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We have calculated key characteristics of associative (content-addressable)

spatial-temporal memories based on neuromorphic networks with restricted

connectivity—“CrossNets.” Such networks may be naturally implemented in

nanoelectronic hardware using hybrid memristive circuits, which may feature extremely

high energy efficiency, approaching that of biological cortical circuits, at much higher

operation speed. Our numerical simulations, in some cases confirmed by analytical

calculations, show that the characteristics depend substantially on the method of

information recording into the memory. Of the four methods we have explored, two

methods look especially promising—one based on the quadratic programming, and the

other one being a specific discrete version of the gradient descent. The latter method

provides a slightly lower memory capacity (at the same fidelity) then the former one,

but it allows local recording, which may be more readily implemented in nanoelectronic

hardware. Most importantly, at the synchronous retrieval, both methods provide a

capacity higher than that of the well-known Ternary Content-Addressable Memories

with the same number of nonvolatile memory cells (e.g., memristors), though the input

noise immunity of the CrossNet memories is lower.

Keywords: spatial-temporal memories, associative memories, nanoelectronics, neuromorphic networks,

memristors, CrossNets, capacity, noise tolerance

INTRODUCTION

Associative spatial-temporal memories (ASTM), which record a time sequence of
similarly-formatted spatial patterns, and then may reproduce the whole sequence upon the
input of just one of these patterns (possibly, contaminated by noise), are valuable parts of
cognitive systems. Indeed, we all know how a few overheard notes trigger our memory of an
almost-forgotten tune. Such observations have been confirmed by detailed neurobiological studies
of “episodic memories”, apparently localized in the hippocampus—see, e.g., the recent review by
Eichenbaum (2013). Another example (which also gives a very natural language for the description
of spatial-temporal patterns, used in this paper), is a reproduction of a movie, triggered by the
input of its one, possibly incomplete or partly corrupted, frame. More generally, multi-dimensional
associative memories may be used for a broad range of cognitive tasks—see, e.g., Imani et al. (2017)
for recent literature.
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The recent fast progress of mixed-signal nanoelectronic
hardware, in particular of hybrid memristive circuits. Such
circuits, which are based on nanoelectronic crossbars, with a
memristive device (for example, a metal-oxide memristor) at
each crosspoint (see e.g., the reviews by Likharev, 2008; Yang
et al., 2013), may enable ASTMs with extremely high speed and
energy efficiency. One option here is to use the so-called Ternary
Content-Addressable Memory (T-CAM) architecture—(see, e.g.,
Pagiamtzis and Sheikholeslami, 2006). Indeed, as was discussed
by Alibart et al. (2011), the memristive version of such a memory
requires just two crosspoint devices per cell. As a result, the total
number n of such devices in an associative memory holding Q
spatial patterns (“frames”), of N bits (“binary pixels”) each, is
just 2NQ, i.e., is only twice larger than that necessary for the
usual binary resistive memory, with no noise correction ability (It
will be more convenient for us to discuss it operation in section
Comparison with T-CAM).

In this paper, we will show that these hardware costs may be
reduced even further using the hybrid neuromorphic networks
with “CrossNets” architecture (see, e.g., Fölling et al., 2001; Türel
et al., 2004; Likharev, 2011; Merrikh-Bayat et al., 2015; Adam
et al., 2017), in which continuous-state memristive synaptic
devices work together with CMOS-implemented neural cells—
see Figure 1. If the voltages Vj, developed by the neural cells and
applied to the crossbar input lines, are not too large (for typical
metal-oxide memristors, below ∼1V), they do not alter the pre-
set states of the crosspoint devices, and the crossbar, with the
virtual-ground condition Vout ≈ 0 enforced on its output lines,
performs a multiplication of the vector of these voltages by the
matrix of synaptic weights:

Ii =
M
∑

j = 1

wijVj, (1)

where Ii is the output current (which serves as an input signal
for the recipient neural cell), M is the cell connectivity, and
the synaptic weight wij is, in the simplest case, proportional
to the Ohmic conductance Gij of the corresponding device (A
modification of the relation wij ∞ Gij, beneficial for practical
implementation, will be discussed in section Readout Options).
Hence the memristive crossbar, with continually and precisely
adjustable crosspoint devices, can perform, on the physical
level, the neuromorphic network’s most common inference-
stage operation, which is the main bottleneck at their digital
implementation. As a result, the intercell communication delays
in nanoelectronic CrossNets may be reduced to just few
nanoseconds, and their energy efficiency may approach that of
the human cerebral cortex.

The global connectivity of a limited number N of neuron
cells, with M = N – 1, may be implemented by placing the cells
peripherally, around a single N× N crossbar. However, for most
real-world applications, such global connectivity is redundant,
and an area-distributed interface between a memristive crossbar
and an array of CMOS-implemented neurons may be used to
provide the desired restricted connectivity graph. For example,
the very natural “InBar” interface topology (Türel et al., 2004)

may ensure the connectivity of each neuron with all other
neurons in its vicinity with a shape approaching that of a square
m × m, so that M = m2 – 1 < N, see Figure 2 (For practically
interesting cases, 1<<M <<N). Such shape of the connectivity
domain is very convenient for the discussion of the CrossNet
ASTM (though not necessary for its physical implementation),
and will be used in this paper.

Figure 3 shows the basic idea of operation of the memory. Just
as in Figure 2, the neural cells are mapped on a rectangular grid,

FIGURE 1 | The equivalent circuit of the simplest memristive crossbar that can

provide adjustable, nonvolatile coupling between neural cells.

FIGURE 2 | The connectivity domain of a neuron cell number i, which may be

provided by a memristive CrossNet with the InBar topology (Türel et al., 2004).

Note that each cell has a similar domain, so that the connection between the

cells of each pair is two-sided—though typically asymmetric.
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FIGURE 3 | The basic idea of operation of the neuromorphic ASTM. The

shaded areas show the set of pixels “active” (say, black) in each of the two

sequential frames.

each cell corresponding to one B/W pixel of all movie frames. At
the movie recording stage, for each pair of sequential frames, the
synaptic weight connecting two pixels, within their connectivity
domain, is strengthened if the two pixels have the same value (1
or 0) in both frames, and is weakened in the opposite case. For
example, in the case of Figure 3, where the pixels of a certain
value (say, 1) are placed on gray background, the weights wij

and wi′j′ (symbolized by solid lines) are strengthened, while the
weights wi′j and wij′ (dashed lines) are weakened.

If the recording procedure has been efficient, then at the
readout (also called the “retrieval”) stage, the activation of pixels
by those of an input frame leads to a correct sequential activation
of the following frames of the movie, even if the input frame is
either incomplete, or partly corrupted by noise. Figure 4 shows
an example of such operation. A set of 4 different movies,
with 25 frames each, obtained by applying edge detection to
grayscale movies showing running humans, was recorded into a
simulated ASTM of the same size (N = 120 × 160 = 19,200),
with connectivity M = 31 × 31 – 1 = 960. The left column
shows three frames of one of the original movies: the initial
Frame 1, an intermediate Frame 8, and the final Frame 25.
The right column shows the brightness-coded snapshots of
the spikes at the retrieval, triggered by the first frame of this
particular movie (Three middle snapshots correspond to the
same recorded Frame 8, separated by very small time intervals;
their difference will be explained in section Readout Options
below).

One can see that the movie retrieval is almost perfect (The
same network, without any change of synaptic weights wij,
gives an equally fair reproduction of any of 3 other movies,
when triggered by its frame). However, such faithful retrieval
is only possible when the total number Q of the frames does
not exceed a certain number Qmax, called the memory capacity.
This limitation, Q < Qmax is due to the fact that different frame
pairs typically impose contradictory requirements on the same
synaptic weight wij.

FIGURE 4 | The spike jitter effect at the asynchronous memory retrieval. A set

of 4 different movies, with 25 frames each, each consisting of N = 120 × 160

B/W pixels (obtained by applying edge detection to grayscale movies showing

running humans), was recorded into a simulated ASTM of the same size (120

× 160 LIF cells), with connectivity M = 31 × 31 – 1. The left column shows

three frames of one of the original movies: the initial Frame 1, an intermediate

Frame 8, and the final Frame 25. The right column shows the

brightness-coded snapshots of the spikes at the retrieval of this movie, with

three middle snapshots, corresponding to Frame 8, separated by very small

time intervals. As discussed in section Readout Options, the figure

demonstrates the (rather counter-intuitive) effect of non-accumulating spike

jitter.

The general idea of such operation of the ASTM is not
quite new. Its software aspects were repeatedly discussed starting
from the 1960s—see, e.g., Grossberg (1969). A review of the
initial work, mostly for the firing-rate networks, may be found
in section 3.5 of Hertz et al. (1991). This idea was revitalized
(Gerstner et al., 1993) at the advent of spiking network research,
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and in this context, discussed in quite a few publications—see,
e.g., the reviews (Kremer, 2001; Wörgötter and Porr, 2005), and
later papers (Yoshioka et al., 2007; Brea et al., 2011; Nguen et al.,
2012; Kabasov et al., 2013; Yu et al., 2016). However, to the best of
our knowledge, the key issue of the ASTM capacity was addressed
only in the Ph.D. thesis byWills (2004), for a very specific readout
timing model, very inconvenient for hardware implementation
(The capacity calculated in that work is also substantially lower
than for the best readout methods described below).

The objective of this work was a detailed study of the recording
and readout methods, which would enable the highest capacity
of the CrossNet ASTM. In the next section, we start with
the discussion of the readout options, in particular the most
critical issue of readout timing, and proceed to the definition
of four most plausible ways of data recording. The following
section contains the results of analysis of the proposed methods,
including calculation of the corresponding capacity-vs.-fidelity
tradeoffs. The best two recording methods are discussed in more
detail, with emphasis on their immunity to the input frame
corruption and crosspoint device variability. The section ends
with the comparison of the performance of ASTM with that of
the memristive T-CAM suggested by Alibart et al. (2011). Finally,
in the Discussion section we summarize our results, and discuss
prospects of experimental implementation of ultrafast CrossNet
ASTM.

METHODS FOR RECORDING AND
RETRIEVING DATA FOR ASTM

Readout Options
As follows from the above qualitative description of the memory,
it is quite suitable for the asynchronous spiking mode of
operation—see, e.g., Gerstner and Kistler (2002). In this mode,
the input of all initial frame’s “active” pixels (say, equal to
1) triggers simultaneous spikes Vj(t) at the outputs of the
corresponding neural cells. As a result of their action on the
memristive crossbar, all other cells of the system receive input
pulses Ii(t) described by Equation (1). In some of the cells (ideally,
all and only those corresponding to the active pixels of the next
frame), the input pulses promote the action potential beyond the
spiking threshold, causing them to fire. This new series of spikes
triggers spiking in the next cell set, corresponding to the active
pixels of next frame, etc.

We have carried out extensive numerical experiments with
this readoutmode, using the simple leaky integrate-and-fire (LIF)
model of the cells (Gerstner and Kistler, 2002), and the following
shape of the spike:

g(t) = C sin

(

t

τ

)

exp

(

−
t

2τ

)

, t ≥ 0,

where constant C is used for scaling the amplitude of the spike
and time constant τ is selected based on the desired spike
duration. The particular spike shape and the values of C and τ

are not critical for the effects discussed in this paper.
The simulations have shown the following very interesting

behavior, illustrated by Figure 4. In the absence of global

synchronization, the cells corresponding to active pixels
of a frame (besides the initial one) do not necessarily
fire simultaneously, because of the previously accumulated
individual action potentials, which are practically random. Only
the initial frame 1, triggered by the simultaneous input spikes,
is reproduced perfectly. In the typical intermediate frame 8, the
spikes are spread in time—see the readout snapshots 8A−8C,
made with small time intervals between them. If the number
Q of the recorded frames is much smaller than the memory
capacity Qmax (for a particular recording method), this “jitter”
of the spikes is almost negligible. As Q is increased, the jitter
also increases, but the spikes belonging to each frame remain
clustered in time, with the cluster width not exceeding the
average distance between the frames, and time-averaged contents
of each frame is still reproduced correctly, i.e., the jitter does
not accumulate—see, e.g., the much later frame 25 in Figure 4.
Only when Q approaches Qmax, the spiking time clusters are
getting blurred, and the reproduced movie eventually degrades
into noise.

We believe that the observed effect may be rather interesting
for theoretical neuroscience, and has to be studied in more
detail. However, we could not help noticing that the elementary
global timing (synchronization) of all spikes of each frame kills
this jitter, simultaneously increasing the memory capacity Qmax

rather dramatically. Such global timing may be achieved without
much hardware overhead—for example, just by a periodic
simultaneous lowering of the firing thresholds of all the cells, with
a time period somewhat larger than the characteristic time of the
RC-transient in the crossbar.

Because of this, the qualitative results presented in the balance
of this paper are for the globally-synchronous readout mode.
In order to analyze this mode, we have used the following
simple model (which blurs the difference between spiking and
firing-rate operation): for each time period, corresponding to
the reproduction of one frame of the movie, the voltages Vj

and currents Ii in Equation (1) are considered constant, with
each neural cell providing a static threshold activation function
Vi

(q+1) = f (Ii(q)), where the upper index is the frame number
(q= 1, 2, . . . , Q). The activation function was taken in the simple
form

V
(q+1)
i = V0 sgn I

(q)
i , (2)

where V0 is a constant coefficient, selected for convenience of
implementation, and influencing only the scaling of synaptic
weights (In our simulations, we set V0=1 without loss of result
generality). The relation (2) implies the zero-centered operation
mode, in which Vi, Ii, and wij may be either positive or
negative. This modemay be naturally implemented in differential
CrossNets, in which the jth cell contribution to the current input
of the ith cell is the sum of currents through two crosspoint
devices (both with positive conductances G), fed by equal
voltages of opposite polarities:

Ii =
M
∑

j = 1

(

G+
ij Vj − G−

ij Vj

)
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so that the effective synaptic weight wij ∞ Gij
+ – Gij

− may
have an arbitrary sign (Türel et al., 2004); such mode is also
convenient for the compensation of the temperature dependence
of memristor conductances—see, e.g., Prezioso et al. (2015).

Recording Methods
At the first stage of our work, we have explored the tradeoff
between the movie retrieval fidelity (in terms of the probability of
the correct readout, in a statistical ensemble of random frames)
and the network capacity Qmax, for four most natural methods
of movie recording, temporarily assuming perfect hardware
operation.

The Hebb Rule
Conceptually, the most straightforward recording method is
using the Hebb rule in its simplest form (Amari, 1972):

wij =
1

Q

Q
∑

q = 1

s
(q+1)
i s

(q)
j , (3)

where sj(q) = ±1 are the symmetrized values of the B/W pixels
of the qth frame. This rule evidently corresponds to the verbal
description of the weight setup discussed in the Introduction. It
is suitable for in situ recording in hardware, using the spike-time-
dependent plasticity (STDP)—see, e.g., Markram et al. (2012).
For that, the network is exposed to a periodic sequence of external
signals, each period corresponding to the one recorded frame,
with each frame pixel signal acting on an individual network’s
neuron. When the frame are applied, each “active” binary pixel
is causing the respective neuron to fire. Under the effect of these
spikes, the STDP performs either reinforcement or weakening
of synaptic weights based on the timing of the spikes of the
connected neurons. Practical details of such implementation of
the STDP with memristive crossbars are discussed by Prezioso
et al. (2016).

For simulation, this method is also the simplest one, giving an
explicit expression for each synaptic weight.

Quadratic Programming
The Hebb rule, described by Equation (3), does not guarantee
the perfect recording, because the contributions into wij,
given by each pair of frames, may be (and typically are)
mutually contradictory. Better performance may be expected
from imposing theminimal requirement for Ii(q) to have the same
sign as the proper next frame’s pixel si(q + 1):

s
(q+1)
i Ii

(q) ∝
M
∑

j = 1

s
(q+1)
i s

(q)
j wij > 0, for i = 1, 2, ...N, (4)

for each pixel of every frame.
According to the algebra basics (see, e.g., p. 13 in Bertsekas,

1995), the system of NQ inequalities (4) for 2N(M – 1) > NQ
binary weights wij only defines a multi-dimensional polygon
in the weight space, so that for getting a unique solution for
the weight set, it must be complemented with some reasonable
additional conditions. With this goal, we have first tried several

available algorithms of the linear programming (Vanderbei,
2014); however, they typically lead to growth of the width of
the synaptic weight distribution, especially strong at Q →Qmax.
Such a broad distribution is rather inconvenient for the hardware
implementations, in which the range of possible crosspoint
device conductances G is always limited—see, e.g., Merrikh-
Bayat et al. (2015).We have achievedmuch better results by using
the quadratic programming (Best, 2017), in which Equation (4)
is complemented with the requirement of the smallest norm of
the vector of synaptic weights wij. The calculations have been
performed using the MATLAB’s function quadprog().

This recording method is computationally rather intensive,
requiring CPU times approximately two orders of magnitude
larger than the Hebb rule (3). Also, since the quadratic
programming is a global optimization algorithm, we are not
aware of any it’s possible in situ analog-hardware implementation
without involving a very significant digital-circuit (i.e., essentially
ex-situ) overhead.

Analog Gradient Descent
The next natural recoding method is an iterative algorithm
similar to the well-known delta-rule of the feedforward
perceptron training, describing the gradient descent of the
quadratic error function (see, e.g., section 5.4 in Hertz et al.,
1991):

1wij = −ηs
(q)
j ε

(q+1)
i . (5)

Here η is a small training rate (in simulations we used the value η

= 0.001, though its choice does not affect the results much), and
ε is the error of the previous prediction of the next frame’s pixel:

ε
(q+1)
i =

M
∑

j = 1

wijs
(q)
j − s

(q+1)
i . (6)

Since the weight updates are computed and applied separately
for each pair of the consecutive movie frames, this recording
algorithm is effectively implementing the stochastic gradient
descent optimization with the batch size of one frame pair. The
number of times the complete movie is applied to the ASTM
represents the number of training epochs.

Discrete Gradient Descent
We have found that the analog gradient descent method may be
improved by rounding the sum ai

(q) to the closest of±1:

ε
(q+1)
i = round

(

a
(q)
i

)

− s
(q+1)
i , a

(q)
i =

M
∑

j = 1

wijs
(q)
j

thus limiting the error εi
(q+1) to the set of values {−2, 0, 2}.

However, preliminary testing showed some limitations of this
approach, which tends to result in synaptic weights that produce
very small values of ai(q), and hence unnecessarily increase the
system’s sensitivity to noise.

This deficiency may be easily eliminated by introducing
a small gap with the range [–D, +D] and modifying the

Frontiers in Neuroscience | www.frontiersin.org 5 March 2018 | Volume 12 | Article 195

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Gavrilov et al. Associative Spatial-Temporal Memories

optimization procedure, so that the values of ai(q) are “pushed”
outside the gap in the process of reducing the cost function. For
the case of binary pixels with values ±1, the resulting expression
for the error takes form

ε
(q+1)
i = S

(q+1)
i − s

(q+1)
i , (7)

where the integer S depends not only on the current prediction of
the output pixel, as in Equation (6), but also on its proper value:

S
(q+1)
i = sgn





M
∑

j = 1

wijs
(q)
j − Ds

(q+1)
i



 . (8)

Simulations showed that changing the width of the gap D (before
training) may be used to proportionally scale all the weights
of the network, without changing its performance. Therefore,
the selection of D can be based solely on the implementation
convenience. In our simulations we choseD= 1. The weights are
updated according to Equation (5) with training rate η = 0.005.

Simulation Procedures
The ASTMmodels discussed in this paper represent complicated
nonlinear systems that are difficult to evaluate using analytical
methods. Therefore, with one notable exception discussed in
section Hebb Rule below, we had to use numerical simulations to
estimate the performance characteristics of the system, including
first the ASTM capacity, and then its sensitivity to pixel and
weight noise.

All simulations have been performed on a square lattice of N
×N neural cells. In order to mitigate the effects of large but finite
sizeN, we have used the usual cyclic boundary conditions on both
pairs of opposite sides of the square (equivalent to wrapping the
network on a thorus).

In order to exclude the effects of hardly-controllable pixel
correlation in real-life B/W movies, such as shown in Figure 4,
the memories were evaluated on movies composed of fully
random frames. This approach may be further justified by taking
into account that in order to be recorded in a binary memory
like ours, an analog or multi-bit (say gray-scale or color) pixel
needs to be represented bymany binary pixels, whose correlation,
averaged over the whole connectivity domain, is vanishingly
small. Besides the data shown in Figure 9, the duty cycle of each
frame, i.e., the percentage of “active” (say white) pixels was 50%.

Each memory readout trial starts with exposing it to a
randomly selected frame of the recorded movie, and then using
Equation (1) to sequentially recover all the remaining frames
(Since each recorded movie formed a closed loop, the readout
continued up until the input frame was reached again). If this
last frame virtually matched the input one, the recovery was
considered successful. The memory capacity was determined as
the maximum length of the movie that could be recorded and
read out with a 1% fidelity.

The sensitivity to pixel noise was evaluated by “flipping” a
certain percentage of random pixels in the initial frame. In this
case, the final frame of each readout attempt was compared
with the uncorrupted version of the input one. The sensitivity

to pixel noise, was characterized with the percentage of failures
to recover the movie correctly, as a function of the corrupted
input bit number and the movie length (Typically, the memory
either reproduces the movie perfectly after a few first frames, or
completely corrupts it).

The sensitivity to weight noise was calculated similarly, except
that Gaussian noise was added to each synaptic weight before
each readout attempt. In this case, the memory may be capable
of reproducing the movie correctly, but with small percentage of
wrong pixels in each frame. This is why, in order to evaluate the
noise sensitivity, we have set a certain threshold on the percentage
of errors in the final frame, used to decide whether the readout is
successful. The results presented below are for the thresholds of 1
and 3%.

Due to the stochastic nature of these numerical experiments,
getting accurate results requires their averaging over large
number of simulation experiments. Each such experiment used
for the memory capacity evaluation, included using a new,
randomly generated movie, with just one readout run, starting
with a random frame (The number of experiments used to
obtain each data point is specified in figure captions). The noise
sensitivity evaluations were based on 10 series of experiments,
with each series using a uniquemovie and 100 attempts to recover
the movie, starting from a random frame, after adding a new
random noise pattern—to either the initial frame or to synaptic
weights. This procedure provided 1000 data points for each final
(average) point shown below.

RESULTS

Hebb Rule
Since the Hebb Rule gives an explicit expression (3) for the
synaptic weights, the resulting capacity-to-fidelity tradeoff may
be readily evaluated analytically, assuming that all the binary
pixels in the whole movie are random and uncorrelated.
Indeed, let us assume that in a frame number q, all M cells
within the connectivity domain of an ith cell have correct
values: Vj

(q) = V0sj
(q). Then plugging Equation (3) (with the

summation index replacement q→q’) into Equation (1), we may
calculate the normalized product of the signal Ij arriving at the jth

cell, by the sign of its correct value, si(q + 1), in the next frame:

Q

V0
I
(q)
i s

(q+1)
i =

M
∑

j = 1

Q
∑

q′ = 1

s
(q+1)
i s

(q′+1)
i s

(q′)
j s

(q)
j . (9)

Due to the independence of different pixels, the sum ofMQ terms
in the right-hand part of Equation (9) has only M terms (all
with q = q’) always equal to +1, while all other terms have an
equal probability to equal either +1 or−1. At M, Q >> 1, the
sum of theseM(Q – 1) random terms has a Gaussian probability
distribution with a zero statistical average, and the variance equal
toM(Q – 1)≈MQ. As a result, the probability of the negative sign
of the whole sum (Equation 9), i.e., of an error of the ith pixel in
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the (q+ 1)st frame, is

p ≈

1
√
2πMQ

∫ ∞

M
exp

(

−
x2

2MQ

)

dx ≡
1

2
erfc

√

M

2Q
, (10)

where erfc(x) = 1 – erf(x) is the complementary error function.
Note that this result is similar to that for the Hopfield networks
with the similarly sharp activation function (see, e.g., section 2.2
in Hertz et al. (1991), and similarly restricted connectivity (Türel
et al., 2004), because for this calculation, the addition of 1 to
the upper indices in the right-hand part of Equation (9) is not
important.

In the most important limit of small error probability,
Equation (10) is reduced to

p ≈

√

Q

2πM
exp

{

−
M

2Q

}

<< 1, for 1 << Q << M (11)

At larger p, we need to take into account the induced errors, i.e.,
the effect of an error in a qth frame on the error probability in
the (q + 1)st frame. At Q, M >> 1, such a calculation may be
performed analytically using the mean-field approach, similar to
that used for the calculation of the Hopfield network’s capacity—
see, e.g., section 2.5 in Hertz et al. (1991). However, since the
main focus of this work was on other recording methods, giving
better results (see below) we have opted for the simple numerical
simulation of the readout. These numerical experiments have
shown that at the retrieval process, the fraction of incorrect pixels
per frame rapidly approaches some stationary, equilibrium value
p; these values are plotted by points in Figure 5 for several N and
M. For all the simulated cases, the normalized memory capacity
Qmax/M is virtually independent of these parameters—just as in
Equations (10) and (11).

For the practically interesting fidelity range (p ≤ 1%), the
corrections due to induced errors are not important, and the
numerical results, with a good accuracy, are described by
Equations (10) and (11). In particular, for the 99% fidelity
(p= 0.01),Qmax ≈ 0.18M. Such low capacity is not too surprising,
given the well-known result Qmax ≈ 0.14M for the Hopfield
networks with the similarly restricted connectivity (Türel et al.,
2004), and the similar activation function.

Quadratic Programming
The simulations have shown that with the growth of the number
Q of the recorded frames, the correct retrieval degradation is
different from that at the Hebb-rule recording. Namely, the
number of wrong pixels in each retrieved frame is typically very
small, but when a few errors appear, they almost immediately lead
to a complete corruption of the remaining frames of the movie.
As a result, the system’s fidelity violation is better characterized
by the probability p of the movie corruption, measured on a large
statistical ensemble of different movies (again, with completely
random and independent pixels).

Figure 6 shows the p so defined as a function of the same ratio
Q/M as in Figure 5. The results, which were obtained by first
recording and then replaying randomly generated movie for each
simulation run, show that for a reasonable fidelity (say, p = 1%),

FIGURE 5 | The probability of pixel retrieval error in the ASTM using the

Hebbian recording (Equation 3), as a function of the normalized number Q of

the recorded frames. Lower curve: Equation (10). Dashed curve: Equation (11),

valid only for small probability of pixel errors. Upper points: numerical

simulation results, which automatically take into account the induced errors.

FIGURE 6 | The numerically calculated probability of the retrieved movie’s

corruption at the quadratic programming (The curves are only guides for the

eye). The error bars represent standard deviation of the mean based on 500

simulations for M = 440 and 100 simulations for M = 960.

the network capacity Qmax, averaged over two simulated cases
(M = 440 and M = 960), is (1.75 ± 0.05)M, i.e., is almost an
order of magnitude higher than for the Hebb-rule recording.

Note that for the case of global connectivity (M = N – 1), this
number is close to the theoretical capacity maximum Qmax =
2(N – 1) of the usual (spatial) associative memory, based on a
recurrent neuromorphic network (Gardner and Derrida, 1988).

Analog Gradient Descent
The data recording was performed by iteratively updating
weights according to Equations (5) and (6) until the optimization
algorithm converged to global minimum of prediction error. We
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assumed that the solution is near the global minimum when the
magnitudes of all errors (Equation 6) drop below 0.1. Preliminary
testing showed that setting a more stringent criterion did not
improve the capacity or noise sensitivity of the network. In cases
when the algorithm was not converging, iterations were stopped
after 105 epochs.

The numerical simulation has shown that the movie retrieval
dynamics is qualitatively similar to that for the quadratic
programming (see the previous subsection): an increase of
the number Q of the recorded frames leads to an increase
of the probability p of the total corruption of the retrieved
movie. Figure 7 shows a typical dependence of this probability
on the ratio Q/M; it indicates that the memory’s capacity is
approximately two times lower than that for the quadratic-
programming recording; for p = 1%, Q ≈ 0.97M [Similarly
to the shown QP results, in Figure 7 (and Figure 8 below)
each simulation run involved recording and replaying randomly
generated movie].

In hindsight, such relatively poor results might be anticipated.
Indeed, the algorithm (Equations 5, 6) forces the network outputs
to approach the exact integer values si(q + 1) of the next pixels,
while for the successful movie retrieval, it is only necessary for
it to have its sign correct—see Equation (2). As the result, the
unnecessary changes of the weights interfere with the substantial
ones, and hinder the iterations’ efficiency.

Digital Gradient Descent
The ASTM recording procedure was organized similarly to
that for Analog Gradient Descent, except that in the iterative
optimization algorithm weight updates are determined by
Equations (5), (7), and (8). Figure 8 shows the probability of
the retrieved movie corruption as a function of the normalized

FIGURE 7 | The probability of the retrieved movie’s corruption at the analog

gradient-descent recording (The lines are only guides for the eye). N = 101 ×
101 = 10,201, M = 21 × 21 – 1 = 440, η = 10−3. The recording iterations

(Equation 5) were stopped either after 105 epochs, or when the magnitude of

all errors (Equation 6) dropped below 0.1. The error bars represent the

standard deviation of the mean based on 100 simulations.

number Q of the recorded frames, for several values of
parameters N and M. The results imply that the capacity-to-
fidelity tradeoff is almost as good as that available from the (much
less convenient) quadratic programming; for example, at p= 1%,
Qmax ≈ (1.67± 0.02)M, depending onM and N.

Note that all the CrossNet ASTM capacity results, shown in
Figures 5–8, are for completely random binary (B/W) pixels, i.e.,
for the 50% probability for each pixel to have a certain value (±1).
If this probability is either lower or higher, the capacity is even
larger—see, e.g., the results shown in Figure 9.

For very sparse patterns (with either d << 1 or 1 – d << 1),
even higher capacitymay be possible using a natural modification

FIGURE 8 | The probability of the retrieved movie’s corruption at the discrete

gradient-descent recording described by Equations (5), (7), and (8) (The lines

are only guides for the eye). η = 0.01; D = 1. The recording iterations were

stopped when the errors εi
(q+1), defined by Equation (7), reached 0 for all i

and q. The error bars represent the standard deviation of the mean, based on

1,000 simulations for M = 440 and 500 simulations for M = 960.

FIGURE 9 | The capacity (at 99% fidelity) at the discrete gradient-descent

recording, as a function of the “duty cycle” d, i.e., the fraction of binary pixels

having a certain binary value in each frame, for M = 440. The smooth curve

shows the empirical dependence Qmax ∞ 1/[d(1 – d)]1/2. The error bars

represent the estimated maximum deviation.
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of the recording rules suggested for usual (spatial) associative
memories—see, e.g., pp. 52–53 in Hertz et al. (1991). At the
software implementations of the memories, these rules are
sometimes applied to dense patterns (with d ∼ ½) as well, using
their mapping on sparse ones. At the hardware implementation,
however, such approach would require an impracticable increase
of the necessary resources.

Immunity to Noise and Device Variability
To summarize the previous section, two of the methods we have
studied, stand out of the competition: the first method, based on
the quadratic programming, due to the largest memory capacity,
and the second one (based on a discrete version of the gradient
descent approach) due to its local nature, enabling hardware
implementation of the recording, with a minimal involvement of
peripheral circuitry—at a very competitive capacity. These two
methods have been chosen for a more detailed study, namely
a numerical evaluation of the CrossBar ASTM’s immunity to
the noise contamination of the input frame, and of its tolerance
to random deviations of the synaptic weights from the optimal
values calculated at the recording (Such deviations are currently
the largest challenge for large-scale applications of metal-oxide
memristors and other species of these prospective devices,
fabricated using various technologies). Random deviations of
weights were simulated by adding random deviations to the
original weights before each movie retrieval attempt. The
deviations were random and independent, obeying the Gaussian
distributions with zero mean, and a relative r.m.s. value r.

The results of these calculations are presented, respectively, in
Figures 10, 11. The plots in Figure 10 show, for example, that if
the number Q of frames recorded into an ASTM, by either of the
twomethods, is at 25% of itsmaximum capacity (Q= 200), it may
recognize the input frame with ∼10% corrupted pixels, but if Q
is increased to 400, i.e., to 50% of Qmax, the input noise tolerance
drops sharply, to only∼10−3 of the pixels.

On the contrary, as Figure 11 shows, filling of memory has
smaller effect on its tolerance to fluctuations of memristive
device conductance. For example, if the ASTM with the
quadratic programming recording (Figure 11A) is filled to
25% of its maximal capacity, its operation is not hindered
by weight fluctuations with ∼38% relative r.m.s.. If additional
data is written to such memory, so that it is filled to 50% of
capacity, weight fluctuations with the r.m.s. above ∼15% cause
movie corruption. For the discrete gradient descent recording
(Figure 11B), the fluctuation tolerance is ∼20% for the 25%
memory fill, and∼5% for the 50% memory fill.

It is important to note that these results characterize not
an instant, but rather a gradual suppression or amplification of
the input noise. For example, Figure 12 shows the number of
wrong pixels in N = 10,201-pixel frames for 10 simulated movie
retrievals, for a system with the cell connectivity M = 440, with
Q = 250 frames recorded using the discrete gradient descent
method. The plots show that all 500 input errors (which were
independent for each retrieval attempt) eventually disappeared
in 8 cases, but led to a full movie corruption in two cases (These
data are a small part of a set of 1,000 movies, which gave the point

FIGURE 10 | The probability of movie retrieval error at: (A) the

quadratic-programming recording, and (B) the discrete gradient-descent

recording, as functions of the fraction f of wrong (randomly flipped) binary

pixels in the input frame, for M = 440. The arrow shows the point with

f = 0.049, which corresponds to the case illustrated in Figure 12. The error

bars represent standard deviation of the mean based on 1,000 simulations (10

randomly generated movies, 100 tests per movie).

with f = 500/10,201≈ 0.049 and the error probability∼0.2—see
the point marked in Figure 10B).

Comparison With T-CAM
The results shown in Figures 10, 11 need to be compared
with those for the main competitor of the CrossNet ASTM,
the T-CAM circuits already mentioned in the Introduction.
Figure 13 shows a 2×3-cell fragment of the memristive T-
CAM (Alibart et al., 2011). It is a rectangular matrix of cells,
with two binary-state crosspoint devices (plus two diodes) per
cell, with each bit stored in the complimentary binary states
(ON and OFF) of these two devices, whose order encodes
the bit.

Using the same movie language, the N binary pixels of each
frame are stored in one row of such ASTM, so that the storage
of Q frames requires Q rows. Before the movie retrieval, the
row lines are pre-charged to the same voltage V0. The retrieval
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FIGURE 11 | The probability of movie retrieval error in the ASTMs with

M = 440, using (A) the quadratic-programming recording, and (B) the discrete

gradient-descent recording, as functions of the normalized (relative) r.m.s.

deviation r of the synaptic weights from the optimal (calculated) values. Solid

lines represent the 99% fidelity of recovery, while the dashed lines, the 97%

fidelity. The error bars represent standard deviation of the mean based on

1000 simulations (10 randomly generated movies, 100 tests per movie).

is induced by feeding each pair of column lines with voltages
{V0, 0}, in the order dictated by the value of the corresponding
binary pixel of the input frame. If the bit recorded in a cell
corresponds to the input bit (i.e., if the input voltage V0 > 0
corresponds to the ON state of the corresponding crosspoint
device, with a high conductance, while the input voltage 0, to
the OFF state, with its very low conductance), the feed does
not result in a noticeable current through the cell. As a result,
if a recorded frame exactly matches the input one, the row
line’s voltage stays high. On the contrary, if some bits of a
recorded frame are different from those of the input frame, the
corresponding row line discharges, with the rate proportional
to the number of misfit bits, i.e., to the Hamming distance
between these two-bit strings. The discharge rates of all rows are

FIGURE 12 | The input pixel noise suppression by a CrossNet with N = 101 ×
101 = 10,201; M = 21 × 21 – 1 = 440 in the process of movie retrieval, as

simulated for 10 independent random noise patterns. The recording of the

movie with Q = 250 frames was performed using the discrete gradient

descent method.

FIGURE 13 | An ASTM implemented as a memristive Ternary

Content-Addressable Memory (T-CAM).

compared by the comparator C, and the row with the slowest
rate is assumed to carry the requested frame. After the choice
of the row has been made, the whole movie may be played
out without any further input (This design may be readily
generalized to more than two dimensions—see, e.g., Imani et al.,
2017).

The fact that this circuit requires n= 2NQmemristive devices
(besides the diodes and the peripheral circuits including the
multi-input comparator) may be represented by saying that the
frame capacity of the T-CAM with n devices is

Qmax =
n

2N
. (12)
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This value should be compared with the result Qmax ≈ 1.75M
= (7/8)M at 1% fidelity for the CrossNet ASMT discussed in
this paper (for the two best recording methods). Since in that
memory, with the differential encoding of the synaptic weights,
the total number of crosspoint devices is n = 2MN, that result
may be rewritten as

Qmax ≈
7

8

n

N
, (13)

i.e., the capacity (Equation 12) of the T-CAM with the same
number of devices is a factor of 7/4 lower.

If the frame of N binary pixels, submitted to T-CAD for the
recognition, has some number (say, fN) of corrupted pixels, there
is a chance that its Hamming distance from a wrong recorded
frame will be lower than that from the correct frame, so that
the memory will recall that wrong frame. Since the Hamming
distance between two random strings, ofN >> 1 bits each, obeys
the Gaussian distribution with the mean N/2 and the variance
N/4, the probability of such an error is

p =
1

√
2π (N/4)

fN
∫

0

exp

[

−
(

k− N/2
)2

2 (N/4)

]

dk

≡
1

2

{

erf

[

(

2f − 1
)

√

N

2

]

− erf

(

−
√

N

2

)}

. (14)

According to this formula, atN >> 1 the error is extremely small
until the fraction f of the pixels in the input frame approaches
50% very closely—by the distance of the order of 1/(2N)1/2 << 1.
Hence, the noise immunity of the T-CAM is higher than that of
the CrossNet ASMT—cf. Figure 10.

The crosspoint device fluctuation tolerance of the T-CAM
is also higher than that in the CrossNet ASTM. In order to
characterize it, we should take into account that the Ohmic
conductance G of real-life memristors is non-vanishing even
in the OFF state. Hence the voltage decay rate in the line
corresponding to the perfect fit to the input frame (Figure 13)
is NV0GOFF > 0. On the other hand, the average rate of a misfit
line discharge is NV0GON/2, with an r.m.s. fluctuation scaling as√
N << N. Hence an error due to the worst-case (simultaneous)

fluctuations of the conductances appears only at

(GOFF)max >
1

2
(GON)max (15)

- the situation at which a memristive array is typically considered
even unworthy of testing.

CONCLUSION

Our calculations have shown that hybrid CMOS/memristor
circuits with the CrossNet architecture may be indeed used as
ASTM, especially if operated in the synchronous mode, with

the global external timing of all neural cells. Of the studied
information recording methods, two gave the best results for
the capacity-fidelity tradeoff and noise tolerance: one using the
quadratic programming approach, the second one based on
a discrete version of the gradient descent method (The latter
method, while providing a slightly lower capacity, is more
convenient for the hardware-based recording).

With any of these recording methods, the CrossNet ASTMs
may be more hardware-saving than the alternative, T-CAM
circuits of the same capacity, by offering higher data recording
density per memristor, though the input noise immunity and
memristor variability tolerance of the CrossNet ASTM are
lower. It is important to note that CrossNet ASTM’s capacity
increases naturally, without any modifications to the network,
for more realistic cases of correlated frames (see Figure 9). On
the other hand, T-CAM implementations would have to rely
on coding and/or compression algorithms, which might have
substantial implementation overhead and inferior information
capacity.

One more challenge for the experimental implementation
of the CrossNet ASCM is the still immature technology
of memristor hybridization with underlying CMOS circuits
(Chakrabarti et al., 2017). However, the field of possible
applications of our results is much broader than the memristor-
based networks. For example, they are fully applicable to
CrossNet-like circuits using floating-gate memory cells, with
analog data recording, as synapses—see, e.g., Hasler and Marr
(2013). At the industrial-grade implementation of such cells,
they may be quite comparable with memristors in size, and
provide almost similar speed and energy efficiency. The recent
fast progress of experimental work in this direction (Guo et al.,
2016; Merrikh Bayat et al., in press) gives every hope that
the CrossNet ASTMs based on such technology may become
valuable components of future ultrafast cognitive hardware
systems.
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