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Functional MRI acquisition is sensitive to subjects’ motion that cannot be fully

constrained. Therefore, signal corrections have to be applied a posteriori in order to

mitigate the complex interactions between changing tissue localization and magnetic

fields, gradients and readouts. To circumvent current preprocessing strategies limitations,

we developed an integrated method that correct motion and spatial low-frequency

intensity fluctuations at the level of each slice in order to better fit the acquisition

processes. The registration of single or multiple simultaneously acquired slices is

achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation

of continuous motion, while an intensity bias field is non-parametrically fitted. The

proposed extraction of gray-matter BOLD activity from the acquisition space to an

anatomical group template space, taking into account distortions, better preserves

fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to

high-resolution multi-slice techniques. When tested on simulated and real data the latter

shows a reduction of motion explained variance and signal variability when compared

to the conventional preprocessing approach. These improvements provide more stable

patterns of activity, facilitating investigation of cerebral information representation in

healthy and/or clinical populations where motion is known to impact fine-scale data.

Keywords: fMRI, motion correction, distortion correction, denoising, BOLD, visualization

INTRODUCTION

Functional MRI (fMRI) with echo-planar-imaging (EPI) is widely used in neuroscience research
to indirectly measure brain activity through the brain-oxygen-level-dependent (BOLD) signal.
Yet subject motion during fMRI scanning causes important signal changes unrelated to the
hemodynamic response of interest (for reviews see Zaitsev et al., 2015, 2017) resulting mainly
from variations in partial voxelwise tissue volumes with different relaxation times. Motion induced
detrimental contrast and intensity changes also originate by the spin-history effects resulting from
disruption of the T1 steady state (Muresan et al., 2002) and loss of magnetization between excitation
and readout. In addition, EPI suffers from gross non-linear distortions and signal losses due to
main static field (B0) in-homogeneity (Jezzard and Balaban, 1995) caused by interfaces between
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air and subjects’ tissues or bones, which when moved in the
B0 field modulate these artifacts. The latter artifacts as well
as physiological noise are even more evident at high fields
(e.g., 3 or 7 Tesla) (Triantafyllou et al., 2005; Bollmann et al.,
2017) mitigating the benefit in signal sensitivity. Related to
these issues is the fact that numerous innovations in pulse
acquisition sequences, and simultaneous multi-slice imaging
(SMS) (Feinberg and Setsompop, 2013) in particular, have rapidly
been adopted in leading research initiatives such as the Human
Connectome Project (HCP) (Uğurbil et al., 2013; Van Essen et al.,
2013). This type of functional sequence enables simultaneous
imaging of multiple 2D slices which, combined with in-plane
acceleration, allows high spatial resolution and/or sampling rate.
However, the increase of in-plane resolution extends the readout
echo train and concerns have thus been raised about a heightened
sensitivity to motion and respiration induced B0 in-homogeneity
fluctuations under those conditions.

Such entangled MRI-related phenomena, magnified by novel
acquisition techniques, generate important non-linear signal
perturbations. Differences in motion amplitude and occurrence
across groups of subjects can then result in strong spurious effects
in subsequent statistical analyses (Power et al., 2012). This is
even more manifest in participants for which motion control is
difficult, such as in clinical (Haller et al., 2014), older (Mowinckel
et al., 2012) and pediatric (Power et al., 2012; Satterthwaite
et al., 2012) populations, or when responses to a particular task
introduces subject’s motion during scanning.

Despite aforementioned limitations, improvements in
measurements through innovations in MRI hardware and
acquisition sequences have helped the neuroimaging field to
constantly move its interest to finer characteristic of brain activity
using complex experimental designs and elaborated analysis
techniques. Notably, multivariate pattern analysis (MVPA) has
received major attention in recent years (Pereira et al., 2009;
Haxby, 2012), allowing novel hypotheses to be tested. Such
techniques look for fine-scaled spatio-temporal activity patterns,
but conventional preprocessing pipelines perform successive
interpolations, resulting in low-pass spatial filtering. While
further spatial smoothing is voluntarily applied to increase the
robustness of classically investigated broad activity signal, it also
averages out high frequency information across neighboring but
distinct neuronal populations and structures such as the opposite
cortical sulci banks.

In order to address such spatial alignment issues, two main
preprocessing approaches have been proposed. First, motion
correction can be performed prospectively by adjusting slices
position during scanning in order to stabilize the anatomical
coverage using either MRI data of preceding volume, interleaved
navigators (White et al., 2010) or external motion tracking
devices. Second, due to technical difficulties (i.e., the need to
use physical trackers and adapt pulse sequence) in implementing
prospective methods, most researchers have been using a
retrospective approach, which consists in estimating motion
from fMRI volumes that are then realigned. However, the
available implementations of both techniques perform 3D
volume registrations, thus dismissing the fact that sequential
acquisition of EPI slices does not guarantee that motion occurs

solely between volumes. As intra-volumemotion can be frequent,
the single registration estimate of each 3D volume averages
the different spatial positions of slices, depending on their
information content, hence causing local misregistrations. In
addition, both scanner noise and fMRI resolution also limit the
stability of these successive estimates, resulting in biologically
unrealistic detected motion due to noisy registration. This, in
turn, leads the corrected data, parametrized by these estimates,
to contain long-range spurious covariance extending beyond
motion-corrupted slices (Satterthwaite et al., 2013). To account
for motion induced signal changes, the preprocessing often
regresses out of the BOLD signal, the estimated movement
parameters, sometimes differentiated and squared (Satterthwaite
et al., 2013; Yan et al., 2013). While these noisy and inaccurate
volume-wise motion parameters can mitigate spurious signal
changes introduced by the resulting imperfect realignment, they
cannot fully account for non-linearity of magnetic field and
gradient changes entangled with physiological processes and
scanner noise (Power et al., 2014).

Such limitations in volume-wise registration motivated
the development of slice-to-volume (S2V) motion correction
methods (Kim et al., 1999; Yeo et al., 2006, 2008; Ferrante
and Paragios, 2017) for a review, which perform individual
registration of each slice to a reference 3D volume. To
circumvent the scarcer information content of a single EPI
slice these methods implement a top-down registration scheme
(Ferrazzi et al., 2014), additional stabilization (Park et al., 2004),
regularized iterative global optimization (Gholipour et al., 2010;
Seshamani et al., 2014) or an outlier detection (Marami et al.,
2016) approach. By better fitting the acquisition process, S2V
approaches provide improved signal, notably in applications
prone to large motion such as fetal imaging. Yet these softwares
are not shared among members of the scientific community
and are thus not widely used in fMRI research. To correct
motion induced signal changes, linear data-driven methods
(Perlbarg et al., 2007; Griffanti et al., 2014) have then been
applied, first to resting state and then to task-related data,
trying to remove volume-wise structured noise that remains after
motion correction. However transient slice-specific artifacts are
already non-linearly propagated to neighboring slices through
interpolation, hence complicating their removal. Thus, as S2V
improves registration, EPI-based fMRI would also benefit from
slice-specific signal corrections in acquisition space prior to any
volumetric processing.

Therefore, there is a need for fMRI correction strategies that
better take into account the MRI acquisition specificities and
adapt to novel high-resolution imaging techniques such as SMS,
which generate larger datasets and thus require more efficient
preprocessing, analysis and data storage (Glasser et al., 2013). To
fulfill such a need, we propose here an SMS compatible integrated
retrospective method for slice-wise motion, distortion and signal
correction as well as extraction of gray matter BOLD fine-
scale patterns. The main contribution of this development is a
preprocessing framework build around the specificities of widely
used sliced acquisition, in which existing and novel processing
methods are combined in a sensible way, and could integrate
other slice-specific processing in further work. A thorough
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evaluation of the method is performed on both simulated and
real data.

METHODS

Motion Estimation
Starting from an initial registration of the first EPI full volume
to T1 reference, the motion estimation algorithm then iterates
through groups of slices or single slices of SMS or conventional
acquisition scheme respectively as illustrated in Figure 1. To
model continuously the subjects’ head changing position, we
chose an Iterated Extended Kalman Filter (IEKF); a derivation
of standard Kalman Filter that takes into account the non-
linearity of MR signal changes described above through local
derivation and iterative optimization. The IEKF, previously
used in navigator-based prospective motion correction for MRI
anatomical scan (White et al., 2010), allows to robustly track
hidden states of 3D translation and rotation, a six parameters
vector xt , t ∈ [0..T] from observation. For each group of slices
acquired at time t the algorithmmakes a prediction xt of the state
and P of the covariance of this prediction error:

x0t|t−1 = Axt−1|t−1 (1)

P0t|t−1 = Pt−1|t−1 + Q (2)

A = I6 the transition matrix is defined as identity, as it is the best
estimate for the head position when the next slice is acquired.
P can be initialized as a diagonal matrix and Q is added to the
covariance of the previous slice to predict the error accounting
for the possible change in position during the time δt separating
the acquisition of the two slices.

This prediction is recursively updated using the acquired data
y by iterating for i = 1..N until convergence or maximum
number of iterations is attained:

Ki
t = Pt|t−1H

iT[HiPt|t−1H
iT + R]

−1
(3)

xi+1
t|t = xit|t−1 − Ki

t[y− h(xit|t)] (4)

with K the Kalman gain matrix, H being the Jacobian based on
finite difference of the measurement function h that samples the

reference, and R the observation covariance, approximated by a
diagonal covariance matrix with observation variance allowing
weighting of the voxels’ influence on registration depending on
their reliability.

After this iterative optimization, state covariance is then
updated:

Pt|t = [I − KN
t H

N]Pt|t−1 (5)

This iterative updating, similar to a gradient-descent or
Gauss-Newton algorithm, allow non-linear optimization which
initialized to the most recently estimated position, is likely to
converge to a global optimal solution. The updating is performed
with partial observation, thus the cost function and its Jacobian
are only estimated for the part of the brain imaged in the group
of slices, by interpolating the brain mask from the anatomical
reference space.

Intensity Bias Correction
Apart from the misalignment, the motion induces multiple
contrast and intensity modulations of the signal (Zaitsev et al.,
2017), notably due to non-linear changes of the static field in-
homogeneity and the loss of slice excitation or magnetization
steady-state. Independent of the changes in subjects’ position, the
static field and gradients can also show some non-linearity and
instability (Bollmann et al., 2017) respectively due to gradient coil
and passive shimming heatings, that causes contrast and intensity
changes (Foerster et al., 2005; El-Sharkawy et al., 2006). As these
intensity changes are specific to individual slices, it is thought
that the best procedure is to correct raw acquired slices before
any interpolation is performed with the rationale of avoiding to
mix slice signals and artifacts through interpolations whichmight
then prove difficult to separate.

As with other bias correction methods (Seshamani et al.,
2014), we choose to model intensity changes using the
assumption of spatially smooth multiplicative effect on the
measured signal. This approach thus do not specifically model
any of the acquisition phenomena describe above, but rather aims
at removing spatial low-frequency changes in the signal that are
unrelated to the BOLD effect of interest, similar to correction

FIGURE 1 | Diagram of the algorithm: EPI groups of slices are sequentially rigidly registered by IEKF to the EPI reference initialized by previously estimated position,

while concurrently removing an intensity bias using prior information (mask, partial volume effect map) from anatomical segmented anatomical scan while taking into

account distortions estimated from B0 fieldmap.

Frontiers in Neuroscience | www.frontiersin.org 3 April 2018 | Volume 12 | Article 268

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pinsard et al. Integrated fMRI Slicewise Correction Framework

based on signal decomposition techniques (Perlbarg et al., 2007;
Griffanti et al., 2014).

In that goal, the update step of the IEKF is modified to
incorporate a bias correction term:

xi+1
t|t = xit|t−1 − Ki

t

[ y

b
− h(xit|t)

]

(6)

where b is the bias field estimated, at each iteration of IEKF,
for each 2D slice separately, using the following non-parametric
measure:

b(xi) =

∑

j∈� φσb (dij)w(j)y(j)
∑

j∈� φσb (dij)w(j)h(x
i
t|t , j)

(7)

where dij is the euclidean distance between voxels i and j,
� constitutes the set of voxels in the slices containing voxel
i, and φ is a Gaussian kernel of standard deviation σb that
control the spatial frequency to be removed and w(j) is a
weight parameter. This equation computes a weighted estimate
of the spatial low-frequency intensity differences between the
slab being processed and the reference. White matter partial
volume map is used as weight w, as it is expected that
intensity changes are limitedly related to neural activity, and is
widely used for confound regression. Gray matter bias values
are thus extrapolated from white-matter through Gaussian
kernel allowing intensity correction without removal of signal
changes of interest. Removing the low spatial frequencies of the
differences between the slice being processed and the reference
is expected to improve the similarity measure used in the IEKF
registration.

Implementation
The method was developed in python using the nipy package,
and integrated in the nipype pipelining environment, both
under open-source licence, and will thus be made available to
the community. A pseudo-code is provided in appendix A.1
(Supplementary Material) to give an algorithmic view of the
method.

Transformation and Distortion Correction
As mentioned above, motion estimation and bias correction
steps require anatomical priors, namely the brain mask and the
white matter partial volume map. As EPI shows localized gross
distortion due to static magnetic field (B0) in-homogeneity, a
linear mapping of undistorted anatomical priors cannot match
the data being preprocessed. Distortions were thus applied to
anatomical information when mapping these priors to EPI space,
by applying a shift in the phase encoding direction as estimated
from a mapping of the B0 field. The latter could be estimated
either from a dual-echo sequence (Jezzard and Balaban, 1995;
Hutton et al., 2002) acquired separately or an fMRI acquisition
with reversed phase encoding paired to the one being processed
(Andersson et al., 2003).

Interpolation and Data Storage
Once slabs composing each volume are successively registered
and their signal is corrected in slice space, one still needs to

extract timecourses of the BOLD signal at stable anatomical
location of interest for studying brain activity. With individual
slice registration, motion estimation of a single volume results
in slices with varying position relative to anatomical space,
in which voxels are shifted in phase encoding direction as
estimated from the fieldmap. Hence, the functional voxels are
located on an irregular grid in the anatomical space which
poses a problem of scattered data interpolation. We solved this
problem by implementing a Nadaraya–Watson Gaussian kernel
regression (Nadaraya, 1964; Watson, 1964; Bierens, 1996), which
for each anatomically defined gray-matter location vk computed
the average of neighboring scattered EPI voxels xi intensity
corrected by bias b(xi) and weighted by the distance d(vk, xi)
transformed by Gaussian kernel φ.

I(vk, t) =

∑

i φσrbf (d(vk, xi))y(xi, t)/b(xi, t)
∑

i φσrbf (d(vk, xi))
(8)

In a previous implementation of volumetric to surface data
interpolation (Operto et al., 2008) a kernel with anatomical
constraints was used to avoid inclusion of white matter,
cerebrospinal fluid or opposite sulci banks in interpolation
of neocortical signal. To the same end, we allowed the use
of an anisotropic Gaussian kernel with restricted extent in
the direction normal to the cortical surface, complying with
anatomical topology. Therefore, the subcortical grayordinates
were resampled using a Gaussian kernel with 1.5 mm standard
deviation, while the cortical grayordinates were resampled
using a anisotropic Gaussian kernel with 1.5 and 0.5 mm
standard deviation respectively for the directions tangent and
perpendicular to the cortex.

As with the Human Connectome Project grayordinates
(Glasser et al., 2013), our pipeline warps anatomical templates to
individual subject space, including surface registered by spherical
alignment (Dale et al., 1999; Fischl et al., 1999a,b), and volumetric
ROIS coordinates through non-linear diffeomorphic warping
(Avants et al., 2008). Therefore, the single interpolation described
above directly provides signal anatomically aligned between
individuals, allowing group-level analysis and visualization
without further interpolation.

As the algorithm applies correction online, loading raw
DICOM files, it would allow real-time analysis of the data,
if computational performance and processing delay meet the
application requirements. Online storage of interpolated signal
also reduces memory usage, enabling processing of long and
high temporal or spatial resolution acquisitions resulting from
accelerated or multiband imaging. The chosen storage format
uses HDF5 standard, providing fast and flexibly accessible storage
of large dataset on disk. Altogether, this overcome the limitation
of current methods which, depending on implementation,
requires loading of the whole acquisition data in memory.

Evaluation
Datasets
The choice of the datasets was motivated by the fact that we
needed to test the method on a diversity of protocols including
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different experimental paradigms and type of sequences. Thus we
used:

The Healthy Brain Network Serial Scanning Initiative (HBN-
SSI) dataset (O’Connor et al., 2017), in which subjects were
scanned in a series of 14 sessions aiming at test-retest reliability
assessments. This dataset, acquired on a Siemens 1.5T Avanto
scanner with 32-channel coil, includes resting-state and tasks
related acquisitions with a multiband sequence (TR = 1,450 ms,
TE= 40ms, FA= 55, MB_factor= 3× 18= 54 slices interleaved
ascending, res= 2.46× 2.46× 2.5mm), a dual-echo fieldmap, as
well as an T1 MEMPRAGE (1 mm iso, FA = 7, TR = 2,730 ms,
TE = 1.64 ms, GRAPPA = 2), a root-mean-square (RMS) was
computed across echoes, the readers can report to the published
data note (O’Connor et al., 2017) for the full description of this
dataset.

A local protocol, acquired on a Siemens 3T Tim Trio B17, that
included a motor sequence execution task designed for MVPA,
which was performed in two separated scans for each of the
25 subjects, in a single-band acquisition (using 12-channel coil,
TR = 2,160 ms, TE = 30 ms, FA = 90, 40 slices sequential
ascending, res = 3.44 × 3.44 × 3.3 mm, GRAPPA = 2), to test
the algorithm with both single-band scan sequence and pattern
analysis. After the task was completed, a short acquisition with
similar parameters but with reversed phase was acquired, for
estimation of inhomogeneity induced distortions. In another
session, a T1MEMPRAGE (1mm iso, TR= 2,530 ms, TE= 1.64,
3.6, 5.36, 7.22 ms, FA = 7, GRAPPA = 2) was acquired using
a 32-channel, and the echoes were combined by computing the
RMS. The task required the subjects to perform four different
5-keypress sequences with their left hand fingers excluding the
thumb, each of the four sequences being repeated 5 times in 8
practice blocks, each scan including 32 pseudo-random ordered
blocks. Each subject performed the task twice in two separate
scans. This study protocol was approved by the Research Ethics
Board of the “Regroupement en Neuroimagerie du Québec”
(RNQ). All subjects provided written informed consent and
received financial compensation for their participation.

Simulations
To assess the accuracy of our method, we first simulated fMRI
data by taking the first volume of the fMRI sequences, and by
introducing parametrized slice-wise motion and by resampling
slices in this volume. The generated motion included both slow
and rapid acceleration to assess the different types of motion that
subjects head can show in the scanner. At each slice, the slow
and fast accelerations had respectively a 10 and 5% chance to be
changed, being randomly drawn from a logistic distribution with
a mean biased toward the original position. This bias, reflecting
the restriction of movements that the scanner and the coil impose
to the head, avoided the head to move out of the field-of-view.
With probability increasing with velocity, the fast acceleration
was reset to zero and speed divided, progressively stopping
the movement. The exact procedure for movement generation
is provided in python code in appendix A.2 (Supplementary
Material). We further introduced a smooth multiplicative spatial
bias generated from a polynomial basis of degree 3 with random

coefficients and we finally added noise drawn from a Rician
distribution (Henkelman, 1985).

The simulations were based on the local protocol dataset,
the first volume of the 2 scans of each of the 25 subjects set as
input, yielding 50 simulations with different motion and bias field
parameters.

Comparison to Conventional Pipeline
To compare with more conventional pipeline, we processed
the same datasets using MCFLIRT (FSL) motion correction
(Jenkinson et al., 2002), Topup (Andersson et al., 2003) or
fieldmap based distortion correction (Hutton et al., 2002)
depending on fieldmap or inverted-phase EPI availability. Then
we extracted signals of interest in gray matter using volume
to surface ribbon-constrained interpolation of HCP workbench
tools (Glasser et al., 2013).

Signal Characteristics
To evaluate the benefits of the novel estimation of motion
we compared the statistical dependence between the estimated
motion and resampled timeseries to that of the conventional
pipeline. We thus computed the absolute derivative of the signal
δ|y|(t) = | y(t)− y(t − 1) | from which we regressed the delta-
root-mean-square (DRMS) (Power et al., 2012) of the motion:

DRMSx(t) =

√

∑6
p=1(x(t, p)− x(t − 1, p))2 , for t ∈ [1,T − 1].

An absolute value was taken as the motion-related intensity
changes can have inverted signs across scans (Power et al., 2012).

As BOLD signal is functionally tied to the hemodynamic
response function (HRF), it should exhibit characteristic
temporal smoothness, despite underlying broadband neuronal
activity. However, as noise has less limited frequency range, its
variance added to the signal of interest can reduce this low
frequency structure. To evaluate the motion and related signal
intensity corrections, we measured smoothness of the signal as
the variance of the derivative of the signal divided by the variance

of the signal itself
σ (δy)

σy . Slowly fluctuating signal should exhibit

low derivative variance as compared to the signal variance, so the
smallest this quantity the smoothest the timeseries.

RESULTS

Simulation
To assert that the algorithm is able to reliably track the subjects’
head motion, we processed the simulated data and measured the
error in motion estimate compared to the simulated parameters
for the proposed method and conventional preprocessing. An
example of motion estimated with both methods as compared to
simulated motion is provided in Figure 2.

Similarly, simulated and estimated biases are shown in
Figure 2. As the bias is estimated only from the voxels including
white matter, values in other voxels are extrapolated through the
Gaussian kernel and thus error increases with distance from the
white-matter, notably in gray-matter or outside of the brainmask.

We evaluated the root-mean-squared error (RMSE) between
the estimated and simulated motion and intensity bias in
brain mask (Figure 3) in all single-slice sequence simulations.
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FIGURE 2 | Example of motion parameters and bias simulated and estimated by the proposed algorithm and conventional volume-wise method.

Rotational parameters were converted to translation, using a 100
mm radius, prior to computing the RMSE to obtain a single
error measure for each slice simulated. The consistent pattern
of error magnitude clearly exhibits the dependence of algorithm
accuracy on slicewise available information for both motion and
bias. With conventional preprocessing, the accuracy of volume-
based registration similarly varies when assessed at the slice level,
being also driven by the richer information of central slices.
Slices at the top and bottom of the brain contains lower number
of voxels covering the brain than middle slices, decreasing the
accuracy of the registration process, and the number of voxel
containing white matter follow the same pattern increasing the
bias estimation error.

Real Dataset
We applied the algorithm to the real datasets, and extracted
examples of the different estimated parameters to illustrate the
results, including the bias map for a single slice in Figure S2.

To illustrate fieldmap-based distortion correction, we
interpolated corrected EPI data to volumetric anatomical space
in Figure S1 with T1 segmented white-matter boundary overlaid.

Quality Assessment
To assess the preprocessed signal quality, we compared the
variance that can be explained by the motion parameters
in a regression model between the proposed method and
conventional preprocessing. The betas were submitted to
pairwise comparisons between the two methods across subjects
and scans to generate a map (Figure 4), which shows differential
reduction of motion explained variance of the signal depending
on anatomy.

The metric evaluating the variability of the signal was
submitted to pairwise comparisons between the two methods

across subjects and scans, which shows (Figure 5) widespread
decrease of variability with few exceptions.

The difference in stability of the signal can result from
the combination of different motion, distortion and intensity
corrections.

Analysis Results
Our method provides a sparse BOLD signal because of extraction
of gray matter signals only. We therefore designed a 3D viewer
to allow an exploded view of the whole brain results in a single
image by representing the cortical surfaces, optionally inflated,
of both hemispheres as well as subcortical structures represented
as voxel cloud enclosed in transparent boundary surfaces colored
by freesurfer atlas colors. The colormap represent the values of
the displayed data overlaid on curvature grayscale values (as
illustrated in Figure 6 with t-values), the sizes of the subcortical
voxels also vary with these values to allow viewing of significant
clusters.

DISCUSSION

Correcting motion in low-resolution noisy MRI data, such
as EPI fMRI acquisition, has been a challenging problem
since the introduction of functional imaging, even with the
simpler rigid constraint inherent to brain imaging. Existing
algorithms, required to be robust, achieve this correction in a
sub-optimal way by notably performing volume-wise correction
of separately acquired slices thus not taking into account the
imaging process. While advances in scanner hardware and
acquisition sequence development achieve higher resolution,
opening finer investigation of physiological processes, these
simpler methods are limiting their accuracy. In the meantime,
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FIGURE 3 | Root mean square error statistics of motion and bias estimates per slice across simulations, for the single-slice acquisition simulations, using the

proposed algorithm (blue) and MCFLIRT (red). The top and bottom slices show higher errors in motion slicewise estimates and for conventional volume registration, as

well as in bias estimation.

FIGURE 4 | Comparison of betas of BOLD signal regressed with motion parameters (DRMS) using between-preprocessing paired t-test across subjects and scans,

showing global decrease of motion explained variance.

FIGURE 5 | Comparison of signal variability between new and conventional preprocessing using a paired t-test across subjects and scans, showing overall decrease

of rapid non-physiologically plausible signal changes.
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FIGURE 6 | Wholebrain exploded view displaying a T-value map of an activation for a single block of about 5 s. during left-hand finger motor sequence production,

showing activity in contralateral primary sensorimotor cortex and the anterior lobe of ipsilateral cerebellum.

functional imaging uses acquisition techniques prone to artifacts,
including distortion and signal changes, these being amplified
with novel hardware and the use of higher resolution.

Even small estimated motions have been found to cause
spurious intensity changes in preprocessed signals (Power et al.,
2012), although their interpolation is parametrized by the same
motion estimates.

To address these limitations we extended early work on slice-
to-volume motion correction (Kim et al., 1999; Yeo et al., 2006,
2008), with the method presented here, which concurrently
corrects for EPI distortions and spurious intensity changes. To
improve robustness of the registrations of sequentially acquired
single slices or SMS slice-groups to a high resolution anatomical
image, we modeled motion in a state-space and applied online
Kalman filtering similarly to Marami et al. (2016). The distortion
estimated from a fieldmap was used during the registration of
slices to improve correspondence of EPI data to the non-distorted
anatomical reference. EPI signal is corrupted by spatial low-
frequency intensity changes due tomagnetic fluctuations induced
by scanner instabilities (Foerster et al., 2005; El-Sharkawy et al.,
2006) as well as motion, not only of the head but also from
out-of-field object including respiratory thoracic movement.
To correct for these spurious signal changes and robustify
registration, an intensity bias was fitted non-parametrically to
each slice data, with higher weighting of white-matter where
limited BOLD signal changes of interest were expected. This
bias, aiming tomodel slice-specific acquisition perturbations, was
fitted and removed prior to any interpolation that could mix
signal and artifacts from different slices. Finally, kernel regression
of resulting scattered data was performed at segmented and
template registered gray-matter location to reconstruct BOLD
signal in a space directly enabling between-subjects statistical
analysis.

Evaluation of the method, by processing single-slice simulated
data, showed that generated dynamic motion and intensity bias
parameters is retrieved with low error ranging below two tenth
of mm (see Figure 3) and below 4% of the multiplicative field
respectively. In comparison, volume-wise motion registration

provided less accurate motion estimates (see Figures 2, 3), as this
approach was not able to track motion at sub-volume resolution
nor was constrained for continuity, leading to systematically
larger errors for both slow or rapid movements.

As illustrated in Figure S1, distortions are appropriately taken
into account by the fieldmap which is a prerequisite to accurate
anatomical localization of activity when interpolation of the gray-
matter timecourse is used with limited smoothing. The reduction
of measures of signal variability reflects the removal of sources of
variance with high-frequency characteristics that are inconsistent
with the hemodynamic processes. The large reduction of
statistical dependency between motion parameters and signal
indicates that accurate spatial registration decreases the motion
related signal intensity changes and avoids introduction of large-
scale spurious signal variations due to erroneous estimates.

One of the limitations of our algorithm is that its accuracy
depends on the variable amount of brain coverage given by the
slices which relates to available information for registration and
intensity correction. The common use of axial slicing scheme
provides caudal slices, covering brainstem and cerebellum, and
rostral slices, covering cortex, with relatively little anatomical
information, as compared to mid-brain, leading to instability
of the registration and outliers. While the Kalman online
filtering of motion estimates ensures that such error is limited
by propagating information from previous slices, multiple
successive outliers can still occur and affect the accuracy. For
this reason, the algorithm was expected to perform better in
acquisition sequences that provide continuous rich anatomical
information, such as SMS, which slices, regularly spaced to limit
spatio-temporal overlap, also ensures constant coverage of large
neo-cortical areas with rich structural content. To counteract
the error in case of low-informational content would be for the
state space to model not only position but also it’s first and
second order derivatives, velocity and acceleration, which are
expected to vary smoothly. As the first frame is used as the
reference for registration, it is required to be motion-free, and
a careful quality assessment is thus required to avoid slices to be
registered to a corrupted volume. Future work should focus on
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registering directly to high-resolution anatomical image, which
should increase the motion estimate quality.

The implemented bias correction suppresses low-frequency
intensity changes as measured from the white matter regions,
which however have been reported to show small signal changes
correlated to behavioral task design. While this phenomenon
have not been widely studied nor explained, the removal of
task-relevant signal from white-matter could decrease the signal
of interest in neighboring gray-matter regions. Nevertheless,
the use of signal from white-matter as regressed confounds in
resting-state fMRI study have been widely used, and our high-
pass filtering only removes the large-scale intensity changes in
the signal, preserving fine-grained activity patterns. The direct
interpolation from raw data to the segmented cortical and
sub-cortical gray-matter is performed using a Gaussian kernel
regression with limited bandwidth, which optionally further
restrict the bandwidth in the direction perpendicular to the
cortical surface in order to reduce smearing across tissues and
sulci. While this performs satisfactorily, future work should
focus in the choice of kernel that extract fine-scale activity with
reduced noise sensitivity, notably for laminar level analysis of
brain activity at ultra-high-field MRI (Polimeni et al., 2010;
Goense et al., 2012; Huber et al., 2017) for which surface-based
preprocessing and analysis are particularly adapted. While the
kernel weights prioritize local information but can interpolate
signal from further data point in the case of locally sparser
sampling, degenerate cases of large sampling gap induced by
rapid large movement could yet result in missing data. Future
work will be required to perform not only spatial but also
temporal interpolation to avoid such problem while also allowing
to correct for slice acquisition timing differences.

While other methods directly used four dimensional data
simultaneously estimate motion and distortions in an iterative
process (Andersson et al., 2017), we chose an online filtering
framework in which data are processed sequentially, as data
are acquired. The former could show improved performance
benefiting from a global optimization criterion, while our
method achieves lower computational cost and constant memory
requirement. The computational complexity is linear with
number of acquired volume, which accommodates processing
of longer scans with higher temporal and spatial resolution,
enabling as well online processing for real-time applications.

Static fieldmap based correction of distortion enables the
removal of the bulk of anatomical inaccuracy of EPI image.
However, in long scanning with motion and scanner drifts, the
B0 field evolves over time. Moreover, with increasing resolution
in phase encoding direction, fast cyclic B0 fluctuations generated
essentially by respiratory motion are observable in serial EPI
acquisition. Proper correction would require either a continuous
measure of the B0 in-homogeneity changes that can be extracted

from evolution ofMRI phase information (Yeo et al., 2008) which
is generally discarded, or retrieved with computational non-
linear registration. The latter option could be applied after linear
registration of each slice to further improve anatomical accuracy
and thus removing spurious motion-induced signal changes.

The proposed method provides a framework in which other
slice-specific artifacts correction, such as B1 unwarping or
eddy currents, or analysis, such as fitting R2* parameters from
multi-echo EPI, could be conducted prior to between slice
interpolation, better matching the sequential order of acquisition.

CONCLUSION

We developed a novel method that retrospectively processes
raw individual fMRI data into an analysis-ready group template
space, by applying slice-level motion tracking with concurrent
distortion and intensity correction. Experimental results on
simulated data show that this technique successfully and
robustly remove significant motion-induced confounds. Analysis
of real fMRI data with the proposed integrated method,
in comparison to conventional preprocessing, highlights its
benefits in terms of artifacts correction, signal quality, and
statistical significance. The increase in signal quality compared to
mainstream volume-based correction is thought to generalize to
other scanner models or acquisition sequences and particularly
adapt to novel high-resolution multi-slice techniques used
in cutting-edge research projects. These improvements also
provide more stable patterns of activity facilitating investigation
of cerebral information representation in healthy or clinical
populations for which motion, by interacting with magnetic
resonance physics, deteriorates fine-scale measures of brain
activity.

AUTHOR CONTRIBUTIONS

BP: conceptualized the method, developed the software, analyzed
the data, and wrote the manuscript; BP, AB, JD, and HB: edited
the manuscript.

FUNDING

This work was supported by the Canadian Institutes of Health
Research (MOP 97830) to JD, as well as by French Education and
Research Ministry and Sorbonne Universités to BP.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00268/full#supplementary-material

REFERENCES

Andersson, J. L. R., Graham, M. S., Drobnjak, I., Zhang, H., Filippini, N., and

Bastiani, M. (2017). Towards a comprehensive framework for movement

and distortion correction of diffusion MR images: within volume movement.

Neuroimage 152, 450–466. doi: 10.1016/j.neuroimage.2017.02.085

Andersson, J. L. R., Skare, S., and Ashburner, J. (2003). How to

correct susceptibility distortions in spin-echo echo-planar images:

Frontiers in Neuroscience | www.frontiersin.org 9 April 2018 | Volume 12 | Article 268

https://www.frontiersin.org/articles/10.3389/fnins.2018.00268/full#supplementary-material
https://doi.org/10.1016/j.neuroimage.2017.02.085
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pinsard et al. Integrated fMRI Slicewise Correction Framework

application to diffusion tensor imaging. Neuroimage 20, 870–888.

doi: 10.1016/S1053-8119(03)00336-7

Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C. (2008). Symmetric

diffeomorphic image registration with cross-correlation: evaluating automated

labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.

doi: 10.1016/j.media.2007.06.004

Bierens, H. J. (1996). Topics in Advanced Econometrics: Estimation, Testing, and

Specification of Cross-Section and Time Series Models. Cambridge: Cambridge

University Press.

Bollmann, S., Kasper, L., Vannesjo, S. J., Diaconescu, A. O., Dietrich, B. E.,

Gross, S., et al. (2017). Analysis and correction of field fluctuations

in fMRI data using field monitoring. Neuroimage 154, 92–105.

doi: 10.1016/j.neuroimage.2017.01.014

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis: I.

segmentation and surface reconstruction. Neuroimage 9, 179–194.

El-Sharkawy, A. M., Schär, M., Bottomley, P. A., and Atalar, E. (2006). Monitoring

and correcting spatio-temporal variations of the MR scanner’s static magnetic

field.MAGMA 19, 223–236. doi: 10.1007/s10334-006-0050-2

Feinberg, D. A., and Setsompop, K. (2013). Ultra-fast MRI of the human

brain with simultaneous multi-slice imaging. J. Magn. Reson. 229, 90–100.

doi: 10.1016/j.jmr.2013.02.002

Ferrante, E., and Paragios, N. (2017). Slice-to-volume medical image

registration: a survey. Med. Image Anal. 39(Suppl. C), 101–123.

doi: 10.1016/j.media.2017.04.010

Ferrazzi, G., Kuklisova Murgasova, M., Arichi, T., Malamateniou, C., Fox, M. J.,

Makropoulos, A., et al. (2014). Resting State fMRI in the moving fetus: a robust

framework for motion, bias field and spin history correction. Neuroimage 101,

555–568. doi: 10.1016/j.neuroimage.2014.06.074

Fischl, B., Sereno, M. I., and Dale, A. M. (1999a). Cortical surface-based analysis:

II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9,

195–207.

Fischl, B., Sereno, M. I., Tootell, R. B., and Dale, A. M. (1999b). High-resolution

intersubject averaging and a coordinate system for the cortical surface. Hum.

Brain Mapp. 8, 272–284.

Foerster, B. U., Tomasi, D., and Caparelli, E. C. (2005). Magnetic field shift due to

mechanical vibration in functional magnetic resonance imaging. Magn. Reson.

Med. 54, 1261–1267. doi: 10.1002/mrm.20695

Gholipour, A., Estroff, J. A., and Warfield, S. K. (2010). Robust super-resolution

volume reconstruction from slice acquisitions: application to fetal brain MRI.

IEEE Trans. Med. Imaging 29, 1739–1758. doi: 10.1109/TMI.2010.2051680

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B.,

Andersson, J. L., et al. (2013). The minimal preprocessing pipelines

for the Human Connectome Project. Neuroimage 80, 105–124.

doi: 10.1016/j.neuroimage.2013.04.127

Goense, J., Merkle, H., and Logothetis, N. (2012). High-resolution fMRI reveals

laminar differences in neurovascular coupling between positive and negative

BOLD responses. Neuron 76, 629–639. doi: 10.1016/j.neuron.2012.09.019

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud,

G., Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated

fMRI acquisition for improved resting state network imaging. Neuroimage 95,

232–247. doi: 10.1016/j.neuroimage.2014.03.034

Haller, S., Monsch, A. U., Richiardi, J., Barkhof, F., Kressig, R.W., and Radue, E.W.

(2014). Head motion parameters in fMRI differ between patients with mild

cognitive impairment and Alzheimer disease versus elderly control subjects.

Brain Topogr. 27, 801–807. doi: 10.1007/s10548-014-0358-6

Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: the early beginnings.

Neuroimage 62, 852–855. doi: 10.1016/j.neuroimage.2012.03.016

Henkelman, R. M. (1985). Measurement of signal intensities in the presence of

noise in MR images.Med. Phys. 12, 232–233.
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