
ORIGINAL RESEARCH
published: 26 April 2018

doi: 10.3389/fnins.2018.00270

Frontiers in Neuroscience | www.frontiersin.org 1 April 2018 | Volume 12 | Article 270

Edited by:

John Ashburner,

University College London, United

Kingdom

Reviewed by:

Jiaojian Wang,

University of Electronic Science and

Technology of China, China

Hyunjin Park,

Sungkyunkwan University,

South Korea

*Correspondence:

Zhentao Zuo

ztzuo@bcslab.ibp.ac.cn

Rong Xue

rxue@bcslab.ibp.ac.cn

†These authors have contributed

equally to this work.

‡Co-first author.

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 03 January 2018

Accepted: 09 April 2018

Published: 26 April 2018

Citation:

Zhang X, Cheng H, Zuo Z, Zhou K,

Cong F, Wang B, Zhuo Y, Chen L,

Xue R and Fan Y (2018) Individualized

Functional Parcellation of the Human

Amygdala Using a Semi-supervised

Clustering Method: A 7T Resting State

fMRI Study. Front. Neurosci. 12:270.

doi: 10.3389/fnins.2018.00270

Individualized Functional Parcellation
of the Human Amygdala Using a
Semi-supervised Clustering Method:
A 7T Resting State fMRI Study

Xianchang Zhang 1,2†, Hewei Cheng 3†‡, Zhentao Zuo 1,2*, Ke Zhou 4,5,6, Fei Cong 1,2,

Bo Wang 1, Yan Zhuo 1, Lin Chen 1,2,7, Rong Xue 1,2,7* and Yong Fan 8

1 State Key Laboratory of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese

Academy of Sciences, Beijing, China, 2College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China,
3Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications,

Chongqing, China, 4College of Psychology and Sociology, Shenzhen University, Shenzhen, China, 5Center for Language and

Brain, Shenzhen Institute of Neuroscience, Shenzhen, China, 6 Shenzhen Key Laboratory of Affective and Social Cognitive

Science, Shenzhen University, Shenzhen, China, 7 Beijing Institute for Brain Disorders, Beijing, China, 8Department of

Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States

The amygdala plays an important role in emotional functions and its dysfunction

is considered to be associated with multiple psychiatric disorders in humans.

Cytoarchitectonic mapping has demonstrated that the human amygdala complex

comprises several subregions. However, it’s difficult to delineate boundaries of these

subregions in vivo even if using state of the art high resolution structural MRI. Previous

attempts to parcellate this small structure using unsupervised clustering methods based

on resting state fMRI data suffered from the low spatial resolution of typical fMRI

data, and it remains challenging for the unsupervised methods to define subregions of

the amygdala in vivo. In this study, we developed a novel brain parcellation method

to segment the human amygdala into spatially contiguous subregions based on 7T

high resolution fMRI data. The parcellation was implemented using a semi-supervised

spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior

information derived from the Julich cytoarchitectonic atlas, our method clustered voxels

of the amygdala into subregions according to similarity measures of their functional

signals. As a result, three distinct amygdala subregions can be obtained in each

hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our

method achieved better performance in terms of subregional functional homogeneity.

Validation experiments have also demonstrated that the amygdala subregions obtained

by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study

has demonstrated that the semi-supervised brain parcellation method is a powerful tool

for exploring amygdala subregional functions.
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INTRODUCTION

The amygdala plays an important role in multiple
emotional functions such as fear conditioning (Paton et al.,
2006), emotion regulation (Blair et al., 2007), social behavior
(Adolphs, 2010) and reward learning (Murray, 2007; Wassum
and Izquierdo, 2015) both in animals and humans (LeDoux,
2007; Janak and Tye, 2015). Additionally, dysfunction of
amygdala is considered to be associated with a variety of
psychiatric disorders, such as depression, schizophrenia, autism,
and anxiety (Phillips et al., 2003; Phelps and LeDoux, 2005).

Studies showed that the anatomic basis of multiple functions
of amygdala is its complex internal structure (Kalin, 2004).
Tract-tracing studies in animals have revealed that the amygdala
complex consists of numerous nuclei, and each nucleus is
uniquely connected with other brain areas (Morrison and
Salzman, 2010). These nuclei can be broadly divided into a
centromedial (CM) group, laterobasal (LB) group, and superficial
(SF) group. The LB group is considered to bidirectionally
connect with cortical areas, including the orbital prefrontal
cortex, the hippocampus, as well as the sensory association
areas, and play a vital role in updating current stimulus value
associations. The CM group is thought to mediate behavioral
responses to conditioned and unconditioned stimuli through
its projection to hypothalamus, basal forebrain, and brainstem.
The SF group has strong connections with olfactory cortex,
insular, ventral striatum, and parahippocampal gyrus, which is
consistent with its role in processing socially relevant information
including olfactory and emotional stimuli (Pitkänen et al., 1997;
Ghashghaei and Barbas, 2002; Sah et al., 2003; Kalin, 2004;
Morrison and Salzman, 2010).

Amygdala nuclei’s function has been extensively investigated
in animal models using invasive methods. However, in humans,
most of our understandings about amygdala function were
obtained through postmortem examination or using noninvasive
techniques, in which functional magnetic resonance imaging
(fMRI) has been widely used. Nevertheless, researches that
employed fMRI, especially resting-state fMRI (rs-fMRI), to
explore functions of amygdala in vivo were mainly at the level
of the whole region rather than its nuclei (LeDoux, 2007; Kim
et al., 2011). One important reason for this is the absence of an
effective approach to specify functionally distinct subregions of
human amygdala. In fMRI studies, for activation or functional
connectivity (FC) analysis, a prerequisite step is to define
functionally distinct brain area as a region of interest (ROI).
However, located deeply in the temporal lobe and small in
size, the amygdala is difficult to be parcellated into meaningful

Abbreviations: fMRI, functional magnetic resonance imaging; rs-fMRI, resting

state functional magnetic resonance imaging; sMRI, structural MRI; DTI, diffusion

tensor imaging; GRE-EPI, gradient recalled echo planar imaging; T1w, T1-

weighted; MPRAGE, magnetization-prepared rapid gradient-echo; TR/TE/TI,

time repetition/echo time/inversion time; FA, flip angle; FOV, field of view; iPAT,

intergrated parallel acquisition technique; MNI, Montreal Neurologic Institute;

SSC, semi-supervised spectral clustering; MPM, maximum probability map; SI,

silhouette width; ROI, region of interest; CM, centromedial; LB, laterobasal; SF,

superficial.

subregions in the living human brain, even if using the high-
resolution structural MRI (Saygin et al., 2017). Thus, the ability
to anatomically and functionally characterize these subregions is
of great significance to understand the amygdala physiology and
help diagnose diseases involving the amygdala.

Different strategies have been proposed to identify the human
amygdala subregions, including: (i) using probabilistic atlases
constructed based on cytoarchitectonic boundaries (Amunts
et al., 2005) or based on ex vivo high-resolution MRI scanning of
autopsy brains (Saygin et al., 2017); (ii) application of clustering
methods to in vivo neuroimaging data. Among the probabilistic
atlases, the Julich cytoarchitectonic atlas (Eickhoff et al., 2005) is
considered to be a histologically accurate definition of amygdala
subregions and has been widely used in fMRI studies (Ball
et al., 2007; Roy et al., 2009; Li et al., 2012; Gabard-Durnam
et al., 2014; Qin et al., 2014; Engman et al., 2016; Rausch
et al., 2016; Eckstein et al., 2017). However, while the regions
defined by the atlas are cytoarchitectonicly homogeneous, they
do not necessarily have homogeneous functional signals or
connectivity. Their rationality for resting state FC analysis
has yet to be determined (Craddock et al., 2012). The other
strategy, brain parcellation based on neuroimaging data, could
be modeled as a data clustering problem to group brain image
voxels into clusters, and a variety of clustering algorithms have
been adopted to parcellate the amygdala. Most existing studies
adopted unsupervised clustering algorithms, such as spectral
clustering (Solano-Castiella et al., 2010, 2011; Bzdok et al.,
2013), k-means (Bach et al., 2011), and self-organizing map
(Mishra et al., 2014) to parcellate the amygdala based on voxel
similarity derived from the neuroimaging data. Particularly,
Mishra et al. (2014) and Bickart et al. (2012) have demonstrated
the feasibility of parcellating human amygdala using resting
state fMRI data. However, the unsupervised clustering typically
identified amygdala subregions at a group level and these
methods cannot be applied to individual subject to obtain
subregions consistent across subjects (Craddock et al., 2012;
Mishra et al., 2014). Furthermore, these amygdala parcellation
results were typically derived from 3T fMRI data with relatively
low spatial resolution, which might largely reduce the spatial
specificity of the parcellation results.

Recently, a semi-supervised spectral clustering (SSC) based
brain parcellation method has been proposed to parcellate
brain area based on resting-state fMRI data (Kulis et al.,
2009; Cheng and Fan, 2014). Compared with the unsupervised
clustering techniques, the semi-supervised brain parcellation
method possesses a remarkable superiority that it can integrate
prior information, derived from the existing neuroanatomy
knowledge (such as cytoarchitectonic mapping results or meta-
analysis results) to guide the clustering. In this study, we extend
the SSC approach by combining it with the automatic extraction
of whole human amygdala using FreeSurfer (Fischl et al., 2002)
to parcellate human amygdala into functional subregions at
an individual subject level. Besides, to guarantee the spatial
specificity of parcellation results, a high resolution 7 Tesla (7T)
rs-fMRI dataset was used in this study.

We hypothesized that the proposed method could parcellate
human amygdala into several functionally homogeneous and
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spatially coherent subregions based on the high resolution 7T
rs-fMRI data at an individual level. We designed to evaluate
our method in terms of its capability to capture the inter-
subject variability at first. Then, the functional homogeneity of
the obtained subregions were assessed by a comparison with the
cytoarchitectonic atlas. At last, amygdala subregional FC patterns
would be investigated with respect to their distinctiveness and
asymmetry between hemispheres. Our aim was to achieve an
accurate and individualized functional parcellation of amygdala
and provide a reliable alternative for rs-fMRI studies that
investigated subregional function of amygdala or other brain
areas.

MATERIALS AND METHODS

Participants
Twenty healthy Chinese-speaking subjects (mean age 23.6 ± 3.5
years, 8 males) with no history of mental disorders, neurological
disorders, or intracranial surgeries participated in the study, who
were recruited from local universities between October 2015
and January 2016. Exclusion criteria include following aspects:
(1) self-reported sleep during the procedure of MRI scanning;
(2) head motion criteria of mean frame-wise displacement (FD)
>0.2mm (Power et al., 2014).

This study was carried out in accordance with the
recommendations of the institutional review board of Beijing
MRI Center for Brain Research with written informed consent
from all subjects. All subjects gave written informed consent
in accordance with the Declaration of Helsinki. The protocol
was approved by the institutional review board of Beijing MRI
Center for Brain Research.

Data Acquisition
Both rs-fMRI and structural MRI (sMRI) data were acquired
from each subject at 7T. For rs-fMRI, subjects were instructed
to lie supine on the scanner bed with eyes closed, not
thinking anything in particular and staying awake during
scanning. The rs-fMRI data were acquired using a Siemens
7T Magnetom scanner (Erlangen, Germany) equipped with a
Nova Medical 32-channel head coil. A single-shot, gradient
recalled echo planar imaging (GRE-EPI) sequence was used
to collect the 7T rs-fMRI data with the following parameters:
time repetition [TR] = 3,000ms, time echo [TE] = 22ms, flip
angle [FA] = 70◦, number of axial slices = 70, field of view
[FOV] = 192 × 192 mm2, voxel size = 1.5 × 1.5 × 1.5 mm3,
accelerating factor (integrated parallel acquisition technique
[iPAT]) =3, number of measurements (or volumes) = 200,
acquisition time[TA] = 10:23min. The high-resolution 3D
T1-weighted (T1w) anatomical data at 7T were acquired
using a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence in sagittal direction with the following
parameters: TR = 2,200ms, TE = 3.21ms, inversion time
[TI] = 1,100ms, FA = 7◦, FOV = 224 × 224 mm2, voxel
size= 0.7× 0.7× 0.7 mm3.

The extra sMRI data was acquired for each subject using a
Siemens 3T Prisma MR scanner (Erlangen, Germany) equipped
with a Siemens 20-channel head coil. The sMRI was acquired in

sagittal orientation using aMPRAGE sequence with the following
parameters: TR = 2,530ms, TE = 3.37ms, TI = 1,100ms,
FOV = 256 × 256 mm2, FA = 7◦, iPAT = 2, voxel size = 1.0
× 1.0× 1.0 mm3.

During the data acquisition, foam pads were used to restrain
head motion, and scanner noise was shielded with earplugs.

Data Preprocessing
The rs-fMRI data was preprocessed using SPM12 (http://www.
fil.ion.ucl.ac.uk/spm) and Data Processing and Analysis of Brain
Imaging (DPABI v2.2) (Yan et al., 2016). Prior to preprocessing,
the first 10 volumes of the rs-fMRI data from each subject
were discarded to allow the signal to reach equilibrium. The
preprocessing included following steps. Firstly, the remaining
190 volumes were corrected for acquisition time delay between
different slices. Secondly, each volume of the rs-fMRI data after
slice timing was realigned to the mean image of all the volumes
to correct for the head motion. Thirdly, the individual 7T sMRI
data was co-registered to the same subject’s mean functional
image after motion correction. Next, the 7T sMRI was further
co-registered to this subject’s 3T sMRI, and the motion corrected
rs-fMRI data was subsequently co-registered to the 3T sMRI by
applying the linear transformation of the co-registration between
the 7T sMRI and 3T sMRI for the same subject. Consequently,
the co-registered rs-fMRI data can be nonlinearly normalized
to MNI space with the deformation field calculated by the
DARTEL tool based on the unified segmentation of the 3T sMRI.
Then, linear and quadratic trends were removed from the co-
registered rs-fMRI data, and temporal band-pass filtering (0.01–
0.08Hz) was further performed to reduce the low-frequency
drift and high-frequency noise. Moreover, the nuisance variables,
including averaged cerebrospinal fluid (CSF) signal, averaged
white matter (WM) signal, global mean signal, and 24 motion
parameters (Friston et al., 1996), were regressed out to reduce the
physiological and motion artifacts. Finally, the regressed rs-fMRI
data was nonlinearly normalized to MNI space with a spatial
resolution of 1.5 × 1.5 × 1.5 mm3 using the transformation
parameters produced by DARTEL tool, and then was spatially
smoothed with a 4mm full width at half maximum Gaussian
kernel.

Regional homogeneity (ReHo) (Zang et al., 2004),
which measured each voxel’s functional consistency with
its neighboring voxels, was computed before the spatially
smoothing. The ReHo was calculated to obtain the prior
information for functional parcellation of the amygdala.

Individualized Functional Parcellation of
the Amygdala
The flowchart for individualized functional parcellation
of amygdala is shown in Figure 1, consisting of amygdala
extraction, similarity graph construction and amygdala
parcellation using the SSC algorithm (Zhang et al., 2017).

Extraction of the Amygdala
For each subject, the bilateral amygdalae were extracted based
on the 3T sMRI using the FreeSurfer v5.3.0 (Fischl et al., 2002).
The extracted bilateral amygdalae were further normalized to the

Frontiers in Neuroscience | www.frontiersin.org 3 April 2018 | Volume 12 | Article 270

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Individualized Functional Parcellation of Human Amygdala

FIGURE 1 | The procedure for the individualized functional parcellation of the amygdala with semi-supervised spectral clustering algorithm based on the 7T rs-fMRI

data. (a) Julich atlas from the SPM Anatomy toolbox. (b) Bilateral amygdala masks. (c) Three small regions derived from the Julich atlas, which will be used as prior

information in the parcellation. The procedure consists of four basic steps: (1) Preprocess 7T rsfMRI data, (2) Acquire prior information from Julich atlas based on the

ReHo data, (3) Extract bilateral amygdala masks by segmenting individual 3T sMRI data with FreeSurfer, (4) Transfer the amygdala segmentation problem to graph

partition issue by modeling each voxel in amygdala as graph node and connecting each pair of nodes with an edge weighted by the similarity of fMRI signal, finally

segment the graph with a semi-supervised clustering algorithm. rsfMRI = resting state fMRI, ReHo = Regional Homogeneity, ROI = Region of Interest.

sMRI = structural MRI.

MNI space with the deformation field produced by the SPM’s
DARTEL tool with the unified segmentation of the individual 3T
sMRI.

Individualized Parcellation of the Amygdala Based on

the Functional Signals

Framework for the SSC based amygdala parcellation
The semi-supervised spectral clustering algorithm (Kulis et al.,
2009; Cheng and Fan, 2014) was adopted to parcellate the
amygdala based on the preprocessed 7T rs-fMRI data in the
study. The SSC based amygdala parcellation has following two
main steps.

The SSC algorithm firstly constructs a graph G = (V, E) by
modeling all the voxels within the amygdala as graph nodes V
and connecting each pair of amygdala voxels with an edge E
weighted by the nonnegative similarity of their functional signals.
Consequently, the similarity is defined as Craddock et al. (2012):

fuv = ruv + 1, (1)

where ruv ∈ [−1, 1] is the FC between amygdala voxels u and v,
measured by Pearson correlation coefficient of functional signals.
Actually, the constructed graph G can be represented as a NxN
similarity matrix with elements composed by edge weights fuv,

and N is the number of voxels in the amygdala considered for
parcellation.

Then, the constructed graph G is partitioned into n subgraphs
(n = 3 amygdala subregions in the present study). The graph
partition problem is solved through optimization of (i) the
similarity of nodes within each subgraph and (ii) the similarity
between the parcellation result and prior information.

In the SSC based amygdala parcellation, the prior information
is obtained based on the maximum probability map (MPM)
of the amygdala cytoarchitectonic parcellation with three
subregions (CM, LB, and SF) from the Julich atlas (Eickhoff
et al., 2005). To avoid possible bias to the anatomical priors that
might be inconsistent with the functional information, instead
of directly using the Julich atlas, we selected three small regions
with most homogeneous functional signals from the Julich MPM
as prior information with the following procedures. Firstly, the
amygdala cytoarchitectonic subregions are segmented into a
number of small functionally homogeneous regions according
to each voxel’s functional consistency with its neighboring
voxels (ReHo) using the watershed segmentation algorithm.
Then, three homogeneous regions, pi, i = 1, . . . 3, one from
each amygdala cytoarchitectonic subregion, with the smallest
MinMaxCut (Mcut) value, as defined by Equation (2), are
selected as prior information. The Mcut value is computed as
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(Ding et al., 2001):

Mcut =
∑n

i = 1

∑n
j = 1,j 6= i

∑

u∈pi ,v∈pj
fuv

∑

u,v∈pi ,u 6= v fuv
, (2)

where n = 3 is the number of subgraphs, pi is the small region
which will be selected as prior information, fuv is the similarity
measure defined in Equation (1).

Implementation of the semi-supervised spectral clustering
Under the above described framework for amygdala parcellation,
the SSC algorithm is implemented by formulating two terms,
namely the data term and the prior term. Among them, the data
term defines the similarity of nodes within subgraphs, and the
prior term defines the similarity between the parcellation result
and the prior information.

Specially, the normalized cut (Shi and Malik, 2000; Craddock
et al., 2012) is adopted as data term to measure the similarity of
nodes within subgraphs:

∑n

c=1

∑

u,v∈gc ,u 6=v fuv
∑

u∈gc ,v∈G
fuv

, (3)

where n is the number of subgraphs, gc, c = 1, . . . , n represents
each subgraph of the graph G, and fuv is the similarity measure
defined in Equation (1).

At the same time, the prior term, which defines the similarity
between the parcellation result and the prior information, is
formulated by:

∑n

c = 1

∑n
i = 1

∑

u,v∈pi∩gc
fuv

∑

u∈gc ,v∈G
fuv

, (4)

where n is the number of subgraphs, and pi = 1, . . . , n is
the small region with homogeneous functional signals that is
adopted as the prior information, which is derived from the
cytoarchitectonic MPM.

Then, the graph partition issue is transferred to the
optimization of the following objective function:

J
({

gc
}n

c = 1

)

= argmax
∑n

c = 1

∑

u,v∈gc ,u 6=v fuv
∑

u∈gc ,v∈G
fuv

+ λ

(

α
∑n

c = 1

∑n
i = 1

∑

u,v∈pi∩gc
fuv

∑

u∈gc ,v∈G
fuv

+ (1− α)
∑n

c = 1

∑

u,v∈gc
euv

∑

u∈gc ,v∈G
fuv

)

, (5)

where euv is equal to fuv if voxels u and v are spatially nearest
neighbors, or 0 otherwise. λ and α ∈ [0, 1] are weighting factors,
and are set to 2 and 0.5 in this work, respectively.

Finally, the optimization problem of the objective function
defined in Equation (5) is solved by an improved weighted kernel
k-means algorithm (Cheng and Fan, 2014).

Inter-subject Variability of the
Individualized Functional Parcellation
Results
To evaluate the inter-subject variability of the individualized
functional parcellation results, volume measurements and
probability map analyses were conducted, which was similar to
the way carried out by Amunts et al (Amunts et al., 2005).

Firstly, volumes of the bilateral amygdala and their parcellated
three subregions were calculated for each of the 20 subjects. The
volume is defined as:

ROI Volume = Voxel Numbers X Voxel Size, (6)

where ROI represents bilateral amygdalae and each of their
subregions, and Voxel Size is 1.5× 1.5× 1.5 mm3.

Then, the probability maps and MPM were computed. The
probability maps describe, for each voxel that has a label in
anyone of the subjects, frequency with which a SSC parcellation
subregion (or label) is observed at this specific voxel in the
sample of 20 subjects. Based on the calculated probability
maps, the MPM (denoted as SSC-MPM), which describes the
most probable SSC parcellation subregion at each voxel, is
computed according to the following rules: (i) For each voxel,
the accumulative probability (or frequency) of this voxel across
three SSC subregions is higher than 60%, or the probability for
any one of the three subregions is higher than 50%; otherwise,
the voxel will not be assigned with label. (ii) The voxel will be
assigned to that subregion, which shows the highest probability
at this specific position. (iii) If a voxel has the same probability
for the three subregions, it will be assigned to that subregion
which has highest average probability across its 3 × 3 ×

3 neighbors. It should be noted that the threshold 60% for
including a voxel into the MPM is determined based on the
relationship between the whole amygdala volume of SSC-MPM
and the number of subjects who have a label (that is, share
the same voxel) at this specific voxel (see Figure 4 in Results
section). The whole amygdala volume of SSC-MPM is around
2 cm3 if the threshold is set to 60% (that is, SSC subregions
were found at this voxel in at least 12 of the 20 subjects.),
which is consistent with the mean volume of whole amygdala
estimated according to the volume measurements (see Table 1).
The resulting MPM generates a contiguous and nonoverlapping
parcellation of amygdala subregions.

TABLE 1 | Volume (Mean ± SE, mm3, N = 20) of the whole amygdala and each

amygdala subregion: centromedial (CM), laterobasal (LB), superficial (SF)

amygdala.

Amygdala structure Left Right

CM 420.69 ± 61.11 276.58 ± 51.43

LB 1,391.68 ± 86.53 1,442.48 ± 69.42

SF 229.33 ± 38.10 317.42 ± 34.48

Whole 2,041.71 ± 33.46 2,036.48 ± 45.24
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Assessment of the Similarity Between the
Functional and Cytoarchitectonic
Parcellations
In order to evaluate the correspondence between our functional
parcellation results and cytoarchitectonic mapping of human
amygdala, we used the Dice coefficient to assess the overlap
degree between the subregions obtained by the proposed
method and the cytoachitectonic subregions in each subject
(Dice, 1945):

Dice Coefficient =
2(X ∩ Y)

X + Y
(7)

The Dice’s coefficient is the ratio of twice the number of voxels
that have the same labels in both partitions, divided by the total
number of voxels present in both partitions. Dice’s coefficient
results in numbers between zero and one. The larger number
indicates better correspondence between partitions.

Evaluation of the Amygdala Parcellation
Results Based on the Functional
Homogeneity
Functional homogeneity of the amygdala parcellation results
was evaluated by a modified silhouette width (SI) measure that
has been widely used to quantitatively assess the functional
homogeneity of parcellation results (Craddock et al., 2012; Cheng
et al., 2014; Mishra et al., 2014). Particularly, the modified SI is
defined as:

SIn =
1

n

∑n

c=1

ac − bc

max
{

ac, bc
} , (8)

where SIn is the modified SI with n clusters, ac =
1

nc(nc−1)

∑

u,v∈gc ,u 6=v fuv measures the intrinsic functional

similarity between each pair of voxels u and v assigned to
the cluster gc, bc = 1

nc(N−nc)

∑

u∈gc ,v∈(G−gc)
fuv measures the

similarity between an intra-cluster voxel u and an extra-cluster
voxel v, nc is the number of voxels assigned to the cluster gc,
and N is the total number of voxels within the target region
considered for parcellation.

For each subject, the modified SI was calculated for the
SSC based functional parcellation and the cytoarchitectonic
parcellation, respectively. Paired t-tests were performed to
compare SI values of these two parcellation methods across all
the subjects in this study.

Comparison With a State of the Art
Unsupervised Clustering Method
The semi-supervised clustering method was compared with
a state of the art unsupervised brain parcellation method—
normalized cut (NCUT) (Craddock et al., 2012). To be
comparable with the SSC partition, the NCUT algorithm was
applied to parcellate amygdala into 3 subregions bilaterally
based on the similarity measure defined by Equation (1) for
each of the 20 subjects. Each subregion of the parcellation
results obtained by the NCUT algorithm was labeled
according to its overlap with the cytoarchitectonic subregion.

Namely, each subregion shares the same label with the
cytoarchitectonic subregion if they have the largest overlapping
area.

In the comparison experiments, the cross subject consistency
of partitioning was used to assess the performance of the brain
parcellation methods (Shen et al., 2010). The cross subject
consistency can be measured using the average discrete entropy
across all voxels in the target region considered for parcellation
(Shen et al., 2010), which is defined as:

H =
1

N

∑

u
H(u), (9)

where H is the average discrete entropy, N is the total number of
voxels within the target region, and H(u) is the discrete entropy
at voxel u. The discrete entropy is used to assess uncertainty of
label assignment at a single voxel u, which is defined as:

H (u) = −
∑3

k=1
Pr(u = k)log(Pr(u = k)), (10)

where Pr
(

u = k
)

is the probability of voxel u being classified
as subregion k, and k =1,2,3 is the label of the amygdala
subregion. Pr

(

u = k
)

can be obtained from the amygdala
subregion probability map.

The smaller the average entropy H, the better the consistency
between partitions across all subjects. The average entropy of the
SSC and NCUT parcellation results were calculated for left and
right amygdala, respectively. In addition, the overlap between
parcellation results obtained by the NCUT method and the
cytoarchitectonic map was also calculated based on Equation (7).

Functional Connectivity Analyses of the
Amygdala Parcellation Results
Firstly, FC patterns of the amygdala subregions were computed
and their distinction was investigated. Furthermore, difference
in FC patterns between the ipsilateral amygdala subregions was
explored, and the asymmetry in FC patterns of bilateral amygdala
subregions was examined as well.

Individual Subject-Level Functional Connectivity

Analysis
For each subject, each of the three amygdala subregions in each
hemisphere was selected as the seed ROI. The individual-level
FC maps were generated for each selected ROI by computing
Pearson correlations between the mean time course extracted
from the ROI and the time courses from the whole brain.
The Pearson coefficients of resulting whole brain voxel-wise
FC maps were converted to z values using the Fisher’s r-to-z
transformation for subsequent group-level statistical analysis.

Group-Level Statistical Analysis
In the first place, one sample t-tests were applied to the
individual-level FC maps of all the subjects for each ROI of
the amygdala subregions to explore group-level FC patterns.
Secondly, paired t-tests were applied to the individual-level FC
maps of all the subjects between each pair of the ipsilateral
amygdala’s subregions in each hemisphere for exploring the
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difference in FC patterns. Furthermore, in order to examine the
asymmetry in FC patterns, paired t-tests were applied to the
individual-level FC maps of all the subjects between bilateral
ROIs of the same amygdala subregion from two hemispheres. For
above t-tests, only clusters, which were significant at a threshold
of p < 0.001 and an extent threshold of p < 0.05 with
cluster-level family-wise error correction, were reported.

RESULTS

Individualized Functional Parcellation
Results of the Amygdala
In the present study, bilateral amygdalae were successfully
parcellated into three spatially coherent subregions for each
subject, namely CM, LB, and SF, which were named after
respective prior information. Parcellation results of two
randomly selected subjects are shown in Figure 2.

Inter-subject Variability of the
Individualized Functional Parcellation
Results
Volume Measurements
Table 1 shows the mean volumes of bilateral amygdalae and
their parcellated three subregions for the 20 subjects. The mean
volume of the whole amygdala is 2041.71± 33.46 mm3 (Mean±

SE) for left hemisphere, and is 2036.48 ± 45.24 mm3 (Mean ±

SE) for right hemisphere.

Probability Maps for the Functional Parcellation

Results of the Amygdala
Probability maps for bilateral amygdala subregions, namely
CM, LB, and SF, are shown in Figures 3a–c. Meanwhile, the
obtained SSC maximum probability map (SSC-MPM) is shown
in Figure 3d. For comparison, the cytoarchitectonic MPM is

shown in Figure 3e as well. Besides, the relationship between the
whole amygdala volume of SSC-MPMand the number of subjects
who have a label (that is, share the same label) at one specific voxel
is shown in Figure 4.

Similarity Between the Functional and
Cytoarchitectonic Parcellations
Table 2 shows the overlap degree between our functional
parcellation results and the cytoarchitectonic map. The high
mean Dice coefficients indicate our functionally parcellated
subregions have a fine correspondence with the cytoarchitectonic
subregions.

Functional Homogeneity of the
Parcellation Results
The mean modified SI value of SSC based brain parcellation
method is 0.141 ± 0.004 (Mean ± SE) for left hemisphere, and
is 0.147 ± 0.006 (Mean ± SE) for right hemisphere; whereas
the mean modified SI value of the cytoarchitectonic parcellation
method is 0.126 ± 0.003 (Mean ± SE) for left hemisphere, and
is 0.119 ± 0.005 (Mean ± SE) for right hemisphere. Results of
paired t-tests have demonstrated that the modified SI values of
the SSC based brain parcellation method are significantly larger
than the cytoarchitectonic parcellation method with p = 0.001
and p= 6.82× 10−5 for the left and right amygdala, respectively
(Figure 5).

Comparison With the State-of-the-Art
Unsupervised Parcellation Method
Parcellation results of two representative subjects using SSC and
NCUT methods are shown in Figure 6. Visual inspection shows
that the parcellation results generated by SSC method are more
spatially continuous than theNCUTmethod. Besides, the average
entropy of SSC parcellation results for left and right amygdala

FIGURE 2 | 2D view of the obtained amygdala subregions in two randomly selected subjects, located at (−23, −7, −17). The results are overlaid on the standard

template in the MNI space. CM, centromedial amygdala; LB, laterobasal amygdala; SF, superficial amygdala.
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FIGURE 3 | The probability map of amygdala’s subregions obtained by the SSC-based brain parcellation method. (a) The probability map of the CM subregion,

located at (−26, −7, −17) in the MNI space (b) the probability map of the LB subregion, located at (−26, −4, −17) in the MNI space (c) the probability map of the SF

subregion, located at (−26, −5, −17) in the MNI space (d) the maximum probability map of the SSC-based functional parcellation (e) the maximum probability map of

the Julich cytoarchitectonic atlas obtained from the SPM Anatomy toolbox. (d,e) views are located at (−19, −5, −19) in the MNI space. SSC, semi-supervised

clustering; CM, centromedial; LB, laterobasal; SF, superficial.

FIGURE 4 | The volume variation of the whole amygdala and each subregion within the SSC-MPM with the change of the subjects’ number that share the same voxel.

The dotted and solid lines represent the left and right hemispheres, respectively. The volume of the whole amygdala and the CM, LB, as well as the SF subregion in the

SSC-MPM was shown separately. SSC-MPM, semi-supervised clustering parcellation maximum probability map; CM, centromedial; LB, laterobasal; SF, superficial.
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is 0.290 and 0.428, respectively. While the average entropy of
NCUT parcellation results for left and right amygdala is 0.746
and 0.839, respectively, which is significantly higher than the
SSC partition. The comparison results demonstrate that the
SSC method has better performance than the NCUT method
in terms of cross subject consistency because of adopting prior
information to guide the functional parcellation. In addition, the
overlap degree between the parcellation results generated by the
SSCmethod and cytoarchitectonicmap is higher than the overlap
degree between the parcellation results generated by the NCUT
method and cytoarchitectonic map (Table 2).

Functional Connectivity Patterns of the
Amygdala Parcellation Results
FC Patterns of the Amygdala’s Subregions
As shown in Figure 7 and Supplementary Tables 1–3, the group-
level FC patterns are distinctive among the parcellated three
amygdala subregions, which is described in detail as follows.

The brain regions, showing significantly positive FC with
the left CM, are mainly located in the bilateral striatum,
thalamus, insula, supramarginal gyrus, part of anterior and
middle cingulate gyrus, and part of the cerebellum. The right
CM has significantly positive FC with the bilateral putamen,
pallidum, insula, middle cingulate gyrus, left precentral gyrus,
left postcentral gyrus, right supplementary motor cortex, and
part of the cerebellum. Conversely, the brain regions, showing
significantly negative FC with the CM, are mainly located in the

TABLE 2 | Overlap between the SSC/NCUT parcellation and cytoarchitectonic

parcellation. The overlap degree was measured using Dice Coefficients (Mean ±

SE, N = 20).

CM LB SF

NCUT Left 0.490 ± 0.035 0.602 ± 0.018 0.224 ± 0.028

Right 0.122 ± 0.029 0.450 ± 0.035 0.208 ± 0.052

SSC Left 0.645 ± 0.031 0.781 ± 0.015 0.739 ± 0.041

Right 0.547 ± 0.046 0.764 ± 0.018 0.756 ± 0.037

NCUT, normalized cut; SSC, semi-supervised clustering; CM, centromedial amygdala; LB,

laterobasal amygdala; SF, superficial amygdala; Left, left amygdala; Right, right amygdala.

angular gyrus, precuneus, middle frontal gyrus, and part of the
superior frontal gyrus.

The brain regions, showing significantly positive FC with
the left LB, are primarily located in the hippocampus,
parahippocampal gyrus, inferior and middle temporal gyrus,
temporal pole, cingulate gyrus, left insula, precentral gyrus, and
the fusiform gyrus. Besides these brain areas, the right LB also
has extensive positive FC with bilateral brain regions including
the precuneus, postcentral gyrus, and the precentral gyrus. On
the contrary, the LB has significantly negative FC with the brain
regions including the angular gyrus, precuneus, middle cingulate
gyrus, medial frontal gyrus, middle and superior frontal gyrus.

The left SF has significantly positive FC with brain regions
including the hippocampus, parahippocampus, pallidum, left
anterior and middle cingulate gyrus, part of right precentral
gyrus, and part of the cerebellum. The brain regions, showing
extensive positive FC with the right SF, are the hippocampus,
parahippocampus, left middle cingulate gyrus, part of right
precentral gyrus, and right precuneus. Conversely, the SF has
significantly negative FC with brain regions including the
angular gyrus, middle frontal gyrus, inferior orbital frontal gyrus,
part of the left precuneus, and part of the middle temporal
gyrus.

FC Difference Between the Ipsilateral Amygdala

Subregions
The differences in FC patterns between the ipsilateral amygdala
subregions are described as follows, which are shown in
Tables 3–5.

The CM has significantly stronger positive FC with the
striatum, thalamus, and part of the cerebellum anterior lobe than
the ipsilateral LB or SF subregions as shown in Tables 3, 4.

As shown in Table 3, the left LB has significantly stronger
FC with the bilateral fusiform gyrus, and part of the left middle
occipital lobe than the left CM, while the right LB has higher
FC with the bilateral fusiform gyrus, part of the bilateral middle
occipital lobe, left inferior occipital lobe, left superior parietal
lobe, and part of the right postcentral gyrus than the right
CM. Compared with the SF, the LB has higher FC with the
hippocampus, parahippocampus, middle temporal lobe, and part
of the precentral gyrus (Table 5).

FIGURE 5 | Functional homogeneity comparison between the SSC-based amygdala parcellation and the Julich cytoarchitectonic atlas. The functional homogeneity is

measured by the modified SI index. SSC, semi-supervised clustering; SI, silhouette width.
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FIGURE 6 | Comparison between the SSC partition and NCUT partition. (a) Parcellation results of two representative subjects obtained by the SSC method.

(b) Parcellation results of the same two subjects obtained by the NCUT method. SSC, Semi-supervised clustering; NCUT, Normalized cut; CM, centromedial; LB,

laterobasal; SF, superficial.

The SF has significantly higher FC with part of the occipital
gyrus and the lingual gyrus than the CM (Table 4). Compared
with the LB, the SF has higher FC with the striatum, the middle
cingulate gyrus, and part of the precuneus (Table 5).

Asymmetry in FC of the Bilateral Amygdala

Subregions
The asymmetry in FC of the bilateral amygdala’s subregions was
found in this study. Particularly, the left and right CM amygdala
have significant difference in FC patterns (Figure 8), while no
significant difference was found in bilateral LB amygdala and
bilateral SF amygdala (P < 0.05, cluster level FWE correction).
The left CM has higher FC with the left pallidum than the
right CM, while the right CM has higher FC with the right
hippocampus and the posterior cingulate cortex than the left CM.

DISCUSSION

In this study, we proposed a semi-supervised clustering based
brain parcellation scheme for segmenting human amygdala
into functionally homogeneous subregions at an individual
level. The proposed method successfully parcellated human
amygdala into 3 subregions in every subject, namely the CM,

LB, and SF group, based on connectivity structure of a 7T
high-resolution rs-fMRI dataset. Volume measurements and
subregion probability map analyses have demonstrated that
our method is capable to effectively capture the inter-subject
variability in distribution of amygdala functional subregions.
Besides, functional homogeneity of our parcellation results is
better than that of the cytoarchitectonic atlas, as validated by
the paired t-tests of silhouette width index. More importantly,
the obtained amygdala subregions are characterized by specific
functions, which is evidenced by their distinctive and asymmetric
FC patterns.

Methodological Consideration of the SSC
Method
In the noninvasive studies for exploring human amygdala
subregional function or connectivity using fMRI technique, a
prerequisite step is specifying functionally distinct subregions
of amygdala. Previous studies have applied different strategies
to define the amygdala subregions, including the use of
cytoarchitectonic or anatomical atlas (Amunts et al., 2005; Saygin
et al., 2017), clustering neuroimaging data with unsupervised
algorithm (Bach et al., 2011; Solano-Castiella et al., 2011; Zarei
et al., 2013; Mishra et al., 2014; Tyszka and Pauli, 2016). The
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FIGURE 7 | Functional Connectivity patterns of the amygdala’s subregions identified using semi-supervised clustering method. The colorbar shows the t-values of

one sample t-tests. Clusters were identified using one sample t-tests, significant at a threshold of p < 0.001 and an extent threshold of p < 0.05 with cluster-level

family-wise error correction. CM, centromedial; LB, laterobasal; SF, superficial; L, left hemisphere; R, right hemisphere.

proposed method in this study is a little different from previous
strategies.

Firstly, compared with the cytoarchitectonic atlas, the
proposed method is equipped to capture the inter-subject
variability in distribution of functional subregions, which is
consistent with the brain parcellation approaches in previous

important studies (Blumensath et al., 2013; Wang et al., 2015,
2017). Obtaining functional mapping of brain area at the level
of the individual is a critical step toward understanding the
association between anatomy and function in the human brain.
Though the cytoarchitectonic atlas has been widely used in
fMRI studies, one of their significant limitations is that they
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TABLE 3 | Function connectivity difference between centromedial (CM) and

laterobasal (LB) amygdala subregion.

BA x y z z

score

Cluster

size

LEFT HEMISPHERE

CM>LB

Amygdala(L) −19.5 −4.5 −13.5 6.00 305

Thalamus(R) 18 −22.5 18 4.82 141

Pallidum(R) 18 1.5 −9 4.50 255

Midbrain −1.5 −31.5 −15 4.47 71

Cerebellum Anterior

Lobe(L)

−1.5 −69 −12 4.37 78

Putamen(R) 27 −7.5 12 4.37 87

Caudate(R) 16.5 −4.5 16.5 4.25 77

Caudate(L) −12 1.5 12 4.24 343

LB>CM

Amygdala(L) −25.5 −1.5 −25.5 5.88 265

Middle occipital

gyrus(L)

19 −34.5 −81 3 4.57 246

Fusiform gyrus(L) 37 −33 −61.5 −18 4.55 69

Fusiform gyrus(R) 25.5 −51 −18 4.48 92

Lingual gyrus(R) 18 19.5 −70.5 −6 4.27 91

Cerebellum posterior

lobe

−22.5 −60 −15 3.93 75

RIGHT HEMISPHERE

CM>LB

Amygdala(R) 24 −9 −15 5.43 195

Caudate(R) 7.5 −10.5 10.5 4.63 232

Angular(L) 39 −39 −69 30 4.58 93

Thalamus(L) −15 −13.5 13.5 4.42 246

Thalamus(R) 18 −19.5 4.5 4.41 125

Cerebellum posterior

lobe

6 −73.5 −18 4.40 59

Thalamus(R) 21 −18 12 4.33 62

LB>CM

Amygdala(R) 25.5 −1.5 −25.5 6.21 432

Middle occipital

gyrus(L)

19 −40.5 −69 4.5 4.76 474

Fusiform gyrus(R) 18 27 −75 −9 4.37 125

Superior parietal

gyrus(L)

−36 −57 63 4.23 226

Inferior parietal gyrus(L) 2 −54 −27 46.5 4.15 107

Middle occipital

gyrus(R)

39 −76.5 13.5 4.13 97

Postcentral(R) 2 40.5 −40.5 54 3.98 137

Inferior occipital lobe(L) −37.5 −75 −10.5 3.93 79

Fusiform gyrus(L) −24 −70.5 −9 3.90 62

All clusters are significant at a threshold of p < 0.001 and an extent threshold of

p < 0.05 with cluster-level family-wise error correction. Secondary local maxima within

the significant clusters are not listed.

identify amygdala subregions at a group level. Our method
offers an alternative approach to identify amygdala functional
subregions at an individual subject level. As a result, substantial
inter-individual variability is captured in the parcellation results.
The obtained subregions have visually different distributions in

TABLE 4 | Function connectivity difference between centromedial (CM) and

superficial (SF) amygdala subregion.

BA x y z Z

score

Cluster

size

LEFT HEMISPHERE

CM>SF

Amygdala(L) −24 −4.5 −13.5 6.11 1,905

Pallidum(L) −22.5 −3 1.5 5.71

Pallidum(R) 24 −4.5 4.5 5.71 1,452

Putamen(R) 31.5 −9 −10.5 5.35

Thalamus(R) 15 −18 0 4.42 61

Cerebellum anterior

lobe

4.5 −58.5 −27 4.19 76

SF>CM

Amygdala(L) −18 −4.5 −19.5 5.62 69

Precuneus(R) 25.5 −61.5 24 4.35 108

Cerebellum Anterior

Lobe

−13.5 −43.5 −12 4.25 79

Calcarine (L) −18 −63 18 4.15 76

Lingual(R) 18 18 −75 −3 4.14 105

RIGHT HEMISPHERE

CM>SF

Amygdala(R) 25.5 −6 −13.5 6.22 356

Putamen(R) 30 −7.5 0 3.97

Cerebellum anterior

lobe

6 −40.5 −25.5 4.70 74

Temporal lobe(L) –−33 −9 −9 4.67 270

Putamen(L) −33 −16.5 −4.5 4.36

Thalamus(R) 15 −19.5 3 4.50 95

Middle frontal gyrus(L) 6 −24 3 58.5 4.01 74

Thalamus(L) −9 −9 3 3.83 65

SF>CM

Parahippocampus(R) 18 −6 −18 6.28 195

Superior parietal

gyrus(L)

−25.5 −51 48 5.35 68

Middle occipital

gyrus(R)

33 −82.5 13.5 4.77 176

Middle occipital

gyrus(L)

19 −33 −88.5 3 4.46 647

Middle occipital

gyrus(L)

−30 −79.5 4.5 4.32

Lingual(L) −22.5 −63 −10.5 4.33 72

Middle occipital

gyrus(R)

19 36 −87 3 4.20 92

Inferior occipital lobe(L) 18 −34.5 −82.5 −12 4.15 124

Inferior parietal

lobule(R)

7 27 −55.5 51 4.12 59

Fusiform gyrus(L) 18 −21 −76.5 −16 3.91 59

All clusters are significant at a threshold of p < 0.001 and an extent threshold of

p < 0.05 with cluster–level family–wise error correction. Secondary local maxima within

the significant clusters are not listed.

every subject (Figure 2). The volume measurement results and
probability map of each subregion further confirm that there is a
considerable variability in size and distribution for each amygdala
subregion between different subjects (Figure 3, Table 1).
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TABLE 5 | Function connectivity difference between laterobasal (LB) and

superficial (SF) amygdala subregion.

BA x y z Z

score

Cluster

size

LEFT HEMISPHERE

LB>SF

Hippocampus(L) −27 −7.5 −22.5 5.94 351

Hippocampus(R) 27 −9 −25.5 4.77 131

Middle temporal

gyrus(L)

19 −49.5 −60 −3 4.58 62

Precentral(L) −52.5 3 19.5 4.35 102

SF>LB

Putamen(L) −9 7.5 −9 5.14 119

Caudate(R) 7.5 12 −3 4.43 79

Precuneus(R) 7 4.5 −70.5 45 4.17 66

RIGHT HEMISPHERE

LB>SF

Parahippocampus(R) 31.5 −1.5 −25.5 5.59 393

SupraMarginal(L) −57 −36 25.5 5.05 55

Hippocampus(L) −27 −7.5 −24 4.86 74

Precentral(L) 6 −19.5 −15 67.5 4.82 226

Middle temporal

gyrus(L)

19 −51 −66 13.5 3.76 54

SF>LB

Amygdala(R) 18 −6 −18 5.86 88

Middle cingulum

gyrus(L)

−9 −42 34.5 4.46 54

Precuneus(L) −7.5 −81 40.5 4.04 73

All clusters are significant at a threshold of p < 0.001 and an extent threshold of

p < 0.05 with cluster-level family-wise error correction. Secondary local maxima within

the significant clusters are not listed.

Secondly, the proposed SSC based brain parcellation
method is different from the unsupervised clustering based
brain parcellation methods because it can incorporate prior
information that is derived from the existing neuroanatomy
knowledge (i.e., cytoarchitectonic atlas) to guide the brain
parcellation. Actually, in many studies unsupervised clustering
methods are used to parcellate brain area based on tractography
(Wang et al., 2012), resting-state FC (Wang et al., 2017),
multi-contrast structure image (Solano-Castiella et al., 2011),
and brain-wide coactivation map (Bzdok et al., 2013). In these
studies, cytoarchitectonic mapping information is commonly
used to determine the number of clusters or used to validate
the parcellation results by regarding the cytoarchitectonic
parcellation as the golden standard. In a different way, we directly
use the prior information derived from the cytoarchitectonic
map to guide the functional parcellation, thus facilitating an
anatomically and functionally consistent parcellation of the
human amygdala. Unsupervised clustering methods have been
widely used to parcellate brain areas for individual subjects
(Mishra et al., 2014; Wang et al., 2017). However, these
methods do not guarantee the individual parcellation results
directly comparable across subjects, parcellation results of
different subjects have to be matched somehow to establish

correspondence across subjects. They need postprocessing steps
to define the amygdala subregions in common anatomical space
(Mishra et al., 2014). But the proposed SSC brain parcellation
method could generate subject specific brain parcellation results
without losing correspondence across subjects, thus having a
higher cross subject consistency of partitioning. Besides, the
SSC method can keep good concordance with the anatomical
space because of the prior information derived from the
widely accepted cytoarchitectonic atlas (Table 2). As shown
in Figures 3D,E, the functional MPM of SSC parcellation also
shares similarity with MPM of the Julich atlas albeit different.
Furthermore, the comparison results have demonstrated that
functional homogeneity of the SSC parcellation is better than
the Julich atlas (Figure 5). Besides, Mishra et al. (2014) clustered
voxels in amygdala mainly based on the similarity between
whole brain FC maps associated with each voxel, while our
method clustered voxels in amygdala mainly based on the
similarity of timecourses extracted from these voxels, which may
have a higher computing efficiency and help to achieve better
temporal homogeneity within a cluster (Craddock et al., 2012).
It’s noteworthy that the Julich atlas is not directly used as prior
information, only three small regions with most homogeneous
functional signals are extracted from the Julich atlas and adopted
as prior information. Thus, it’s reasonable to compare the SSC
parcellation with Julich atlas in terms of functional homogeneity.
Besides, the weighting of anatomical priors in the objective
function is carefully determined by reference to Cheng and Fan
(2014). A discussion about how spatial constraints affect the
functional parcellation results can be found in Craddock et al.
(2012) and Cheng et al. (2014).

Functional Connectivity of the Obtained
Subregions
Functional subregions obtained by the proposed SSC method
(namely the CM, LB, and SF group) may involve in different
functions and networks, which is evidenced by the whole brain
FC analysis.

While most of our findings about the amygdala subregional
connectivity patterns are in accordance with prior work (Roy
et al., 2009; Qin et al., 2014; Engman et al., 2016), from a
methodological perspective, the applied 7T high resolution fMRI
data can guarantee the spatial fidelity of fMRI signals, therefore
allowing a more accurate definition of amygdala subregions as
well as their FC patterns. Recent technical advances in ultrahigh
field MRI, such as 7T, have made it possible to acquire high
quality MRI data with linearly increased signal to noise ratio
(SNR). The SNR gains can bring higher spatial resolution,
which will improve the spatial fidelity of the functional signals
and increase the functional contrast (Ugurbil et al., 2013).
Considering the total volume of human amygdala is just around
2 cm3 (Brabec et al., 2010), a high resolution 7T rs-fMRI dataset
will greatly improve the spatial specificity of the parcellation
results.

We found the CM had significantly positive FC with the
striatum, thalamus, insula, middle cingulate gyrus, and part of
the cerebellum, which were in line with the previous studies (Roy
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FIGURE 8 | Asymmetry in FC patterns of the left CM amygdala and right CM amygdala. (a) Brain regions that shows higher FC with the left CM than the right CM.

(b) Brain regions that shows higher FC with the right CM than the left CM. The colorbar shows the t-values of paired t-tests. The clusters are identified using the

paired t-test, significant at a threshold of p < 0.001 and an extent threshold of p < 0.05 with cluster-level family-wise error correction. FC, Functional Connectivity;

CM, centromedial.

et al., 2009; Bzdok et al., 2013). These findings supported the CM’s
role as the amygdala’s major output center mediating both motor
responses and autonomic responses (Pitkänen et al., 1997; Pessoa,
2011).

Our results showed the LB had extensive positive connectivity
with the hippocampus, parahippocampus, the inferior and
middle temporal gyrus, temporal pole, precentral gyrus, and
the fusiform gyrus, which corresponded well with the findings
based on the 3T rs-fMRI data in the previous studies (Roy et al.,
2009; Mishra et al., 2014). The findings supported the argument
that the laterobasal nucleus might be implicated in significance
detection and associative learning processes (Phillips et al., 2003;
Phelps and LeDoux, 2005; Roy et al., 2009; Bzdok et al., 2013).
Further comparison between the ipsilateral LB and CM found
the LB had stronger FC with the fusiform gyrus and the inferior
occipital gyrus, which supported its role in processing high-
level visual input. The finding was corroborated by previous
studies onmonkeys (Iwai and Yukie, 1987) and the meta-analytic
coactivation study on human (Bzdok et al., 2013). Besides, the
LB also had significantly negative FC with the angular gyrus,
medial and superior frontal gyrus, orbital frontal gyrus, and the
precuneus, which might be consistent with the proposition of a
similar network involved in emotion regulation in the previous
studies (Phillips et al., 2003; Blair et al., 2007; Roy et al., 2009).

The SF amygdala, which was thought to play an important
role in olfaction input processing in animals before (Kemppainen
et al., 2002; Moreno and González, 2007), has recently been
revealed to also involve in processing social information such
as olfactory and emotional stimuli in human (Hurlemann et al.,
2008; Goossens et al., 2009). In this study, the SF had stronger FC
with the striatum and themiddle cingulate gyrus than the LB, and
had stronger FC with part of the occipital gyrus and the lingual
gyrus than the CM, which accorded well with the SF’s important
role in the social interaction.

The asymmetry in FC was found between the left and right
CM. Specifically, the left CM had higher FC with the left
pallidum, and the right CM had higher FC with the right
hippocampus, and the posterior cingulate cortex. Although no
significant difference was found for the LB and SF subregions at
the significance level of P < 0.05 (cluster level FWE correction),
we found LB and SF showed higher connectivity with distinct
ipsilateral brain areas if the significance level was set to P < 0.001
(uncorrected). Prior work has revealed that there was FC
difference between left and right hemispheres for each amygdala
subregion defined using the SPM Anatomy toolbox (Kerestes
et al., 2017), which was generally consistent with the findings in
this study. The asymmetry in FC of the CM partially supported
the difference in functions between the left and right amygdala,
which has been revealed by the previous studies (Baas et al., 2004;
Hardee et al., 2008; Polli et al., 2009).

One limitation of the present study is typical in researches
that utilize fMRI technique to investigate amygdala function.
The amygdala is located in a brain area that is easily
affected by inhomogeneity of B0 field. The GRE-EPI will
show considerable image distortion and signal dropouts in
the amygdala due to intra-voxel dephasing. However, the
negative effects of intra-voxel dephasing can be efficiently
compensated by reducing voxel sizes, i.e., increased in-plane
resolution and/or thinner slices. This strategy has been used
by a number of fMRI studies at a field of 3 Tesla or 7 Tesla
(Morawetz et al., 2008, 2016; Hahn et al., 2011; Sladky et al.,
2015, 2017). In this study, careful manually shimming of B0
field was performed and high spatial resolution acquisition
protocol (resolution: 1.5mm isotropic) was used, which has
efficiently reduced the intra-voxel dephasing and decreased the
image distortion in amygdala area. Another limitation of this
study is that the sample size is a little small. Nevertheless,
as discussed above, the amygdala subregional FC patterns

Frontiers in Neuroscience | www.frontiersin.org 14 April 2018 | Volume 12 | Article 270

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhang et al. Individualized Functional Parcellation of Human Amygdala

obtained by our method were primarily consistent with previous
studies.

CONCLUSION

In conclusion, the presented semi-supervised spectral clustering
based brain parcellation method can successfully parcellate the
human amygdala into three functionally homogeneous and
spatially coherent subregions at an individual subject level.
Furthermore, validation experiments have revealed that these
subregions are characterized by distinct FC patterns. Our study
has demonstrated that the semi-supervised brain parcellation
method can serve as a powerful tool in fMRI studies for
investigating subregional functions of human amygdala.
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