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Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide.

TBI-induced neuronal apoptosis is one of the main contributors to the secondary injury

process. The aim of this study is to investigate the involvement of Exchange protein

directly activated by cAMP 2 (Epac2) on TBI. We found that the expression level of Epac2

surrounding the injured area of brain in rats of TBI model was significantly increased at

12 h after TBI. The role of Epac2 in TBI was further explored by using a selective Epac2

antagonist ESI-05 to decrease the Epac2 expression. We discovered that inhibition of

Epac2 could improve the neurological impairment and attenuate brain edema following

TBI. The Epac2 inhibition effectively reduced neuronal cell death and P38MAPK signaling

pathwaymay be involved in this process. Our results suggest that inhibition of Epac2may

be a potential therapy for TBI by reducing the neural cell death, alleviating brain edema

and improving neurologic deficits.

Keywords: traumatic brain injury, Epac2, P38, apoptosis, neuroprotection

INTRODUCTION

Traumatic brain injury (TBI) is one of the leading causes of mortality and disability all over the
world (Menon and Maas, 2015; Wang et al., 2018). TBI can result in physical, cognitive, social,
emotional, and behavioral symptoms. TBI consists of a primary mechanical brain tissue injury
that occur at the time of the initial trauma and a secondary insult with a series of pathological
responses, including intracerebral hemorrhage, oxidative stress, neuroinflammation, blood-brain
barrier (BBB) damage, autophage, and apoptosis (Cornelius et al., 2013; Li et al., 2017; Tang et al.,
2017). The long-term consequence of TBI was dominated by the secondary injury, so the secondary
brain injury has been the major focus to identify potential therapeutic targets in TBI management.

Epac (Exchange protein directly activated by cAMP) proteins have two isoforms, Epac1 and
Epac2 (Gloerich and Bos, 2010). Epac1 is expressed throughout the body, while Epac2, the larger
of the two isoforms, is highly enriched in brain and adrenals (Kawasaki et al., 1998). Epac2 is a
guanine nucleotide exchange factor (GEF) to activate the small GTPase Rap (Kawasaki et al., 1998;
Bos, 2003). Deletion of Epac2 causes brain dysfunction, such as impairments in memory and social
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interaction (Fernandes et al., 2015; Lee et al., 2015). Epac2
activation was associated with astrocytic differentiation and
inflammation (Oldenburger et al., 2014; Seo and Lee, 2016).
Epac2 promotes neurotransmission in the hippocampus
(Fernandes et al., 2015). Epac2 has been proposed as a promising
target for treatment of diabetes, cancer and cardiovascular
disease (Zhang et al., 2009; Parnell et al., 2015; Yang et al., 2017).
However, the roles of Epac2 in traumatic brain injury are still
unknown. In this study, we investigated the effects of Epac2 on
neurological damage of TBI rat models, and demonstrated the
possible signaling pathway involved in this process.

FIGURE 1 | Schematic representation of TBI model and experimental design. (A) Brains of TBI model, the studied region is surrounding the injured brain.

(B) Experiment 1 was designed to detect the time course of Epac2 expression after TBI. (C) Experiment 2 was designed to detect the effects of Epac2 on TBI and

investigate the possible mechanism.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats (280–300 g) were obtained from the
Animal Center of Chinese Academy of Sciences, Shanghai,
China. The animals were housed under controlled environmental
conditions with a 12 h light/dark cycle place and were given
unrestricted access to pellet food and water throughout the study.
All experimental procedures were approved by the Institutional
Animal Care and Use Committee of Soochow University and
conformed to the National Institutes of Health Guide for the Care
and Use of Laboratory Animals.
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TBI Model
Surgical procedures were performed as previously described (Li
et al., 2017). The rats were anesthetized by an intraperitoneal
injection of 4% chloral hydrate (10ml/kg) (Dang et al., 2015). The
head of them was fixed on a stereotaxic frame. After incision of
the scalp, a craniotomy of 5mm diameter was performed beside
midline and behind the cranial coronal suture using a dental
drill. Contusion was produced by letting a 40 g weight cylindrical
steel rod (diameter 4mm) drop onto the piston resting on the
exposed dura from a height of 25 cm. The piston was allowed
to compress the tissue a maximum of 5mm (Hang et al., 2004).
Then the scalp was sutured and the wound area was treated with
lidocaine cream. In the sham group, animals underwent identical
procedures, including craniotomy, but without brain injury. As
shown in Figure 1A, the surrounding brain tissue of the injured
cortex was dissected on ice, some of which were placed in 4%
PFA, the others were stored in liquid nitrogen immediately until
use.

Experimental Design
There was no significant difference in body temperature, weight,
feed intake, and motor ability of all rats before the experiment.

1. Experiment 1. To explore the expression levels of Epac2 at
each time point after TBI, SD rats were randomly assigned
into three groups: the normal group (n= 12), the sham group
(n = 12), and the TBI group (n = 60). The TBI group
were divided into five subgroups (n = 12 for each time
point) at 6, 12, 24, 48, and 72 h after TBI, respectively. All
rats were sacrificed at the planned time point and the cortical
tissue samples were collected for subsequent analysis such as
western blot and immunofluorescence staining (Figure 1B).
Mortality in the normal group and sham group is 0%, while in
TBI group is 12% (8 of 68).

2. Experiment 2. To investigate the effects of Epac2 on TBI, we
used the Epac2 selective antagonist ESI-05 (Sigma-Aldrich,
SML1907) to reduce the expression level of Epac2 (Rehmann,
2013). Then we detect the changes of neuronal apoptosis, BBB
damage, brain edema and other indicators after TBI. SD rats
were randomly assigned into four groups: the sham group
(n = 18), the TBI group (n = 18), the vehicle group (n = 18),
and the ESI-05 group (n = 18). The vehicle group and the
ESI-05 group were respectively injected into lateral ventricles
with 1% DMSO (15 µl) and ESI-05 (10 µg/kg, dissolved in
1% DMSO) 30min before TBI. At 12 h after TBI, all rats were
sacrificed and samples were collected for subsequent analysis
(Figure 1C). Mortality in the sham group is 0% (0 of 18), in
TBI group is 14% (3 of 21), in vehicle group is 18% (4 of 22),
and in ESI-05 group is 14% (3 of 21).

Western Blot
The cortical regions of the brains were collected and
homogenized in the lysis buffer containing protease inhibitor.
The proteins were extracted and the protein concentration was
measured using a BCA protein assay kit (Thermo, 23227). Equal
quantities of protein (40 µg) from each samples were loaded for
SDS-PAGE. After electrophoresis, the protein was transferred

onto polyvinylidene difluoride membranes (GE Healthcare,
RPN303F). The membranes were blocked with 5% nonfat
milk for 1 h at room temperature and subsequently incubated
overnight at 4◦C with the following primary antibodies: Epac2
(1:1,000, Cell Signaling, 43239), P38 (1:1,000, Abcam, ab17009),
P-P38 (1:500, Abcam, ab38238), caspase-3 (1:1,000, Abcam,
ab13847), GAPDH (1:10,000, Sigma, G9545). The membranes
were incubated with appropriate secondary antibodies for 2 h
at room temperature. The target band signals were detected by
Enhanced chemiluminescence (ECL) method. The signals were
quantified using Image J software.

Immunofluorescence Staining
The rats were sacrificed at 12 h after TBI. The brain tissue
samples were immersed in the 4% paraformaldehyde for 36 h
at 4◦C and then gradient dehydrated with 15 and 30% sucrose
solution until they sank to the bottom. Then frozen sections
with a thickness of 15µm were collected. The brain sections
were rinsed in phosphate-buffered saline (PBS) with 0.3% Triton
X-100 for 10min, repeat 3 times. The sections were incubated
with 10% normal horse serum for 1 h at room temperature to
prevent nonspecific binding. Then the sections were incubated
at 4◦C overnight with the following primary antibodies: NeuN
(Millipore, MAB377, 1:300), Epac2 (1:200, Cell Signaling, 43239),
caspase-3 (1:200, Abcam, ab13847). After washing for 3 times
with PBS, the sections were incubated with the fluorescent
secondary antibodies for 1 h at room temperature in the dark.
After washing for 3 times, the sections were covered with DAPI
Fluoromount-G. Immunofluorescence staining was observed
using a laser confocal microscopy (Leica, TCS SP8).

FJB Staining
Fluoro Jade B (FJB) (Histo-Chem, Jefferson) staining was used
for detection of the damaged neurons. The sections were treated
with 1% sodium hydroxide in 80% alcohol for 5min, 70% alcohol
for 2min and rinsed with ddH2O for 2min. The sections were
then immersed in a solution of 0.06% potassium permanganate
for 10min and rinsed with ddH2O for 2min. Subsequently, the
sections were incubated in FJB staining solution (0.001% FJB in
0.1% acetic acid) for 20min at room temperature and rinsed three
times with ddH2O. The sections were dried at 50◦C for about

TABLE 1 | Assessment of neurological behavior scores.

Category Behavior Score

Appetite Finished meal 0

Left meal unfinished 1

Scarcely eat 2

Activity Move freely in the cage 0

Move under stimulus 1

Barely moved 2

Deficits No deficits 0

Walk unsteadily 1

Unable to walk 2

Frontiers in Neuroscience | www.frontiersin.org 3 April 2018 | Volume 12 | Article 263

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Epac2 Inhibition Protects Against TBI

5–10min. Then the slides were placed in xylene for 1min before
mounted with resinene.

Tunnel Staining
A TUNEL staining kit (Abcam, ab66110) was used to analyze
apoptotic cell death. Frozen sections were fixed with fresh
4% paraformaldehyde for 15min at room temperature. After

washing with PBS for 2 times, the sections were covered with
20µg/ml Proteinase K solution for each one and incubated for
5min at room temperature. Then the sections were covered
with 100 µl wash buffer and incubated at RT for 5min. Then
50µl DNA labeling solution was covered on the sections. Place
the slides in a dark humidified incubator for 1 h at 37◦C. After
washing with ddH2O, the sections were incubated for 5min at

FIGURE 2 | Epac2 was co-located with neurons and dramatically increased at 12 h after TBI. (A) Western blot analysis showed the expression of Epac2 in normal

and sham group and at 6, 12, 24, 48, and 72 h after TBI. GAPDH was used as a loading control. (B) Quantification of western blots for Epac2 as shown in (A).

(C) Immunofluorescence staining result showed that Epac2 (red) was expressed in neurons (green) and the expression level of Epac2 was increased at 12 h after TBI.

(D) Quantitative analysis of Epac2-positive neurons. Scale bar = 50µm. Data are presented as means ± SE. n = 6 in each group. ***P < 0.001 vs. sham group.

FIGURE 3 | Decrease of Epac2 improved neurological behavior impairment following TBI. (A) A table showed the neurological behavior scores in each group.

(B) Scatter plot showed the neurological behavior scores of all rats in each group. Data are presented as means ± SE. n = 18 in each group. ***P < 0.001 vs. sham

group, ##P < 0.01 vs. vehicle group.
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RT. Cover the sections with DAPI Fluoromount-G and observe
under a laser confocal microscopy (Leica, TCS SP8).

Neurological Evaluation
Neurological function was evaluated in all rats of each group
in Experiment 2 at 12 h after TBI. The appetite, activity, and
neurological deficits of rats were assessed according to the
previously published scoring system (Table 1). The highest score
of 9 represents the most severe neurological deficit, while the
lowest score of 0 indicates normal neurological function.

Brain Water Content Measurement
Six rats in each group of Experiment 2 were used for
measurement of brain water content. Rats were sacrificed after
12 h of TBI. The brains were removed and the right hemispheres
were collected. Immediately weigh the samples and the weight
was recorded as wet weight. The samples were then dried at
100◦C for 24 h and the weight at the moment was recorded as dry
weight. The brain water content was calculated using the formula
(wet weight-dry weight)/wet weight× 100%.

Statistical Analysis
To facilitate comparisons between groups, the western blot
results were expressed as relative density of the band as compared
GAPDH and then normalized to the mean value of the sham
group. All data in this paper are presented as mean ± SE.
SPSS Statistics was used for statistical analysis. The results were
analyzed using one-way ANOVA test followed by Bonferroni’s
multiple comparison test. Statistical significance was accepted at
P < 0.05.

RESULTS

The Expression of Epac2 Was Increased
After TBI
To investigate the possible participation of Epac2 in the
pathogenesis of TBI, we examined the expression and localization
of Epac2 in brains subjected to TBI. Western blot was used to
explore the expression level of Epac2 at different time point
after TBI. The results showed that the expression level of Epac2
was dramatically increased at 12 h after TBI (Figures 2A,B). We
used immunofluorescence staining to detect the expression and
localization of Epac2 in brain. The results showed that Epac2 was
colocalized with neuron and conformed that Epac2 expression
level was significantly elevated in TBI model rats (Figures 2C,D).

The Decrease of Epac2 Alleviated
Neurological Deficits Following TBI
Previous studies revealed that the neurological functions were
impaired in TBI model. To assess whether Epac2 contributes to
TBI, we used a loss-of-function strategy to evaluate the effect
of Epac2 inhibition on behavioral recovery. The experimental
results showed that the neurological behavior scores were
significantly higher than the sham group, indicating that the
rats of TBI group had a significant neurological function deficits
compared with sham group. ESI-05 treatment could significantly
decrease the neurological behavior scores (Figures 3A,B). These

findings suggest that Epac2 inhibition improved neurological
behavioral impairment following TBI. Decrease of Epac2
expression level contributed to alleviate neurological deficits after
TBI.

The Reduction of Epac2 Decreased Brain
Water Content After TBI
The expression of Epac2 was significantly increased at 12 h
after TBI in Experiment 1. In order to explore the effects of
Epac2 in pathological progress of TBI, in Experiment 2, we used
ESI-05, the specific antagonist of Epac2, to decrease the Epac2
expression level. Brain water content represented the severity of
brain edema. We compared the brain water content in the sham
group, TBI group, vehicle group and ESI-05 group after TBI. We
found that the brain water content was significantly increased in
TBI model rats, and ESI-05 treatment could significantly reduce
it while vehicle group couldn’t (Figure 4).

Inhibition of Epac2 Attenuated Neural Cell
Apoptosis After TBI
The neuron apoptosis has always been the focus in studies
of brain injury (Xu et al., 2016; Tang et al., 2017). We
performed immunofluorescence staining and western blot of
caspase-3, FJB staining and TUNEL staining to explore the role
of Epac2 in neural cell death. Both of the western blot and
immunofluorescence staining results showed that the expression
of caspase-3 was significantly decreased in the ESI-05 treated
group (Figures 5A,D, 6A,B). Few FJB-positive and TUNEL-
positive apoptotic cells was found in the sham group. And the
number of apoptotic cells was dramatically higher in TBI group.
The FJB and TUNEL staining results also demonstrated that
inhibition of Epac2 could significantly prevent the increase of
cell death (Figures 6C–F). As shown in Figure 5, the expression
of P38 has no significance between each experimental groups
(Figure 5B). But the expression of p-P38 was markedly increased
after TBI and treatment with ESI-05 could reverse this change
(Figure 5C). These results indicated that inhibition of Epac2

FIGURE 4 | Reduction of Epac2 alleviated brain edema after TBI. Brain water

content of cerebrum in each group was measured by dry/wet method. Data

are presented as means ± SE. n = 6 in each group. ***P < 0.001 vs. sham

group, #P < 0.05 vs. vehicle group.
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could reduce TBI-induce neural cell apoptosis and the inhibition
of phosphorylation of P38 MAPK pathway may be involved.

DISCUSSION

The pathological changes including inflammation, oxidative
damage, apoptosis and brain edema are the main causes of
the secondary brain injury after TBI (Jennings et al., 2008;
Onyszchuk et al., 2008). The key to treatment of TBI had to
focus on how to alleviate the secondary damage after TBI. In
this study, we explored the regulation of Epac2 in the secondary
brain damage after TBI and studied the potential mechanisms.
We found that the treatment of the selective Epac2 antagonist
ESI-05 reduced neural cell death in the injured cerebral cortex
and adjacent regions in rats of TBI models. Inhibition of
Epac2 decreased TBI-induced P38 phosphorylation and caspase-
3 activation in the cerebral cortex, attenuated neural cell death,
alleviated brain edema and improved neurological functions after
TBI.

Increased apoptosis takes an important part in the
pathogenesis of brain damage. Caspases are a family of
cysteine proteases which play an important role in apoptosis.
Caspase-3, as a key molecule of apoptosis, plays a central role
in the neural cell apoptosis after TBI (Clark et al., 2000). Our
findings revealed a significant increase in cleaved caspase-3 after

TBI, suggesting an increase of apoptosis in the brain following
TBI. FJB, and TUNEL staining also confirmed increase of neural
cell death after TBI. However, ESI-05 treatment ameliorated this
TBI-induced neural cell apoptosis, indicating that the decrease
of Epac2 could inhibit the TBI-induced neural cell death. This
result was consistent with previous study showing that Epac2
was involved in apoptosis (Park and Juhnn, 2017).

Numerous studies have suggested the relationship between
Epac2 and cell death. Previous studies showed that Urocortion-
1 promoted cell survival and decreased cell necrosis through
Epac2 and ERK1/2 (extracellular signal-regulated kinases 1/2)
activation (Calderón-Sánchez et al., 2016). In H1299 lung cancer
cells, Epac2 inhibition decreased cisplatin-induced apoptosis
via Epac2-Rap1-Akt pathway (Park and Juhnn, 2017). Epac2
mediates cAMP-dependent growth arrest via activating Rap2A in
neuroendocrine cells (Emery et al., 2017). Epac2-Rap1 signaling
also attenuates mitochondrial ROS production and reduces
myocardial arrhythmia susceptibility (Yang et al., 2017). In rat
model of plantar incision, Epac2 mediates nociception priming
through P38 pathway (Matsuda et al., 2017). In this study we
explored the mechanisms of Epac2 mediates apoptosis in brain
following TBI.

Mitogen-activated protein kinases (MAPKs) are
serine/threonine protein kinases. They regulate cell functions
including proliferation, differentiation, stress response, mitosis,
cell survival and apoptosis (Pearson et al., 2001). P38 MAPK is

FIGURE 5 | Inhibition of Epac2 reduced apoptosis related protein caspase-3 in brain after TBI through inhibiting phosphorylation of P38. (A) Western blot analysis

showed the expression of P38, p-P38, and caspase-3 in cerebral cortex in each group. GAPDH was used as a loading control. (B–D) Quantification of expression

levels of P38, p-P38, and caspase-3 as shown in (A). Data are presented as means ± SE. n = 6 in each group. ***P < 0.001 vs. sham group, ##P < 0.01, ###P

< 0.001 vs. vehicle group.
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FIGURE 6 | Inhibition of Epac2 attenuated neural cell death in cerebral cortex after TBI. (A,C,E) Cortical cellular apoptosis was detected by immunofluorescence

staining of caspase-3 (green), FJB staining (green), and TUNEL (green) staining in each group, respectively. (B,D,F) Quantitative analysis of caspase-3, FJB, and

TUNEL-positive cells in cerebral cortex after TBI, respectively. Scale bar = 50µm. Data are presented as means ± SE. n = 6 in each group. ***P < 0.001 vs. sham

group, ###P < 0.001 vs. vehicle group.
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one of the well-characterized MAPK family members. Increasing
data has shown that activated P38 MAPK subsequently regulates
the inflammatory response, apoptosis, autophagy, cell survival,
and cell death (Xia et al., 1995; Harada and Sugimoto, 1999;
Nozaki et al., 2001; Irving and Bamford, 2002; Sridharan et al.,
2011; Sui et al., 2014). Several studies showed that increased P38
MAPK activity plays a key role in neural cell death and inhibition
of p38 MAPK plays a neuroprotective role (Takeda and Ichijo,
2002; Strassburger et al., 2008; Liu et al., 2014; Li et al., 2015;
Wang et al., 2015). Epac proteins have been characterized as
guanine nucleotide exchange factors for monomeric GTPases
like Rap1 (Kawasaki et al., 1998) and Rab3a (Branham et al.,
2009). The relationship between Rap1 and P38 has been shown
in several studies (Gutiérrez-Uzquiza et al., 2010; Wu et al., 2015;
Lu et al., 2016; Priego et al., 2016). In the present study, we also
found that phosphorylation level of P38 protein was increased
after TBI. Treatment with ESI-05 decreased this level. These
results demonstrated that P38 MAPK pathway may involve
in the regulation of neuronal apoptosis after TBI. Inhibition
of Epac2 plays an anti-apoptotic role in TBI model rats and
this process may be mediated through regulating P38 MAPK
pathway (Figure 7). These results tallied with previous studies
demonstrating that Epac2 could mediate growth arrest through
P38 activation (Emery et al., 2017). To further conform the
involvement of the P38 MAPK signaling pathway in Epac2’s

effect on TBI, SB203580, an inhibitor of P38 phosphorylation is
needed to be used in the further investigation.

Cerebral edema is a dangerous secondary consequence of
TBI and is associated with significant morbidity and mortality
(Winkler et al., 2016). The development of cerebral edema
plays a crucial role in the evolution of injury following TBI.
Even a minor increase of brain water content can lead to
a significant increase of intracranial pressure and the poor
outcome (Marmarou et al., 2000). Thus alleviate brain edema
is a promising treatment in TBI management. In the present
study, we found that reduction of Epac2 could significantly
alleviated brain water content of the injured hemisphere. This
result might be due to the alleviation of blood brain barrier
disruption. TBI increases the expression of inflammation factors,
chemotactic factors and adhesion molecules in the neural system,
which leads to encephaledema. Epac2 may be involve in the
brain edema after TBI through affecting these factors. The
mechanisms Epac2 involved in these processes need to be further
investigated.

CONCLUSION

In summary, western blot and immunofluorescence staining
results have shown that the expression of Epac2 was

FIGURE 7 | A schematic model for Eapc2 regulation of neuronal cell death in TBI. Epac2 was increased after TBI and activating Epac2 subsequently promoted

phosphorylation of P38-MAPK. Activation of P38-MAPK pathway consequently increased the expression of caspase-3, resulted in DNA fragmentation and neuron

apoptosis, leading to neuronal cell death.
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dramatically increased at 12 h after TBI. The brain water
content measurement showed that reduction of Epac2
alleviated encephaledema in TBI model. The neurological
behavioral test demonstrated that decrease of Epac2 improved
neurobehavioral outcome after TBI. The immunohistochemistry,
FJB, TUNEL, western blot were used to show that inhibition
of Epac2 significantly attenuated the neuronal cell death
after TBI. Phosphorylation of P38 was involved in this
process. These data suggested that inhibition of Epac2 may
play a neuroprotective role in TBI management through
attenuating neural cell death, alleviating brain edema and

improving neurological deficits, implying that Epac2 could
be a new target for treatment of secondary neuronal injury
after TBI.
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