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Artificial neural networks can harness stochasticity in multiple ways to enable a vast class

of computationally powerful models. Boltzmann machines and other stochastic neural

networks have been shown to outperform their deterministic counterparts by allowing

dynamical systems to escape local energy minima. Electronic implementation of such

stochastic networks is currently limited to addition of algorithmic noise to digital machines

which is inherently inefficient; albeit recent efforts to harness physical noise in devices for

stochasticity have shown promise. To succeed in fabricating electronic neuromorphic

networks we need experimental evidence of devices with measurable and controllable

stochasticity which is complemented with the development of reliable statistical models

of such observed stochasticity. Current research literature has sparse evidence of the

former and a complete lack of the latter. This motivates the current article where

we demonstrate a stochastic neuron using an insulator-metal-transition (IMT) device,

based on electrically induced phase-transition, in series with a tunable resistance. We

show that an IMT neuron has dynamics similar to a piecewise linear FitzHugh-Nagumo

(FHN) neuron and incorporates all characteristics of a spiking neuron in the device

phenomena. We experimentally demonstrate spontaneous stochastic spiking along with

electrically controllable firing probabilities using Vanadium Dioxide (VO2) based IMT

neurons which show a sigmoid-like transfer function. The stochastic spiking is explained

by two noise sources - thermal noise and threshold fluctuations, which act as precursors

of bifurcation. As such, the IMT neuron is modeled as an Ornstein-Uhlenbeck (OU)

process with a fluctuating boundary resulting in transfer curves that closely match

experiments. The moments of interspike intervals are calculated analytically by extending

the first-passage-time (FPT) models for Ornstein-Uhlenbeck (OU) process to include

a fluctuating boundary. We find that the coefficient of variation of interspike intervals

depend on the relative proportion of thermal and threshold noise, where threshold noise

is the dominant source in the current experimental demonstrations. As one of the first

comprehensive studies of a stochastic neuron hardware and its statistical properties, this

article would enable efficient implementation of a large class of neuro-mimetic networks

and algorithms.

Keywords: stochastic neuron, insulator-metal transition, FitzHugh-Nagumo (FHN) neuron model,

Ornstein-Uhlenbeck process, threshold noise, vanadium-dioxide
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1. INTRODUCTION

A growing need for efficient machine-learning in autonomous
systems coupled with an interest in solving computationally hard
optimization problems has led to active research in stochastic
models of computing. Optimization techniques (Haykin, 2009)
including Stochastic Sampling Machines (SSM), Simulated
Annealing, Stochastic Gradients etc., are examples of such
models. All these algorithms are currently implemented using
digital hardware which first creates a mathematically accurate
platform for computing, and later adds digital noise at the
algorithm level. Hence, it is enticing to construct hardware
primitives that can harness the already existing physical sources
of noise to create a stochastic computing platform. The principal
challenge with such efforts is the lack of stable or reproducible
distributions, or functions of distributions, of physical noise. One
basic stochastic unit which enables a systematic construction of
stochastic hardware has long been known—the stochastic neuron
(Gerstner and Kistler, 2002)—which is also believed to be the unit
of computation in the human brain. Moreover, recent studies
(Buesing et al., 2011) have demonstrated practical applications
like sampling using networks of such stochastic spiking neurons.
There have been some attempts for building neuron hardware
(Indiveri et al., 2006; Pickett et al., 2013; Mehonic and Kenyon,
2016; Sengupta et al., 2016; Tuma et al., 2016), but building
a neuron with self-sustained spikes, or oscillations, which are
stochastic in nature and where the probability of firing is
controllable using a signal has been challenging. Here, we
demonstrate and analytically study a true stochastic neuron
(Jerry et al., 2017a) which is fabricated using oscillators (Shukla
et al., 2014a,b; Parihar et al., 2015) based on insulator-metal
transition (IMT) materials, e.g., Vanadium Dioxide (VO2),
wherein the inherent physical noise in the dynamics is used
to implement stochasticity. The firing probability, and not
just the deterministic frequency of oscillations or spikes, is
controllable using an electrical signal. We also show that such
an IMT neuron has similar dynamics as a piecewise linear
FitzHugh-Nagumo (FHN) neuron with thermal noise along with
threshold fluctuations as precursors of bifurcation resulting in
a sigmoid-like transfer function for the neural firing rates. By
analyzing the variance of interspike interval, we determine that
for the range of thermal noise present in our experimental
demonstrations, threshold fluctuations are responsible for most
of the stochasticity compared to thermal noise.

2. MATERIALS AND METHODS

2.1. IMT Phase Change Neuron Model
A stochastic IMT neuron is fabricated using relaxation oscillators
(Shukla et al., 2014b; Parihar et al., 2015) composed of an IMT
phase change device, e.g., Vanadium Dioxide (VO2), in series
with a tunable resistance, e.g., transistor (Shukla et al., 2014a)
(Figure 1A). An IMT device is a two terminal device with two
resistive states—insulating (I) and metallic (M), and the device
transitions between the two states based on the applied electric
field (which in turn changes the current through the device and
the corresponding temperature) across it. The phase transitions

FIGURE 1 | (A) VO2 based IMT spiking neuron circuit consisting of a VO2

device in series with a tunable resistance. (B) Equivalent circuit of IMT neuron

using a series inductance L and a parallel capacitance C.

are hysteretic in nature, which means that the IMT (insulator-to-
metal) transition does not occur at the same voltage as the MIT
(metal-to-insulator) transition. For a range of values of the series
resistance, the resultant circuit shows spontaneous oscillations
due to hysteresis and a lack of stable point (Parihar et al., 2015).
Overall, the series resistance acts as a parameter for bifurcation
between a spiking (or oscillating) state and a resting state of an
IMT neuron.

The equivalent circuit model for an IMT oscillator is shown
in Figure 1B with the hysteretic switching conductance gv(m/i)

(gvm in metallic and gvi in insulating state), a series inductance
L, and a parallel internal capacitance C. Let the IMT and MIT
thresholds of the device be denoted by vh and vl, respectively,
with vh > vl, and the current-voltage relationship of the
hysteretic conductance be

vi = h(ii, s)

where h is linear in ii and s is the state—metallic (M) or
insulating (I).

The system dynamics is then given by:

L
dii

dt
= (vdd − h(ii, s))− vo

C
dvo

dt
= ii − gsvo (1)

with ii and vo as shown in Figure 1B and s is considered as an
independent variable.

2.2. Mechanism of Oscillations and Spikes
In VO2, IMT, and MIT transitions are orders of magnitude
faster than RC time constants for oscillations, as observed in
frequency (Kar et al., 2013) and time-domain measurements for
voltage driven (Jerry et al., 2016) and photoinduced transitions
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(Cocker et al., 2012). As such, the change in resistance of the
IMT device is assumed to be instantaneous. Figure 2A shows
the phase space ii × (vdd − vo). V-I curves for IMT device
in the two states metallic (M) and insulating (I) and the load
line for series conductance vo = ii/gs for the steady state are
shown along with the fixed points of the system S1 and S2 in
insulating and metallic states respectively. The load line and V-I
curves are essentially the nullclines of vo and ii, respectively. The
capacitance- inductance pair delays the transitions and slowly
pulls the system toward the fixed points S1 and S2 even when
the IMT device transitions instantaneously. For small L/C ratio,
the eigenvector (of the coefficient matrix) with large negative
eigenvalue becomes parallel to the x-axis, whereas the other
eigenvector becomes parallel to AB′ or BA′ depending on the
state (M or I). When the system approaches A from below (or
B from above) and IMT device is insulating (or metallic) with
fixed point S1 (or S2), the IMT device transitions into metallic
(or insulating) state changing the fixed point to S2 (or S1). Two
trajectories are shown starting from points A and B each for the
system (Equation 1)—one for small L/C value (solid) and the
other for large L/C value (dashed). After a transition, the system
moves parallel to x-axis almost instantaneously and spends most
of the time following the V-I curve toward the fixed point. Before
the fixed point is reached the MIT (or IMT) transition threshold
is encountered which switches the fixed point, and the cycle
continues resulting in sustained oscillations or spike generation.

2.3. Model Approximations and
Connections With FHN Neuron
2.3.1. Non-hysteretic Approximation
The model of (Equation 1) is very similar to a piecewise linear
caricature of FitzHugh-Nagumo (FHN) neuron model (Gerstner

and Kistler, 2002), also called the McKean’s caricature (McKean,
1970; Tonnelier, 2003). Mathematically, the FHN model is
given by:

du

dt
= f (u)− w+ Iext

τ
dw

dt
= u− bw+ a (2)

where f (u) is a polynomial of third degree, e.g., f (u) = u −
u3/3, and Iext is the parameter for bifurcation, as opposed
to gs in Equation (1). In the FHN model, one variable (u),
possessing cubic nonlinearity, allows regenerative self-excitation
via a positive feedback, and the second, a recovery variable (w),
possessing linear dynamics, provides a slower negative feedback.
It was reasoned in McKean (1970) that the essential features
of FHN model are retained in a “caricature” where the cubic
non-linearity is replaced by a piecewise linear function f (u).
Nullclines of (Equation 2) with a piecewise linear f (u) are shown
in Figure 2B in the phase space u × (1 − w). A function f (u)
is trivially possible such that it is equal to vdd − h(ii, s) in the
regions M and I, hence making the u-nullcline similar to the
ii-nullcline in those regions. In the region N, the difference
between f (u) and vdd − h(ii, s) for any state s does not result
in a difference in the direction of system trajectories but only
in their velocity, because for small L/C the trajectories are
almost parallel to x-axis. Bifurcation in VO2 neuron is achieved
by tuning the load line using a tunable resistance (gs), or a
series transistor (Figure 3A). Figure 3B shows two load line
curves corresponding to different gate voltages (vgs), where
one gives rise to spikes while the other results in a resting
state.

FIGURE 2 | (A) Trajectories (red) of system (1) in the phase space ii × (vdd − vo) for a small L/C value (solid) and a large L/C value (dashed). The ii-nullclines of system

(1) are shown as solid black lines in the metallic (AB’) and insulating (BA’) states of the IMT device, and S1S2 is the vo-nullcline. Depending on the state, the phase

space is divided into three vertical regions - I, M and N. In the region N the ii-nullclines are dependent on s (B) Nullclines of the FHN model in the phase space

u× (1− w) where f (u) is a piecewise linear function. The dynamics of FHN neuron are equivalent to the IMT neuron in the regions M and I. In the region N, for small

L/C, the difference is only in the velocity and not the direction of system trajectories as they are parallel to x-axis.
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2.3.2. Single Dimensional Approximation
Moreover, a single dimensional piecewise approximation of the
system can be performed using a dimensionality reduction by
replacing the movement along the eigenvector parallel to the x-
axis with an instantaneous transition from A to A′, or B to B′.
This leaves a 1-dimensional subsystem in M and I each along
the V-I curves AB′ and BA′. Experiments using VO2 show that
the metallic state conductance gvm is very high which causes
the charging cycle of vo to be almost instantaneous (Figure 4)
and resembles a spike of a biological neuron. As such, the
spiking statistics can be studied by modeling just the discharge
cycle of vo. The inductance being negligible can be effectively
removed and only the capacitance is needed for modeling
the 1D subsystem of insulating state (Figure 6A) making
vi = vdd − vo.

FIGURE 3 | (A) IMT neuron with series transistor used to achieve bifurcation

between a spiking and a resting state. (B) Nullclines of the system with series

transistor in the phase space ii × vdd − vo for two different vgs values for

spiking and resting states. Bifurcation occurs when a stable points crosses the

boundary of region vdd − vo ∈ [vl , vh].

FIGURE 4 | Experimental waveforms of VO2 based spiking neuron for various

vgs values (1.78, 1.79, and 1.81 V). A VO2 neuron shows almost

instantaneous charging (spike) in metallic state.

2.4. Noise Induced Stochastic Behavior
The two important noise sources which induce stochasticity in an
IMT neuron are (a) VIMT (vh) fluctuations (Zhang et al., 2016;
Jerry et al., 2017b), and (b) thermal noise. Thermal noise η(t)
is modeled in the circuit (Figure 6A) as a white noise voltage
η(t)dt = σtdwt where wt is the standard weiner process and
σ 2
t is the infinitesimal thermal noise variance. The threshold

vh is assumed constant during a spike, but varies from one
spike to another. The distribution of vh from spike to spike
is assumed to be Gaussian or subGaussian whose parameters
are estimated from experimental observations of oscillations.
If the series transistor always remains in saturation and show
linear voltage-current relationship, as is the case in our VO2

based experiments, the discharge phase can be described by an
Ornstein-Uhlenbeck (OU) process

dx =
1

θ
(µ − x)dt + σdwt (3)

where µ, θ , and σ are functions of circuit parameters of the
series transistor, the IMT device and σt . The interspike interval
is thus the first-passage-time (FPT) of this OU process, but with
a fluctuating boundary.

2.4.1. OU Process With Constant Boundary
Analytical expressions for the FPT of OU process (with µ =
0) for a constant boundary were derived using the Laplace
transform method in Ricciardi and Sato (1988). Reproducing
some of its results, let the first passage time for the system
(Equation 3), with µ = 0, which starts at x(0) = x0 and hits
a boundary S, be denoted by the random variable tf(S, x0), and
its mth moment by τm(S, x0). Also, let t̃f(S, x0) be the FPT for
another OU process with µ = 0, θ = 1, and σ = 2, and
τ̃m(S, x0) be itsmthmoment. Then time and space scaling for the
OU process imply that

tf(S, x0)
d= θ t̃f(αS,αx0)

∴ τm(S, x0) = θmτ̃m(αS,αx0) (4)

where α =
√

2
θσ 2 . The first two moments for the base case OU

process τ̃1 and τ̃2 are given by

τ̃1(S, x0) =φ1(S)− φ1(x0)

τ̃2(S, x0) =2φ1(S)
2 − φ2(S)− 2φ1(S)φ1(x0)+ φ2(x0) (5)

where φk(z) can be written as an infinite sum

φk(z) =
1

2k

∞∑

n=1

(√
2z

)n
Ŵ

(
n
2

)
ρ(n, k)

n!
(6)

with ρ(n, k) being a function of the digamma function (Ricciardi
and Sato, 1988).

2.4.2. OU Process With Fluctuating Boundary
We extend this framework for calculating the FPT statistics
with a fluctuating boundary S as follows. Let the IMT threshold
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be represented by the random variable vh. For the VO2 based
IMT neuron, the 1D subsystem in the insulating phase can be
converted in the form of Equation(3) with µ = 0 by translating
the origin to the fixed point. If this transformation is T then
x = Tvi = T(vdd − vo), S = Tvh, and xo = Tvl. The start and
end points are B′ and A, respectively in Figure 2. vh is assumed
constant during a spike, and across spikes the distribution of
vh is vh ∼ D, where D is either Gaussian, or subGaussian.
For subGaussian distributions we use the Exponential Power
family EP[κ], κ being the shape factor. Let the interspike interval
of IMT neuron be denoted by the marginal random variable
timt(D, vl). Then timt is related to tf in Equation (4), given
common parameters θ and σ , as follows:

timt(D, vl)|(vh = v)
d= tf(Tv,Tvl)

The moments of timt can be calculated as:

E[timt(D, vl)
m] = Evh [E[timt(D, Tvl)

m|vh = v]]

= Evh [τm(Tvh,Tvl)]

= θmEvh [τ̃m(αTvh,αTvl)] (7)

where α =
√

2
θσ 2 . If D is Gaussian or EP[κ] distribution and

αT is an affine transformation, then αTvh also has a Gaussian or
EP[κ] distribution.

2.5. Experiments
IMT devices are fabricated on a 10nm VO2 thin film grown by
reactive oxide molecular beam epitaxy on (001) TiO2 substrate
using a Veeco Gen10 system (Tashman et al., 2014). Planar
two terminal structures are formed by patterning contacts using
standard electron beam lithography which defines the device
length (LVO2). Pd (20 nm)/Au (60 nm) contacts are then
deposited by electron beam evaporation and liftoff. The devices
are then isolated and the widths (WVO2) are defined using a CF4
based dry etch.

The IMT neuron is constructed using an externally connected
n-channel MOSFET (ALD110802) and the fabricated VO2

device. A prototypical I-V curve is shown in Figure 5A. Within
the experimental data, the current is limited to an arbitrarily
chosen 200 µA to prevent a thermal runaway and breakdown
of the device while in the low resistance metallic state. It
should be noted that as the metallic state corresponds to the
abrupt charging cycle of vo, limiting the current would not have
noticeable effect on spiking statistics of the neuron.

Threshold voltage fluctuations (cycle to cycle) were observed
in all devices which were tested (>10). Threshold voltage
distribution was estimated using the varying cycle-to-cycle
threshold voltages collected from a single device. Thermal noise
is not measured directly, but is estimated approximately by
matching the simulation waveforms from the circuit model
(Figure 6A) with the observed experimental waveforms. It can be
verified that thermal noise of the transistor is not the dominant
noise source by measuring the threshold variation as a function
of the transistor current (Figure 5B) and observing that the
distribution of switching threshold does not change with varying
transistor current. Finally, the firing rate and its variation with vgs
(Figure 6B) were measured for a single device.

3. RESULTS

3.1. Spiking Statistics
3.1.1. First Moment and the Firing Rate
First moment of timt is calculated using Equations (5) and (7) as

E[timt(D, vl)] = θ(Evh [φ1(αTvh)]− φ1(αx0))

The expansion for φk(z) in Equation(6) can be used to calculate
Evh [φk(αTvh)] using the moments of αTvh as follows

Evh [φk(αTvh)] =
1

2k

∞∑

n=1

(
√
2)nE[(αTvh)

n]Ŵ
(
n
2

)
ρ(n, k)

n!

FIGURE 5 | (A) The prototypical DC voltage-current characteristics for a single VO2 device exhibits abrupt threshold switching at VIMT and VMIT . The current in the

metallic state has been arbitrarily limited to a 200µA compliance current. (B) VIMT distribution as a function of the peak current during oscillations (value is set by the

MOSFET saturation current). VIMT is extracted from 300+ cycles.
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FIGURE 6 | (A) Noise model of IMT neuron where the noise components are the thermal noise voltage source η(t) and the IMT threshold fluctuation. (B) Firing rate

plotted against vgs using the analytical model for different vh distributions (Constant, Gaussian, and EP[3]) and comparison with experimental observations.

Figure 6B shows firing rate (1/E[timt(D, vl)]) as a function of
vgs for various σt values and for three distributions of threshold
fluctuations. The calculations approximate the experimental
observations well for all three vh distributions, the closest being
EP[3] with σt = 4.

3.1.2. Higher Moments
For higher moments, higher order terms are encountered. For
example, in case of the second moment, using Equations(5) and
(7), we obtain

Evh [τ̃2(αTvh,αTvl)] = 2Evh [φ1(αTvh)
2]− Evh [φ2(αTvh)]

− 2Evh [φ1(αTvh)]φ1(αTvl)

+ φ2(αTvl)

with a higher order term φ1(αTvh)
2. In the case of the third

moment we obtain φ1(αTvh)φ2(αTvh). As each φk term is an
infinite sum, we construct a cauchy product expansion for the
higher order term using the infinite sum expansions of the
constituent φks and then distribute the expectation over addition.
For example, if the φk expansions of φ1(z) and φ2(z) are (

∑
ai)

and (
∑

bi), respectively, then the cauchy product expansion of
φ1(z)φ2(z) can be calculated as

∑
ci, where ci is a function of a1...i

and b1...i, and the expectation E[φ1(z)φ2(z)] =
∑

E[ci]. Since ci
is a polynomial in z, E[ci] can be calculated using the moments
of z.

If µimt and σimt are the mean and standard deviation of
interspike intervals timt, the coefficient of variation (σimt/µimt)
varies with the relative proportion of the thermal and the
threshold induced noise. Figure 7 shows σimt/µimt (calculated
using parameters matched with our VO2 experiments) plotted
against σt for various kinds of vh distributions fitted to
experimental observations. σimt/µimt as observed in our VO2

experiments is about an order of magnitude more than what
would be calculated with only thermal noise using such a neuron,
and hence, threshold noise contributes significant stochasticity to
the spiking behavior. As the IMT neuron is setup such that the
stable point is close to the IMT transition point (Figure 3B), low
σt results in high and diverging σimt/µimt for any distribution
of threshold noise, and σimt/µimt reduces with increasing σt for

FIGURE 7 | σimt/µimt for the interspike interval plotted against σt for

vgs = 1.8V with Constant, Gaussian, and Exponential Power (EP[κ ], where κ

is the shape factor) distributions of the threshold noise. The experimentally

observed σimt/µimt for a VO2 neuron is shown with a dotted line. The shaded

region shows the experimentally estimated range of σt (σt < 5).

the range shown. For a Normally distributed vh the variance
diverges for σt . 8, but for Exponential Power (EP) distributions
with lighter tails, the variance converges for smaller values of
σt . Statistical measurements on experimental data, as indicated
in Figure 7, provide measures of σimt/µimt (dotted line) and
σt (shaded region). We note that EP distributions provide a
better approximation of the stochastic nature of experimentally
demonstrated VO2 neurons as the range of σt is estimated to
be <5.

4. DISCUSSION

In this paper, we demonstrate and analyse an IMT based
stochastic neuron hardware which relies on both threshold
fluctuations and thermal noise as precursors to bifurcation.
The IMT neuron emulates the functionality of theoretical
neuron models completely by incorporating all neuron
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TABLE 1 | Comparison of this work (experimental details from Jerry et al., 2017a) with other spiking neuron hardware works based on different characteristics of spiking

neurons.

Tuma et al., 2016 Pickett et al., 2013 Sengupta et al., 2016 Indiveri et al., 2006 This work (VO2)

Neuron type Integrate & Fire Hodgkin Huxley Integrate & Fire Integrate & Fire Piecewise Linear FHN

Material/Platform Chalcogenide Mott insulator NbO2 MTJ 0.35 µm CMOS Vanadium Dioxide (VO2)

Material phenomenon Phase Change IMT Spin transfer torque (STT) – IMT

Spontaneous spiking using

only device

No Yes No – Yes

Peripherals needed for

spiking

Yes, for spike generation

and reset

No Yes, for spike generation

and reset

– No

Integration mechanism (I&F) Heat accumulation – Magnetization accumulation Capacitor charging Capacitor charging

Threshold mechanism (I&F) External reset by

measuring conductance

Spontaneous IMT External reset by detecting

magnet flip

Reset using

comparator

Spontaneous IMT

Stochastic Yes – Yes No Yes

Kind of stochasticity (I&F) Reset potential – Differential – Threshold and differential

Source of stochasticity /

noise

Melt-quench process – Thermal noise – IMT threshold fluctuations &

Thermal noise

Control of stochastic firing

rate

Only integration rate – Only integration rate Only integration rate Yes

Status of experiments Constant stochasticity,

variable integration rate

Deterministic spiking None Deterministic spiking Sigmoidal variation of

stochastic firing rates

Peak current 750–800 µA – 200 µA

Power or Energy/spike 120 µW – 900 pJ / spike 196 pJ / spike

Voltage 5.5 V 1.75 V – 3.3 V 0.7 V

Maximum firing rates 35–40 KHz 30 KHz – 200 Hz 30 KHz

characteristics into device phenomena. Unlike other similar
efforts, it does not need peripheral circuits alongside
the core device circuit (an IMT device and a transistor)
to emulate any sub-component of the spiking neuron
model like thresholding, reset etc. Moreover, the neuron
construction not only utilizes inherent physical noise
sources for stochasticity, but also enables control of firing
probability using an analog electrical signal—the gate voltage
of series transistor. This is different from previous works
which control only the deterministic aspect of firing rate
like the charging rate. A comparison of spiking neuron
hardware characteristics in different works is shown in
Table 1.

We also show that the neuron dynamics follow a linear
“carricature” of the FitzHugh-Nagumo model with intrinsic
stochasticity. The analytical models developed in this paper
can also faithfully reproduce the experimentally observed
transfer curve which is a stochastic property. Such analytical
verification of stochastic neuron experiments is one of the
first in this work. It is an important result as it indicates
reproducibility of stochastic characteristics and helps in creating
the pathway toward perfecting these devices. With a growing
concensus that stochasticity will play a key role in solving
hard computing tasks, we need efficient ways for controlled
amplification and conversion of physical noise into a readable

and computable form. In this regard, the IMT based neuron
represents a promising solution for a stochastic computational
element. Such stochastic neurons have the potential to realize
bio-mimetic computational kernels that can be employed to
solve a large class of optimization and machine-learning
problems.
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