tested whether our findings can
be transferred into an application scenario to better answer the
question whether a subject recognized task relevance of stimuli or
not. This can be relevant for rehabilitation applications to answer
the question whether task-relevant stimuli, e.g., commands of a
serious game or from a therapist are recognized by the patient
as task relevant. A similar transfer was shown in our earlier
studies where the study goal was to adapt human-machine-
interaction regarding the user’s capability to bring attention to
task relevant targets (Kirchner et al., 2013;Woehrle and Kirchner,
2014a,b; Kirchner et al., 2016). In our previous studies, training
took place on standards and targets to detect unrecognized
target events (i.e., missed targets) that were expected to be
similar in ERP activity evoked by standards. Our results found
in the presented study suggests the alternative approach, i.e.,
to train on targets and deviants for the differentiation of EEG
activity evoked by the recognition or failure in recognition of
task-relevance of target events (targets vs. missed targets) in
applications. However, our results in the presented study do not
answer the question whether this approach is outperforming the
approach of training on standards and targets to detect trials
(events) in which the patient recognized task relevance. Thus,
classification performance achievable under both classification
conditions (targets vs. standard or targets vs. deviants) to detect
whether a patient understood task relevance of stimuli must still
be evaluated under real application conditions. On the other
hand, from our results it is quite clear that a transfer from a
classifier trained in a simple setup (e.g., simple-task condition) to
predict task recognition under multi-task condition (e.g., dual-
task condition or an application which is very likely a multi-
class condition) with the goal to infer whether a target was
recognized by a patient as a task-relevant stimulus, is not a very
feasible approach, since it would result in a strong decrease in
classification performance. This decrease in performance can
be explained by the big differences in ERP activity evoked by
targets under dual-(motor-)task condition compared to simple-
task condition. Hence, such an approach, as for example applied
in Kim and Kirchner (2013, 2016) and Kim et al. (2017), is not
suitable when using targets and deviants for training.

From the perspective of neuroscience methods (see
Introduction question 5) the comparison of controlled
experimental conditions with more natural complex conditions
leads to interesting results, explainable by and supporting other
work such as for example the work of West and colleagues
who showed simultaneous occurrence of P3 and prospective
positivity under certain conditions (West et al., 2003). Adding
a second motor task (dual-task condition) will evoke additional
parietal ERP activity although all stimuli are kept the same as
under simple-task condition. Hence, more complex scenarios
show that many processes usually run in parallel interacting
with each other and are overlaid resulting in overlaying ERPs
or ERP components as well as shifts in spatial expression (i.e.,
more parietal expressed P300 components evoked by deviants
under dual-task condition than expected for P3a Polich, 2007).
In future, it will be of interest to investigate the exact conditions
under which different types of stimuli and human activity are
interacting and to what extent. This research will expand our
knowledge on the effects of different attributes of stimuli that go
beyond attributes such as modality (Parasuraman and Davies,
1984; Wickens, 2008) for sharing attentional and cognitive
resources. This understanding is not only relevant for a deeper
understanding of brain processes but it will also help to design
better human-machine-interfaces as shown already by, e.g.,
Kirchner et al. (2016).

In summary, obtained differences in performance of single-
trial classification can be explained well by underlaying
differences in ERP activity. However, local differences in ERP
activity can be covered since the classifier is making use of
more spatially distributed activity. The sensitivity of classification
performance caused by more local differences in ERP activity
can be enhanced by electrode selection. Depending on the
selected electrodes, it cannot only be inferred from classification
performance whether a subject just recognized an infrequent
stimulus (deviant or target) and whether she/he will respond to
such an infrequent stimulus but also whether such a response
behavior infers with another task and requires changes in the task
set or task switch (as in case of dual task performance). However,
results clearly show that for the later question an extended set
of electrodes is needed. Whether a set of electrodes covering the
whole head (here 62 electrodes in an extended 10-20-system) or a
smaller set of electrodes (>6) is sufficient must be investigated in
future work. In case of classifier transfer which can be applied to
improve classification performance onemust, however, be careful
when interpreting the results with respect to differences in brain
processes, since class differentiability during training might have
a stronger effect on classification performance than underlying
differences in ERP activity. Most interestingly, classifier transfer
can improve classification performance or reduce classification
performance as it can be predicted by involved ERP activity.

CONCLUSIONS

Results of this study are highly relevant with respect to the
usability of single-trial classification performance as a tool for
the investigation of brain processes. We showed that differences
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in single-trial classification performance can well be explained
by the strength of expression in average ERP components and
the other way around. Further, different data selections by
reducing available electrodes results in changes in classification
performance that are expected given the knowledge on involved
brain activity. However, single-trial classification performance is
very sensitive regarding general separability of classes especially
in case that available data is reduced by e.g., electrode selection.
Thus, while we found strong correlations between classification
performance and expression of ERPs that are expected to
contribute to class differences, after classifier transfer results were
also influenced by general class separability in training data in
case of electrode reduction. While we showed that single-trial
classification performance has a good chance to become a strong
tool for the interpretation of brain processes, especially with
respect to questions of how strong specific activities influence
the whole processing in the brain, further investigations are
needed to develop policies that guide the user for a systematical
use. Only following such a guide allows the use of single-trial
classification performance as well as classifier transfer approaches
as tools to understand brain processes. By investigating brain
activity by different methods, e.g., by ERP average analysis as
well as by machine learning, results can be evidenced. Hence,
additional methods that allow for an interpretable analysis of
brain processes are highly relevant and should be considered for
the analysis of brain processes.

Besides the strong influence of BCIs as a paradigm shift in
neuroscience showing that single-trial analysis is an appropriate
method to investigate brain activity, recent researches in BCIs
showed that investigating brain activity under natural condition
instead of lab situation is feasible. This led to new approaches
in clinical applications such as rehabilitation making use of
online single-trial EEG analysis to close the loop between the
brain and the body. Here we showed that during complex
visual-motor activity it is possible to detect ERP activity related
with target recognition and task-change processes. This can
be used to improve the movement prediction when patients
are instructed to execute specific movements by a therapist or
serious game (Wöhrle et al., 2017). Our results support that
for strong activities such as P300 and related processes single-
trial ERP detection is in principle making use of features that
are physiologically interpretable and expected. However, we
showed that a selection of electrodes based on knowledge on

the brain processes can even enhance interpretability. This might
be of interest in case that a specific brain process should be
detected. While the P300 complex is a very strong and prominent
activity, even for this ERP complex a reduction of electrodes is
improving interpretability, however, with the cost of classification
performance. Hence, while we showed that target-related activity
can be well detected in application with multi-motor activity, a
reduction of electrodes will lead to a reduction of classification
performance and must thus be further evaluated especially with
respect to applicability. Classifier transfer might be a good
approach to improve classification performance.
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