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Some studies identified hypo-connectivity, while others showed hyper-connectivity of

the insula in the autism spectrum disorders (ASD). These contradictory findings leave

open the question of whether and to what extent functional connectivity of the insula is

altered and how functional connectivity of the insula is associated with the severity of

ASD. A newly emerging insular atlas that comprises multiple functionally differentiated

subregions provides a new framework to interpret the functional significance of insular

findings and uncover the mechanisms underlying the severity of ASD. Using the new

insular atlas, the present study aimed to investigate the distinct functional connectivity

of the insular subregions and their associations with ASD severity in a cohort of 49

children with ASD and 33 typically developing (TD) subjects. We found that compared

with TD group, the ASD group showed different connectivity patterns in the left ventral

agranular insula, right ventral dysgranular and granular insula, and dorsal dysgranular

insula, characterized by significant hyper-connectivity and/or hypo-connectivity with

special brain regions. Furthermore, both the hypo-connectivity and hyper-connectivity

patterns of the insular subregions were significantly associated with the severity of ASD

symptoms. Our research demonstrated distinct functional connectivity patterns of the

insular subregions and emphasized the importance of the subdivisions within the insula

to the potential impact of functional difference in children with ASD. Moreover, these

results might help us to better understand the mechanisms underlying the symptoms in

children with ASD and might elucidate potential biomarkers for clinical applications.

Keywords: autism spectrum disorders, hypo-connectivity, hyper-connectivity, insula, brainnetome atlas

INTRODUCTION

Autism spectrum disorders (ASD) are prevalent neurodevelopmental disorders characterized by
deficits in social interaction; verbal and nonverbal communication; and restricted and stereotyped
patterns of behavior, interests, and activities (Minshew and Williams, 2007). Although previous
studies have directly linked aberrant intrinsic brain connectivity in ASD to specific symptoms, such
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as poor social functioning, severe restricted, and repetitive
behaviors (Monk et al., 2009; Weng et al., 2010), the exact
mechanisms underlying these symptoms are poorly understood.
To date, broad brain regions were thought to specially contribute
to ASD symptoms. The insula is one such brain regions
with the suggestion that the atypical functional connectivity of
the insula may be important in the neuropathology of ASD
(Uddin and Menon, 2009; Uddin et al., 2013b). Specifically,
it has been demonstrated that adolescents with ASD show
decreased regional homogeneity in the right insula (Paakki et al.,
2010). Functionally, a comprehensive meta-analysis of functional
imaging studies has revealed hypo-activation in the right anterior
insula during various social tasks in ASD (school-age children,
adolescents, and adults) (Di Martino et al., 2009). Regarding
functional connectivity, reduced functional connectivity of the
anterior, middle, and posterior insula with specific brain regions
involved in different brain networks was identified in adolescent
and adult ASD (Ebisch et al., 2011; Von Dem Hagen et al.,
2013; Di Martino et al., 2014). These results all confirmed
the hypo-connectivity of the insula and strongly supported the
hypo-connectivity theory of the ASD. However, accumulating
evidence of brain hyper-connectivity also exists in the domains
of visual processing, emotion processing, memory, and language
in ASD (Noonan et al., 2009; Shih et al., 2010, 2011). Specifically,
Uddin et al. (2013b) observed stronger functional connectivity
of the insula in 20 children with ASD and replicated this
finding in an independent cohort, suggesting that the hyper-
connectivity of the salience network including the bilateral insula
may be a distinguishing feature in children with ASD. Although
Uddin et al. proposed that discrepancies between findings of
ASD related hypo-connectivity and hyper-connectivity might
be reconciled by taking developmental changes into account
(Uddin et al., 2013a), it remains unclear whether the insular
subregions may account for observed inconsistencies in ASD.
It is noteworthy that the insula is comprised of separate
subregions, only assessing it as a whole region may obscure
individual differences of functional connectivity with insula
in ASD.

The insula is reported to be involved in diverse functions,
including gustatory and olfactory processing, components
of somatosensation, interoception, motivation, and the
maintenance of homeostasis (Critchley, 2005; Seminowicz
and Davis, 2007; Craig, 2009). Moreover, the insula also showed
left/right differences, which could be related to the hypothesis
that the two side of the insula subserve different functions
and are linked to different circuits (Craig, 2009; Cauda et al.,
2012). For example, the right insula has been proposed as a
key node between the default mode network (DMN) and the
central executive/attentional network (Sridharan et al., 2008).
In addition, other studies (Cauda et al., 2011, 2012) identified
that the anterior part related to salience network was found
to be frankly lateralized on the right and the visuomotor
integration network (posterior cluster) found to have a mild
right lateralization. Given these variable functions and laterality
of the insula, multiple functionally differentiated subregions
with distinct patterns of connectivity were identified in the
insula using k-means clustering of insula voxels (Jakab et al.,

2012; Kelly et al., 2012), structural connections (Cloutman
et al., 2012), clustering of a priori instantiated regions of
interest (Cauda et al., 2011), meta-analytic approaches (Kurth
et al., 2010b; Cauda et al., 2012), clustering of resting state
functional connectivity patterns (Deen et al., 2011; Chang
et al., 2013; Gordon et al., 2016), dynamic functional network
connectivity (Nomi et al., 2016), and anatomy connectivity
patterns (Fan et al., 2016). Among all these atlas of the insula,
the insular subregions in Brainnetome atlas has been not only
well established to reflect functional segregation of the insula,
but also related well to other functional and histological maps
of the insular cortex (Kurth et al., 2010a; Kelly et al., 2012;
Chang et al., 2013; Morey et al., 2013). Moreover, different
connectional, functional connectivity patterns, and behavioral
domains of insular subregions were identified and shown
along with the atlas (http://atlas.brainnetome.org/bnatlas.
html), suggesting the possibility that the insular subregions
may differ in their vulnerability to the ASD and may play
different roles in the core symptoms of ASD. Thus, investigating
functional connectivity of insula using the brainnetome atlas
in the ASD will provide further insights to better understand
the mechanisms underlying the core symptoms of ASD and
may lead to identifying potential biomarkers that could be used
in clinical situations. In addition, this atlas was successfully
used in a recent study, which showed disrupted functional
connectivity patterns of the insular subregions involved in
different neural circuits associated with the contrary impacts on
the depressive symptoms in drug-free major depressive disorder
(Wang et al., 2017).

Using the new insula atlas (Fan et al., 2016), the present
study aimed to investigate the distinct functional abnormalities
in each of the insular subregions in a cohort of 49 children
with ASD and 33 typically developing (TD) subjects. To
further examine the relationship between the functional
connectivity of each subregion of the insula and the severity
of ASD, correlations were calculated between scores on the
Autism Diagnostic Observation Schedule (ADOS) and Autism
Diagnostic Interview-Revised (ADI-R) and altered functional
connectivity of insular subregions.

MATERIALS AND METHODS

Participants
We used the dataset of the University of California, Los Angeles,
one of the subsamples in the Autism Brain Imaging Data
Exchange database (http://preprocessed-connectomes-project.
org/abide/download.html). In regards to inclusion criteria, ASD
had a prior clinical diagnosis of autism based on criteria from the
Diagnostic and Statistical Manual of Mental Disorders IV, which
was confirmed with the ADOS (Lord et al., 2000) and/or ADI-R
(Lord et al., 1994). The ADOS has subscores for social interaction
(ADOS social) and communication (ADOS communication),
which are combined into a total score (ADOS total). The ADI-
R has subscores for social interaction (ADI-R social), verbal
(ADI-R verbal), and repetive behaviors (ADI-R). TD participants
had no history of any genetic, neurological, psychiatric, or
developmental disorders. In addition, they could not have a first
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degree relative with an ASD diagnosis. Verbal, performance,
and full-scale intelligence quotients (IQs) were assessed for each
participant using the four subsets of the Wechsler Abbreviated
Scale of Intelligence or the full Wechsler Intelligence Scale
for Children (Wechsler, 1999). Handedness was assessed via
parental reports on a questionnaire. This study was carried out
in accordance with the recommendation of Institutional Review
Board of University of California, Los Angeles with informed
consent from all subjects. All subjects gave written informed
consent in accordance with the Declaration of Helsinki. The
protocol wad approved by the Institutional Review Board of
University of California, Los Angeles.

The initial dataset includes 62 ASD and 47 TD individuals.
Based on the criteria from the Quality Assessment Protocol
(http://preprocessed-connectomes-project.org/quality-
assessment-protocol/ and http://preprocessed-connectomes-
project.org/abide/quality_assessment.html), we only included
subjects whose functional quality are all ok after manual
checking. Moreover, subjects whose mean frame-wise
displacement (FD) is >1mm was also excluded. Finally,
the sample included 49 ASD (age ranged from 8 to 17) and
33 TD subjects (age ranged from 9 to 17) (Table 1). The two
groups did not significantly differ based on age, gender, mean
FD, full-scale, verbal, and performance IQs. In the final sample,
ADOS and ADI-R scores were available for only 48 ASD patients.
Of the subjects in the ASD group, 23 individuals reported the use
of one or more psychotropic medications.

MRI Data Acquisition
All resting-state fMRI scans were acquired on a Siemens 3 T
Trio at the University of California, Los Angeles. During data
acquisition, subjects were asked to relax, keep their eyes open,
and keep their head still. A white screen with a black fixation
cross in the middle of the screen was presented. The T2-weighted
functional images were collected with the following settings:
repeat time = 3,000ms, echo time = 28ms, matrix size = 64
× 64, field of view = 192mm, and thickness = 4mm, no gap,
interleaved acquisition, with an in-plane voxel dimension of 3 ×
3mm. The T1-weighted magnetization-prepared rapid gradient-
echo images were collected with the following settings: repeat
time = 2,300ms, echo time = 2.84ms, field of view = 256mm,
flip angle = 9◦, and thickness = 1.2mm, interleaved acquisition,
with an in-plane voxel dimension of 1× 1mm.

Resting-State fMRI Data Preprocessing
The fMRI data were preprocessed under the Preprocessed
Connectomes Project (http://preprocessed-connectomes-
project.org/) with the Data Processing Assistant for Resting-State
fMRI (DPARSF, http://preprocessed-connectomes-project.org/
abide/dparsf.html). For each participant, the preprocessing
steps were as follows: (1) all volume slices were corrected for
different signal acquisition times; (2) the time series of images for
each subject were realigned using a six-parameter (rigid body)
linear transformation; (3) individual structural images were
co-registered to the mean functional image after realignment
using a six degrees-of-freedom linear transformation without
resampling; (4) the transformed structural images were then

TABLE 1 | Demographics and clinical characteristics.

Characteristic TD ASD p-value

Sample size 33 49 –

Gender

(female/male)a
6/27 6/43 0.456

Handness

(left/right)a
3/30 5/44 0.868

Mean FDb:mean

± SD

0.13 ± 0.18 0.19 ± 0.19 0.114

Ageb:mean ± SD 13.30 ± 2.04 13.05 ± 2.46 0.639

Verbal IQb:mean

± SD

105.21 ± 10.74 102.93 ± 13.66 0.424

Performance

IQb:mean ± SD

101.63 ± 10.58 100.30 ± 13.91 0.643

Full scale

IQb:mean ± SD

103.81 ± 9.56 101.42 ± 13.33 0.378

ADOS total:mean

± SD

– 10.66 ± 3.54 (n = 48) –

ADOS

communication:mean

± SD

– 3.16 ± 1.43 (n = 48) –

ADOS social:mean

± SD

– 7.50 ± 2.45 (n = 48) –

ADI-R social:mean

± SD

– 20.02 ± 5.33 (n = 48) –

ADI-R verbal:mean

± SD

– 16.29 ± 4.65 (n = 48) –

ADI-R repetitive

behaviors: mean

± SD

– 7.14 ± 2.55 (n = 48) –

aThe p-value was obtained by a chi-square test.
bThe p-value was obtained by a two-tailed two-sample t-test; –, indicates no data

available. TD, typically developing; ASD, autism spectrum disorders; FD, framewise

displacement; IQ, intelligence quotients; ADOS, Autism Diagnostic Observation Schedule;

and ADI-R, Autism Diagnostic Interview-Revised.

segmented into gray matter, white matter, and cerebrospinal
fluid; (5) the Diffeomorphic Anatomical Registration Through
Exponentiated Lie algebra (DARTEL) tool (Ashburner, 2007)
was used to compute transformations from individual native
space to MNI space; (6) the Friston 24-parameter model (Friston
et al., 1996) was utilized to regress out head motion effects from
the realigned data (Satterthwaite et al., 2013; Yan et al., 2013);
(7) the white matter, cerebrospinal fluid, and global signals were
regressed out; (8) linear and quadratic trends and temporal band
pass filtering (0.01–0.1Hz) were performed; (9) corresponding
maps were then registered into MNI space with 3mm three
cubic voxels by using transformation information acquired from
DARTEL; and (10) the maps were further smoothed by a kernel
of 6mm.

Definition of the Insular Subregions
The bilateral insula subregions were defined by the 50%
probability maps in the Brainnetome Atlas. Six subregions of
insula in each brain hemisphere were defined as seed areas,
including the hypergranular insula, ventral agranular insula,
dorsal agranular insula, ventral dysgranular and granular insula,
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dorsal granular insula, and dorsal dysgranular insula. For
resting-state functional connectivity (RSFC) analyses, the insula
subregions were resampled into 3× 3× 3 mm3 in MNI space.

The Whole Brain RSFC Patterns in the ASD
and TD Groups
For all the subjects, the RSFC was defined by Pearson correlation
coefficients between the mean time series of each seed region
and that of each voxel in the rest of the brain. We used the
binary gray matter mask in SPM before computing the whole
brain RSFC. Correlation coefficients were converted to z-values
using Fisher’s z transformation to improve normality. Next, one-
sample t-test was performed to identify voxels which showed
significantly positive or negative correlations with the seed region
in these normalized correlation maps. For all the above voxel-
wise comparisons, significance was determined with a voxel-level
corrected threshold of p < 0.001 and a cluster-level corrected
threshold of p < 0.05 using the Gaussian random field (GRF)
correction in the DPABI (http://rfmri.org/dpabi).

Altered RSFC of the Insular Subregions in
ASD
First, two-sample t-tests were implemented using DPABI to map
group difference of RSFC between ASD and TD groups with
the age, gender, handedness, verbal IQs, performance IQs, and
full-scale IQs as covariates. Significance was determined with a
voxel-level corrected threshold of p < 0.001 and a cluster-level
corrected threshold of p < 0.05 using the GRF correction in the
DPABI.

Then, we calculated the mean RSFC of the regions which
showed significantly altered RSFC with subregions of the insula
in the ASD and TD group. To exclude the effects of global signal,
we re-analyzed the mean RSFC using rs-fMRI data with global
signal.

Correlation Analyses Between the RSFC
and the Severity of ASD
Finally, the partial correlation analyses between the average z-
score of the region (RSFC) and the severity scores of ASD (ADOS
and ADI-R scores) were performed in the ASD group with the
age, gender, handedness, verbal IQs, performance IQs, and full-
scale IQs as covariates using SPSS. The statistical level with p <

0.05 was considered as significant.

RESULTS

Distinct RSFC Patterns of Insular
Subregions Between the ASD and TD
Groups
RSFC analyses based on the insular subregions resulted in
distinct connectivity maps in the TD and ASD groups (Figure 1).
Statistical comparisons between these maps showed significant
differences of RSFC between the TD and ASD groups in
the left ventral agranular insula, right ventral dysgranular and
granular insula, and left dorsal dysgranular insula (Figure 2

and Table 2). Specifically, children with ASD showed hypo-
connectivity between the left ventral agranular insula and the
bilateral precuneus (PCUN), between ventral dysgranular and
granular insula and the right supramarginal gyrus (SMG.R), and
between the left dorsal dysgranular insula and the right cuneus
(CUN.R). Moreover, children with ASD also showed hyper-
connectivity between the left dorsal dysgranular insula and the
left superior temporal gyrus (STG.L).

The Relationship Between RSFC and the
Severity of ASD in Children
Importantly, significantly partial correlations between the RSFC
of the insular subregions and the clinical characteristics of the
children with ASD were identified with age, gender, handedness,
full-scale IQs, verbal IQs, and performance IQs as covariates
(Figure 3). The hypo-connectivity between the left ventral
agranular insula and PCUN.R was negatively correlated with the
ADOS total/social scores in the ASD group. Moreover, the hyper-
connectivity between the left dorsal dysgranular insula and STG.L
was positively correlated with the ADI-R social scores in the ASD
group.

DISCUSSION

In the present study, we investigated the distinct functional
alterations of the insular subregions between the children
with ASD and TD groups. Compared with the TD group,
the ASD group showed different connectivity patterns in the
left ventral agranular insula, right ventral dysgranular and
granular insula, and left dorsal dysgranular insula, characterized
by hypo-connectivity and/or hyper-connectivity with specific
brain regions. Furthermore, both the hypo-connectivity and
hyper-connectivity of the insular subregions were significantly
associated with the core symptoms of ASD.

ASD is a complex neurodevelopmental disorder that affects
multiple cognitive domains. Recent theoretical models have
highlighted the need to consider ASD as a disorder associated
with several large-scale networks (Belmonte et al., 2004;Welchew
et al., 2005; Geschwind and Levitt, 2007). Using independent
component analysis, Uddin et al. demonstrated that compared
with TD children, children with ASD exhibited altered functional
connectivity of the salience network, DMN, frontotemporal
network, motor network, and visual network (Uddin et al.,
2013b). Our results support this notion by demonstrating
hyper-connectivity and/or hypo-connectivity of the insular
subregions involved in different brain networks, supporting
several behavioral domains known to be impaired in the complex
symptoms of the ASD.

Specifically, hypo-connectivity was observed between the left
ventral agranular insula and bilateral PCUN in the ASD group.
The left ventral agranular insula is mainly located in the left
anterior insula, which is a hub in the salience network. Previous
studies demonstrated that the anterior insula plays a critical role
in processing information relevant to social functioning as a sort
of “hub” that mediates interactions between the DMN and the
central-executive networks (Sridharan et al., 2008; Uddin and
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FIGURE 1 | RSFC patterns of the insular subregions in the ASD and TD groups. One sample t-tests were used to identify the group statistical maps. The significance

level was determined with a voxel-level corrected threshold of p < 0.001 and a cluster-level corrected threshold of p < 0.05 using the Gaussian random field (GRF)

corrections. The red and blue colors represent positive and negative functional connectivity with the seed regions.

Menon, 2009; Menon and Uddin, 2010). Apart from the key part
of the DMN, the precuneus has a role in emotion, self-referential
thinking, and projection processes critical for social development
(Cavanna and Trimble, 2006) and has also been linked to atypical
mentalizing or theory of mind in ASD (Castelli et al., 2002; Wang
et al., 2007). Given the crucial role of both the anterior insula and
the precuneus in some aspects of social cognition, the significant
hypo-connectivity between the left ventral agranular insula and
bilateral precuneus might contribute to social interaction deficits
in ASD. Moreover, this suggestion was further supported by our
result, which showed negative correlation between the hypo-
connectivity of the left ventral agranular insula—PCUN.R with
the ADOS total/social scores in the ASD group.

In addition, compared with the TD group, the ASD group
showed hypo-connectivity between the right ventral dysgranular
and granular insula and SMG.R. According to the behavioral

results of the Brainnetome Atlas, the right ventral dysgranular
and granular insula is mostly associated with emotion. The right
insula is associated with sympathetic (“aroused”) functions based
on anatomical evidence of left-to-right asymmetry in peripheral
autonomic efferent neurons and homeostatic afferent neurons, as
well as a review of neuroimaging literature (Yamada et al., 2016).
Moreover, SMG.R has been consistently shown to play a crucial
role in emotion processing (Singer et al., 2009; Lamm et al.,
2011). Since there is indeed good evidence that empathy may be
impaired in ASD (Baron-Cohen and Wheelwright, 2004; Jones
et al., 2010; Lockwood et al., 2013), it is reasonable to conclude
that the hypo-connectivity between the right ventral dysgranular
and granular insula and SMG.R might contribute to the deficits
of emotion in ASD.

Furthermore, hypo-connectivity between the left dorsal
dysgranular insula and the right cuneus was also identified in
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FIGURE 2 | Distinct RSFC patterns of the insular subregions in ASD. Two sample t-tests were used to identify the significant differences in functional connectivity

between the ASD and TD groups with the age, gender, handedness, verbal IQs, performance IQs, and full-scale IQs as covariates. The significance was determined

with a voxel-level corrected threshold of p < 0.001 and a cluster-level corrected threshold of p < 0.05 using the Gaussian random field (GRF) corrections. The red and

blue colors represent increased and decreased functional connectivity respectively in the ASD group compared with the TD group. The results of mean RSFC with and

without global signal showed similar patterns between the two groups.

TABLE 2 | Brain regions showing significant difference of functional connectivity with the insular subregions.

Seed regions Abnormal regions Types of connectivity Number of voxels Peak intensity Peak coordinates

Left ventral agranular insula The right precuneus Hypo-connectivity 46 −4.316 12 −56 31

The left precuneus Hypo-connectivity 36 −4.46 −12 −59 43

Right ventral dysgranular

and granular insula

The right supramarginal gyrus Hypo-connectivity 28 −4.1961 45 −32 31

Right dorsal dysgranular

insula

The left superior temporal gyrus Hyper-connectivity 46 4.8826 −48 −23 4

The right cuneus Hypo-connectivity 58 −4.1796 21 −86 4

the ASD. According to the behavioral results of the Brainnetome
Atlas, both the left dorsal dysgranular insula and the right
cuneus are mostly associated with perception, particularly
the visual processing. When engaged in visual processing,
ASD often exhibit enhanced perceptual abilities with more
activity in the occipital regions, such as visual search (Keehn
et al., 2008; Joseph et al., 2009; Samson et al., 2012) and
visual discrimination (Bertone et al., 2005). However, a fMRI
study of visual search (Keehn et al., 2013) is inconsistent
with previous studies by showing neither group differences
of any behavioral search measures nor differential patterns of
activation in ASD. Due to these contradictory results and lack
of visual measurements in our research, further investigation is
needed to explain the result of the hypo-connectivity between
the left dorsal dysgranular insula and the right cuneus in
the ASD.

In addition, significant hyper-connectivity was identified
between the left dorsal dysgranular insula and the STG.L in
ASD. In line with the hyper-connectivity of our result, previous
studies showed increased activity during social reward learning
(Choi et al., 2015), sentence comprehension task (Just et al.,
2004), and facial emotion processing (Dalton et al., 2008),
as well as increased gray matter volume in STG.L in ASD
(Waiter et al., 2004). Moreover, our finding of functional hyper-
connectivity is also supported by the positive correlation with the
ADI-R social scores, which implied that children with greater
connectivity exhibited more severe impairment in the social
domain. Considering that the left dorsal dysgranular insula is
mostly associated with perception according to the behavioral
results of the BrainnetomeAtlas, this brain–behavior relationship
suggests that aberrant functional connectivity may underlie the
deficits of social perception in the ASD. Notably, the relationship
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FIGURE 3 | Significant correlations between RSFC of insular subregions and clinical characteristics of ASD with the age, gender, handedness, verbal IQs,

performance IQs, and full-scale IQs as covariates. Significance was determined with a threshold of p < 0.05.

between functional connectivity abnormalities of the left dorsal
dysgranular insula and social severity was limited to the ADI-R
social score, which is based on early social development, but not
the ADOS score, which is a complimentary measure that rates
current social functioning (Kleinhans et al., 2008). This pattern
of correlation may imply that early development history plays an
important part in the hyper-connectivity between the left dorsal
dysgranular insula and the STG.L in ASD. Moreover, our finding
is relatively novel. Further studies with large samples are needed
to confirm this association and investigate its causes and clinical
implications.

Several limitations should be acknowledged in our current
study. First, some of the patients with ASD were given one or
more psychotropic medications. Studies of drug-naïve patients to
exclude the effects of medication on our findings are warranted.
Second, given the high possibility that the RSFC can be effected
by age (Dosenbach et al., 2010), we involved only children with a
narrow range of age. However, this restriction left us no chance to
address the developmental effects in the ASD. Thus, it remains a
crucial topic for further investigation on the interaction between
developmental changes and alterations of the RSFC in ASD.

In conclusion, compared with the TD group, the ASD
group showed different connectivity patterns in the left ventral
agranular insula, right ventral dysgranular and granular insula,
and left dorsal dysgranular insula, characterized by significant
hyper-connectivity and/or hypo-connectivity with specific
brain regions. Furthermore, both the hypo-connectivity and
hyper-connectivity of the insular subregions were significantly
associated with the severity of ASD in children. Our research
demonstrated distinct abnormalities in the RSFC patterns

of the insular subregions and emphasized the importance of
the subdivisions within the insula to potentially impact the
functional difference in children with ASD. Moreover, these
results might help us to better understand the mechanisms
underlying the symptoms in children with ASD and might
elucidate potential biomarkers for clinical applications.
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