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Hippocampal rhythms are believed to support crucial cognitive processes including

memory, navigation, and language. Due to the location of the hippocampus deep in

the brain, studying hippocampal rhythms using non-invasive magnetoencephalography

(MEG) recordings has generally been assumed to be methodologically challenging.

However, with the advent of whole-head MEG systems in the 1990s and development

of advanced source localization techniques, simulation and empirical studies have

provided evidence that human hippocampal signals can be sensed by MEG and

reliably reconstructed by source localization algorithms. This paper systematically reviews

simulation studies and empirical evidence of the current capacities and limitations of MEG

“deep source imaging” of the human hippocampus. Overall, these studies confirm that

MEG provides a unique avenue to investigate human hippocampal rhythms in cognition,

and can bridge the gap between animal studies and human hippocampal research, as

well as elucidate the functional role and the behavioral correlates of human hippocampal

oscillations.

Keywords: magnetoencephalography (MEG), hippocampus, deep source imaging, simulation and empirical

evidence, review

INTRODUCTION

The hippocampus is an important brain region for various cognitive processes, including spatial
navigation (O’Keefe and Nadel, 1978; Buzsaki and Moser, 2013), memory (Horner and Doeller,
2017), and language comprehension (Piai et al., 2016). Neuronal oscillations are believed to be
important mechanisms for these processes (Colgin, 2016) and it is thus of great importance
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to understand the functions of hippocampal rhythms. At the
present time, there are several different methods available to
investigate the function of the human hippocampus. fMRI
is frequently used in experimental studies of hippocampal
activation in healthy humans; however due to its limited
temporal resolution (Buckner and Logan, 2001), the frequency
specificity and time course of rhythmic neuronal activity cannot
be resolved with this technique. The scalp electroencephalogram
(EEG) provides high temporal resolution on a timescale of
milliseconds. However, source reconstruction of the EEG is
complicated by the fact that electrical signals are vulnerable to
distortions by skull, skin, and cerebrospinal fluid (CSF) (Nunez
and Srinavasan, 2006; Lopes da Silva, 2010; Cohen, 2017).
Intracranial EEG (iEEG) provides both excellent spatial and
temporal resolution, but it depends on very limited opportunities
to obtain recordings from surgical patients. In addition, electrode
coverage and spatial sampling is sparse, with limited ability to
examine interactions between the hippocampus and other brain
areas supporting memory function.

Magnetoencephalography (MEG) measures the brain
magnetic fields induced by synchronous neuronal populations,
with superconducting sensors in a heavily shielded room (Cohen,
1972). Compared to scalp-recorded EEG, MEG has an advantage
in identifying brain currents giving rise to the signals (Hari et al.,
2000) recorded fromMEG sensors outside the brain, because the
skull, skin, and CSF are almost transparent to magnetic fields.
This advantage allows MEG to contribute to comprehending
and exploiting both regional and large-scale neural dynamics
by clarifying the nature of spontaneous and event-related brain
activities and by the elucidation of the mechanisms underlying
inter-regional connectivity (for a recent review see Baillet,
2017). Due to its non-invasive nature, MEG may provide an
avenue to study the function of neuronal dynamics of the
human hippocampus by routine experimentation. Accordingly,
it would play an important role in connecting the human data
with animal and computational models of electrophysiology in
health and disease (Baillet, 2017). However, whether MEG can
reliably detect hippocampal signals has been a topic of debate,
due to the following considerations. First, magnetic signals decay
rapidly with distance, so signals from the hippocampus are thus
assumed to be strongly attenuated relative to signals from the
neocortex (Hämäläinen et al., 1993; Hillebrand and Barnes,
2002). Second, some widely used source localization techniques
such as minimum norm estimation (MNE) are strongly biased
toward the neocortical surface and away from deep brain regions
(Attal and Schwartz, 2013). Third, some studies (Mikuni et al.,
1997; Oishi et al., 2002; Wennberg and Cheyne, 2014) have
reported variable and limited ability of MEG to detect interictal
spiking in the hippocampus and medial temporal region of
epileptic patients observable with intracranial electrodes or
electrocorticography (ECoG) grids. Fourth, the folded nature
of the hippocampal morphology may lead to signal cancelation
(Mikuni et al., 1997).

However, with the advent of whole-brain MEG systems in the
1990s (Ahonen et al., 1993) andmathematical and computational
advances in MEG source localization (such as beamforming
techniques), a number of laboratories have reported detection

of hippocampal signals with MEG (e.g., Tesche et al., 1996;
Nishitani et al., 1998; Tesche and Karhu, 1999; Cornwell et al.,
2008; Moses et al., 2009; Backus et al., 2016; Pu et al., 2017).
A series of numerical simulation studies (e.g., Stephen et al.,
2005; Attal and Schwartz, 2013; Meyer et al., 2017b) have been
carried out to systematically investigate the feasibility of and
limits on MEG measurements of hippocampal activity under
known conditions of source strength and depth for different
magnetic sensor designs. The present review aims to synthesize
the findings of the simulation and empirical studies of MEG
measurements of hippocampal activity to date.

ANATOMY OF THE HIPPOCAMPUS

The hippocampus is one of several related brain regions that
together constitute a functional system called the hippocampal
formation (Amaral and Lavenex, 2006). The constituent areas
include the dentate gyrus, hippocampus proper, subicular
complex (subiculum, presubiculum, and parasubiculum), and
entorhinal cortex (Insausti, 1993). The hippocampus proper
has three subfields: CA1, CA2, and CA3 (CA is short for
cornu ammonis, meaning “Ammon’s horn,” which refers to
the ram-headed god Amun of Egyptian mythology). Some
researchers further subdivide CA3 into CA3 and CA4 regions.
The basic morphology of the mammalian hippocampus proper
is an elongated, curved and rod-like structure (Insausti, 1993).
The hippocampus proper consists of one layer of principal
neurons (e.g., pyramidal neurons) (Forster et al., 2006), which
are neatly arranged in parallel with the dendrites aligned
perpendicularly to the surface of the hippocampus proper. Due
to the geometric configuration of pyramidal neurons with the
dendrites facing one direction and the soma another (i.e., an
open-field configuration), the electrical fields from such cells can
extend over long distances and can induce substantial ionic flow
in the extracelluar medium (Lorente de No, 1947). Theoretically,
synchronized activation of cells with an open-field configuration
could produce signals measurable at a distance by MEG and EEG
(Murakami and Okada, 2006). Empirically, using hippocampal
tissue preparations, Okada et al. (1997) showed that the magnetic
evoked field is directly related to the dipolar intracellular currents
of the pyramidal cells. They further estimated that the current
dipole moment density (i.e., the electric field strength per unit
volume) of the hippocampal tissue is larger than that which can
be produced by the neocortex, because the neocortical tissue
has more layers and a more complicated geometry than the
hippocampus, with more potential for cancellation of currents
across layers. Thus, the hippocampus may generate stronger
signals than neocortex, compensating for the greater distance
from the MEG sensor array (Chupin et al., 2002; Attal et al.,
2007).

MEG

MEG is a technique for measurement of human brain function
via detection and interpretation of magnetic fields emanated
from the brain, with millisecond temporal resolution (Cohen,

Frontiers in Neuroscience | www.frontiersin.org 2 April 2018 | Volume 12 | Article 273

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pu et al. MEG Deep Source Imaging Review

1968, 1972; Hämäläinen et al., 1993; Ioannides, 2006; Cheyne
and Papanicolaou, 2017). Compared with Earth’s magnetic field
and urban magnetic noise, the magnetic field of the brain
is about a factor of 1 million to 1 billion times smaller
(Vrba and Robinson, 2001). To detect such small magnetic
fields, highly sensitive detectors are needed in conjunction with
noise reduction techniques. Current technology is based on the
superconducting quantum interference device (SQUID) coupled
with flux transformers (or pick up coils) bathed in cryogen,
and contained within a magnetically shielded room (MSR) to
increase the overall magnetic field sensitivity (Fagaly, 2006). One
technical issue important to the detectability of deeper brain
activity is the choice of MEG pick up coil design. The pickup coils
can have various configurations and different commercial MEG
systems employ different types (Table 1). There are three main
types of coil configurations currently in use (Figures 1A–C):
magnetometers with a single loop of wire; and axial gradiometers
and planar gradiometers with two or more loops combined with
opposite orientation and with a certain distance between the two
coils or baseline. Gradiometers are used to improve rejection
of environmental magnetic fields through signal cancellation, as
these signals will have a similar but opposite amplitude at each
coil, while brain sources close to the gradiometer will have a
differential input on each of the coils.

Of particular significance for the current review, different coil
configurations, for example the separation between gradiometers
coils, will perform differently in terms of noise reduction
(Figure 1D) and sensitivity to depth below the scalp (see
also Figures 1–7 in Lopes da Silva, 2010). In general, axial
gradiometers with one loop closer to the scalp and a second loop
further from the scalp with a baseline of 3–8 cm are thought
to provide optimum signal-to-noise ratios (SNRs) compared to
magnetometers (the baseline of magnetometers can be regarded
as infinite), due to the ability to reduce noise close to the system,

TABLE 1 | Commercial MEG systems currently in widespread use.

MEG system Pickup coil

configuration

Baseline Reference

sensors

CTF 151 (VSM/MISL)

(Port Coquitlam,

Canada)

151 first order axial

gradiometers

5 cm 29 gradiometers

CTF 275 (VSM/MISL)

(Port Coquitlam,

Canada)

275 first order axial

gradiometers

5 cm 29 gradiometers

KIT/Yokogawa

(Kanazawa, Japan)

160 first order axial

gradiometers

5 cm Optional,

gradiometers

Elekta-Neuromag 122

(Helsinki, Finland).

61 orthogonal pairs of

first order planar

gradiometers

1.4 –1.6 cm None

Elekta-Neuromag 306

(Helsinki, Finland)

102 magnetometers +

102 orthogonal pairs of

first order planar

gradiometers

1.4 –1.6 cm None

4D Neuroimaging 148

(San Diego, USA)

148 magnetometers Infinite 23 magnetometers

and gradiometers

4D Neuroimaging 248

(San Diego, USA)

248 magnetometers Infinite 23 magnetometers

and gradiometers

yet minimize the suppression of brain activity further from
the sensor. Planar gradiometers, with both coils overlying the
scalp surface, achieve good rejection of environmental noise.
However, they are constrained to have relatively short baselines
(the baseline of commercial planar gradiometer systems is about
1.4–1.6 cm) and are therefore considered to have good SNRs for
superficial brain sources, but less sensitivity to deep sources. In
all cases, the sensitivity to deeper brain activity is relative to the
amount of noise, including other brain activity. As a result, the
impact of sensor design on depth sensitivity in MEG is often
debated. It is generally thought that under ideal conditions, all
sensor types may be able to detect deeper brain activity, with a
slight advantage for axial gradiometers with appropriate baselines
in presence of higher noise (Vrba and Robinson, 2001; Lopes da
Silva, 2010).

MODELING HIPPOCAMPAL ACTIVITY IN
MEG—THE INVERSE PROBLEM

From the measured data on the scalp, we typically wish to infer
the spatiotemporal dynamics of neural activities at the source
level, a process referred to as source localization. This is an ill-
posed problem, because given a certain topography at the sensor
level, there are an infinite number of configurations at the source
level that could produce the measured magnetic fields (Baillet,
2017). However, by adding prior information and constraints,
such as the anatomy from magnetic resonance imaging (MRI),
and head geometry, this problem can be overcome by using
source localization algorithms which model the magnetic fields

FIGURE 1 | Flux transformer (pick up coils). (A) Magnetometer; (B) First-order

planar gradiometer (C) First-order axial gradiometer. (D) Signal-to-noise ratio

(y-axis with arbitrary units) of MEG sensors as a function of the length of the

baseline of the flux transformer pick up coils (x-axis). (A–C) is reproduced with

permission from Hämäläinen et al. (1993). (D) is adapted from Vrba and

Robinson (2001).
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that would be generated by a limited number of sources
which best predict the measured data (Ioannides et al., 1990;
Gorodnitsky et al., 1995; Im et al., 2005; Mattout et al., 2006;
Wolters et al., 2006). To estimate sources from MEG scalp
signals, the general procedure is to solve the forward and inverse
problems sequentially (Hämäläinen et al., 1993; Attal et al., 2012).
The forward solution computes the gain matrix composed of
the contribution of each brain source to the external sensors,
and with the head geometry modeled using realistic conductor
models based on structural MRI (e.g., Hämäläinen and Sarvas,
1989; Fuchs et al., 1998; Nolte, 2003) or using more simplified
spherical head models which assume the head can be well-
modeled as a conducting sphere (e.g., Sarvas, 1987). Various
inverse solutions are used to determine the current sources
from the topographical pattern of activity seen in the data by
considering the topographical patterns generated by forward
solutions.

MEG inverse solutions can be roughly categorized into two
classes. Equivalent current dipole fitting assumes relatively simple
configurations of one or a few dipole-like sources which can
be determined a priori from the observed fields and their
location and strength parameters adjusted to fit the data. In
contrast, distributed-source imaging methods do not make any
assumptions about the number of active sources and therefore
involve highly underdetermined solutions for many sources
relative to the number of MEG sensors (Hämäläinen et al.,
1993; Hämäläinen and Hari, 2002). Although dipole modeling
of hippocampal activity as single or bilateral dipoles has been
reported (e.g., Breier et al., 1998; Zouridakis et al., 1998), the
assumption of simple source configurations is less likely to be
valid in the case of the hippocampus, whose activities are more
likely to overlap with those of neocortical sources. Consequently,
distributed source imaging has been more commonly applied in
recent studies (see Table 2).

Distributed-source imaging methods can be subdivided
into non-adaptive methods, including MNE (Hämäläinen and
Ilmoniemi, 1984) and its variants such as low-resolution
electromagnetic tomography (LORETA, Pascual-Marqui et al.,
1994); and adaptive methods, such as beamforming (Robinson
and Vrba, 1998; Gross et al., 2001; Hillebrand et al., 2005;
Cheyne et al., 2007; Vrba et al., 2010) (see Sekihara et al.,
2005 for a detailed comparison of adaptive and non-adaptive
methods). As previously mentioned, MEG is conventionally
assumed to be biased toward sources in superficial cortex
because neuromagnetic signals decay strongly as a function of
distance. Source localization algorithms which incorporate this
assumption in their computations require additional corrections
using depth weighting. Such weightings must be taken into
consideration when considering the validity of MEGmeasures of
hippocampal activity.

MEG AND THE HIPPOCAMPUS:
SIMULATION STUDIES

Simulation studies (Table 2) have been directed to two broad
questions. First, can hippocampal activation be reliably detected

TABLE 2 | MEG simulation studies.

Studies Summary

Chupin et al., 2002 Evaluated the relative contributions of

hippocampal and neocortical regions to MEG

signals. This paper focused on sensor level

signals.

Stephen et al., 2005 Investigated whether MEG was able to

differentiate between hippocampal activity and

neocortical activity and between hippocampal

activity and parahippocampal activity, in both

sensor and source space. Source localization

by dipole fitting.

Attal et al., 2007; Attal et al.,

2012 (a review); Attal and

Schwartz, 2013

Simulations were performed to determine the

detectability of the activation from deep

sources including the hippocampus.

Performances of different depth weighted

minimum norm inverse operators were

compared.

Quraan et al., 2011; Mills et al.,

2012

Investigated the ability of beamforming to

localize hippocampal signals with different

strengths in presence of different strengths of

neocortical activation.

Meyer et al., 2017b Used Bayesian model comparison to

investigate which generative model (one

containing cortical surface and one containing

both cortical surface and the hippocampus)

provided a more likely explanation of the

dataset with simulated hippocampal activity.

The performances of different inverse operators

(multiple sparse priors, minimum norm,

beamforming technique) were compared as

well.

by MEG sensors and if so, can this activity be dissociated from
other signals and noise? Second, can hippocampal activation
be localized by source localization algorithms, especially in the
presence of concurrent sources in the neocortex?

An early study (Chupin et al., 2002) was carried out to
evaluate the relative contribution of hippocampal and neocortical
regions to MEG sensor signals from a forward problem point
of view. This work simulated the activation of hippocampal
and neocortical patches one after the other based on different
current dipole moment densities estimated in those regions
from animal models (Okada et al., 1996; Murakami and Okada,
2006). The external envelopes of the hippocampi were manually
extracted from individual MRI images, while the neocortex
was automatically segmented using Anatomist software (http://
brainvisa.info/web/index.html). The MEG gain matrices (MEG
forward model) for the hippocampus and neocortex were
computed in a spherical head model in accordance with a
CTF whole-head 151-channel system configuration (with first-
order axial gradiometers). Results showed that average cortical
activation increased linearly as a function of patch size, whereas
hippocampal fields reached a plateau (saturation) for patches
greater than about 2 cm2. This is likely due to the geometry
of the hippocampus causing partial cancellation of the signal,

Frontiers in Neuroscience | www.frontiersin.org 4 April 2018 | Volume 12 | Article 273

http://brainvisa.info/web/index.html
http://brainvisa.info/web/index.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pu et al. MEG Deep Source Imaging Review

similar to that seen during activation of large areas of the folded
neocortex (Ahlfors et al., 2010). The neocortical magnetic fields
were larger than the hippocampal fields, but the hippocampal
fields (a mean of about 100 fT) were significantly larger than
intrinsic MEG device noise level (10 fT at 10Hz) and averaged
brain background activity (a few tens of fT). These results show
that although the hippocampus is farther away from the sensors
relative to the neocortex, physiologically reasonable activations
can result in magnetic fields large enough to be detected by
MEG sensors. It may be that the higher current densities in the
hippocampus relative to the neocortex compensate for the greater
distance away fromMEG sensors (Attal et al., 2007).

Stephen et al. (2005) explored whether MEG is able to
differentiate between activity in different subfields of the
hippocampus and superficial neocortex and between activity
in the hippocampus and the parahippocampus, when activated
sequentially and concurrently. Neocortical areas were segmented
automatically using MRIVIEW software (Ranken et al., 2002).
Due to the limited resolution of the anatomical MRI scan at
1.5T, the hippocampus was manually segmented. The anatomical
model of the surface of the hippocampus included the dominant
fields of the hippocampus including dentate gyrus, CA3, and
CA1 as well as entorhinal cortex and presubiculum. The entire
region for each subdivision of hippocampus was activated. The
simulated signals were embedded in real background brain
activities recorded using a 122-channel Elekta system (with
planar gradiometers) from five epileptic patients in the resting
state. They found that at the sensor level, the addition of
real background brain activity to the simulated activity could
significantly change the waveform of the simulated activity
relative to that modeled without background activity. Activation
of the hippocampus with one subfield or all subfields could
be differentiated from activation from superficial neocortex
and doubly dissociated. Parahippocampal activation could be
differentiated from hippocampal activation when the two
regions were simulated sequentially. Simultaneous activation of
parahippocampus and hippocampus could also be differentiated
from single hippocampal or parahippocampal activation in
isolation, but no double dissociation was achieved in either case.

In source space, dipole fitting was used for source localization.
To avoid biasing the results with known source locations, and to
ensure the global minimum was reached, searches with random
starting parameters were carried out across the whole brain.
Results demonstrated that hippocampal sources and superficial
cortical sources could both be located and differentiated, with
73% of all sources within a 10mm error range and the mean
amplitude-peak time difference between modeled peak and the
simulated peak being 1.1ms. When all the subfields of the
hippocampus and dentate gyrus were simulated simultaneously,
there was partial cancellation. However, hippocampal sources
could only be differentiated from parahippocampal sources when
the two regions activated sequentially and could not be resolved
when activation overlapped in time.

Detailed simulations of deep brain areas, such as the
hippocampus, the amygdala, and thalamus were carried out by
Attal et al. (Attal et al., 2007, 2012; Attal and Schwartz, 2013)
based on realistic anatomical and electrophysiological models

to explore the detectability by MEG for these deep sources,
and to compare the performance of different depth weighted
minimum norm inverse operators (one depth weighted MNE
and two noise-normalized depth weighted MNE algorithms).
Unlike dipole fitting procedures, no prior of the activated source
is needed for depth weighted minimum norm. As in Chupin et al.
(2002), tomimic the activations of different areas, different values
of current dipole moment density in different regions of interest
were based on animal models to calculate the simulated MEG
fields on a 151-channel sensor array (axial gradiometers) for each
region of interest. The anatomical model corresponding to the
source space was computed using individual MRI images at 3T.
The segmentation of the cortical sheet and deep sources was done
using the BrainVisa/Anatomist software (http://brainvisa.info/
web/index.html). The activity at each location was modeled as
an equivalent current dipole. Orientations of the current dipoles
at neocortical areas were constrained to the local normal of the
cortical mantle at each vertex location of the gray-white matter
interface. Current dipoles were placed randomly in the inner
volume grid in the thalamus, striatum, and the amygdala because
the cells in those structures do not have preferred orientation.
The hippocampus was modeled as the external envelope due
to the difficulty of differentiating the precise inner structure
based on 3T MRI images. The current dipoles were placed
perpendicular to the local surface.

Simulation of activation from each region of interest in seven
participants was performed for patch sizes ranging from 1 to
5 cm2 for surface patches and 1–5 cm3 for volume patches
sequentially or concurrently. As expected, the simulated MEG
fields for subcortical areas were 10 times lower than that for
neocortex, but were strong enough to overlap parts of the
distribution of the MEG field of neocortex, especially for the
hippocampus and the amygdala. Then, the simulated fields
were added to individual resting state MEG data, which were
then inverted with a forward spherical head model and three
inverse operators [depth weighted MNE (wMNE), dynamic
statistical parametric mapping (dSPM) and standardized low-
resolution electromagnetic tomography (sLORETA)], to localize
the sources. DLEg (the Euclidian distance of a solution’s gravity
center from the reconstructed source location to the true
location) and DLEm (the Euclidian distance of a solution’s
maximum from the reconstructed source location to the true
location) were to assess the ability of the three inverse operators.

With a single subcortical activation, DLEg was lower using
wMNE than the two noise-normalized depth-weighted MEG
inverse operators (dSPM and sLORETA) with errors < 8mm in
the majority of the hippocampus and the amygdala. Conversely,
better DLEm was obtained by dSPM and sLORETA, but the
spatial patterns for the two inverse operators were not the same.
sLORETA had a lower DLEm in the deeper central regions, such
as the thalamus, whereas dSPM had a very good estimation over
the hippocampus but strong errors in the thalamus. Interestingly,
activations of large patches give stronger DLEg, whereas large
patches of 4 and 5 cm2 produce the strongest currents. This
might be due to the cancellation of oppositely-directed currents
as described above. For concurrent activation of two sources,
one in the hippocampus and one in the visual cortex, when the

Frontiers in Neuroscience | www.frontiersin.org 5 April 2018 | Volume 12 | Article 273

http://brainvisa.info/web/index.html
http://brainvisa.info/web/index.html
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pu et al. MEG Deep Source Imaging Review

two activations had little overlap (25%), hippocampal generators
were well-estimated by the three inverse operators, but only
dSPM maintained the local maximum in the hippocampus.
With increasing overlap of the activation of the two areas, the
performance of all of the methods decreased. wMNE had good
detection of hippocampal activation when the overlap was up
to 50%, whereas sLORETA and sSPM had good estimation
of hippocampal activation even when the two sources were
simultaneously activated, but created a local maximum in the
thalamus (a deep ghost source).

The authors also computed point-spread functions to quantify
the distortion of the source reconstruction by the inverse
operators, namely, the spread of hippocampal sources to
other cortical and subcortical areas. The resulting point-spread
function maps of hippocampal sources showed that highest
values were localized in the lateral and medial (parahippocampus
and entorhinal cortex) and temporal lobe. Compared to wMNE
point-spread function map, sLORETA point-spread function
map of hippocampal sources showed a significant decrease
in values in the neocortex but still significant values in the
parahippocampal areas; however, the deeper regions in the
thalamus and the nearest amygdala part showed a point-spread
function value increase. dSPM point-spread function map of
hippocampal sources showed small values in the neocortex and
other subcortical structures. To quantify the distortion that is
induced from other source locations, cross-talk functions were
computed. No significant difference was found in the cross-talk
function maps for the three inverse operators and the strongest
values of the cross-talk function maps were located in the lateral
temporal lobe, especially in the superior temporal sulcus, which
suggests that activity in this region is most likely to influence the
reconstructed hippocampal sources.

Simulation studies were carried out by Quraan et al. (2011)
to estimate the ability of beamformers to localize hippocampal
activation. In one set of simulations, dipole sources were placed
in the anterior part of bilateral hippocampi based on MRI scans
from 15 healthy adults. These source activities were simulated
as a 50ms segment of a 10Hz sinusoid with a physiologically
realistic range of amplitudes ranging from 10 to 40 nAm.
Uncorrelated Gaussian noise at typical levels in an MEG system
was then added to the simulated MEG field. Group average
results showed that beamforming was able to recover sources
in the region of the hippocampus at all simulated strengths. In
a second set of simulations, the simulated hippocampal activity
was added to the raw data of the same subjects during visual
stimulation acquired with a 151-channel CTF system (axial
gradiometers), either temporally displaced from or overlapping
with the onset of visual evoked responses. For non-overlapping
activity, if the simulation strength was greater than or equal to
30 nAm, the simulated field was visible on the sensor level global
field power plot; but disappeared when the simulation strength
was at or below 20 nAm. Beamforming was able to localize
the hippocampal activation at all simulated source strengths.
However, when simulated hippocampal activity was temporally
overlapping with visual evoked fields the hippocampal signal was
no longer visible due to leakage of source activity from the visual
sources. To remove leakage from the visual source, condition

subtraction was used. That is, the source localization image of the
experimental condition was subtracted from that of the control
condition, which evoked similar basic sensory responses but
not the same degree of hippocampal activation. Leakage was
well-controlled in the group-averaged images. However, at the
individual participant level, in the presence of both low and high
brain noise, hippocampal activation could be detected in only
2 or 3 out of 15 participants even with condition subtraction.
This might indicate that localization of hippocampal activity at
the individual level in the presence of strong time-locked sensory
responses, particularly in visual areas may be difficult to achieve.

In a follow-up study, Mills et al. (2012) compared the accuracy
of localizing hippocampal activation using different subtraction
methods: post-localization subtraction (used in Quraan et al.,
2011), and pre-localization subtraction. Pre-localization was
done by first subtracting the sensor data of the two conditions
and beamforming was performed on the difference data to
localize the source. In situations of hippocampal activation
embedded in either low or high brain noise, pre-localization
outperformed post-localization subtraction method in terms
of source localization accuracy and the ability to detect weak
hippocampal activation. Applying the pre-localization method to
empirical data acquired with a 151-channel CTF system while
participants were performing a transverse patterning task, which
has been shown to activate the hippocampus using other imaging
modalities (e.g., Driscoll, 2003; Meltzer et al., 2008). However,
at the individual level, hippocampal activation could still only
be detected in six out of 14 participants, vs. two participants
using post-localization subtraction. As noted in the study, a
main drawback of sensor data subtraction is that changes in
head position are not accounted for and can introduce errors in
localization accuracy. Thus ideally, the experimental and control
conditions should be interleaved in one experimental run so that
the head movement and MEG-MRI co-registration error is the
same.

Recently, Meyer et al. (2017b) used Bayesian model
comparison to examine MEG sensitivity to hippocampal activity.
The segmentation of the cortical sheet and the hippocampus
was done using Freesurfer software (https://surfer.nmr.mgh.
harvard.edu/) based on individual MRIs at 3T. A single dipole
perpendicular to the surface of the hippocampal curvature or
cortical surface was simulated in either the hippocampus or the
cortical areas with a 300ms segment of a sinusoidal waveform of
20Hz and a dipole moment of 20 nAm. Gaussian white noise was
added to simulated MEG fields. Two different realistic forward
models were compared, one which included both the cortical
surface and the hippocampus and one which only included
cortical surface using three different inverse methods, namely,
MNE, empirical Bayes beamformer (EBB), and multiple sparse
priors (MSP). Free energy (Friston et al., 2006) was used as an
index to quantify the model evidence of a given forward model
with a given inverse operator. Free energy rewards the model
that fits the data appropriately and penalizes models that are
overly-complex. The researchers hypothesized if the simulation
was in the hippocampus, the combined model with cortical areas
and the hippocampus would outperform the model with only
cortical areas (and would return a higher free energy value),
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because if using the cortical model, one needed a more complex
combination of cortical sources to fit the data equally well.
Results showed that for all three inverse operators, the combined
model had a higher free energy value than the cortical model, but
only the free energy value obtained from EBB and MSP inverse
operators reached significance.

The source images echoed these results. When the correct
model was used, the source maps of EBB and MSP were accurate
and focal. When the wrong model was used, the source maps of
EBB and MSP showed an increase in spatial spread and decrease
in accuracy of the peak location. MNE returned the most diffuse
source map with the peak outside the hippocampus, but the
general pattern was similar across the three inverse operators.
An alternative measure—dipole localization error (DLE)—was
concordant with the results using free energy values and the
cortical model gave higher DLE values than the combined model.

Activity in a nearby medial cortical area, 2.14mm from the
hippocampus, was then modeled to see whether the model
comparison would return false positive results. The two models
did not return significantly different results. These researchers
also tested the influence of SNRs and MEG-MRI co-registration
error on the model comparison. It was found that the more co-
registration error and noise are, the harder it is to differentiate
the two models. Most interestingly, poor SNRs were less harmful
to the ability to differentiate models than co-registration error.
When the co-registration error was > 3mm, accurate model
comparisons could not be achieved, indicating that minimizing
head motion, and improving the accuracy of MEG-MRI co-
registration will be important for MEG studies of hippocampal
activity.

The results of the simulation studies reviewed above confirm
that magnetic fields emanating from the hippocampus can be
detected by MEG sensors at the surface using both planar
and axial gradiometers. Cancellation occurs when hippocampal
subfields and dentate gyrus are activated together but is only
partial. Whether the hippocampal magnetic fields are visible
or not on the global field power plot depends on the relative
magnitude of background brain “noise,” including whether there
are strong magnetic fields simultaneously arising in other cortical
areas (e.g., from visual cortex). However, even in cases where
the signal is not visible at the sensor level, source localization
algorithms can potentially localize hippocampal sources at the
group level. Thus, SNRs at the sensor level may not reflect
the ability to localize weak hippocampal sources (Meyer et al.,
2017b).

A variety of source localization algorithms, including dipole
fitting, depth-weighted MNE, and beamforming have been
successfully used to localize hippocampal sources. Unfortunately,
no studies have compared these different algorithms using
the same data, thus the relative advantages of different
inverse algorithms remains to be determined. The study
of Meyer et al. (2017b) indicates that the MNE algorithm
may be biased to the neocortical surface. More important,
they illustrated that MEG-MRI co-registration errors strongly
influence localization accuracy for hippocampal sources. Thus,
the combination of the use of continuous head movement
localization and compensation (Stolk et al., 2013) and group

averaging (since the co-registration errors should not be
systematic across participants) is recommended for localization
of the hippocampal sources.

MEG AND THE HIPPOCAMPUS:
EMPIRICAL STUDIES

Hippocampal sources have been reported by a number
of empirical MEG studies (Table 3). These studies (unlike
simulation studies) do not have a known ground truth of
hippocampal activation. In this case, we need to rely on
agreement between independent measures of hippocampal
activity from MEG studies and other techniques/methods
(e.g., iEEG, fMRI, lesion studies, and animal studies) using
the same/similar paradigm. Experimental paradigms used to
elicit hippocampal activation in MEG studies include memory
encoding (e.g., Crespo-Garcia et al., 2016), retrieval (e.g.,
Guderian and Duzel, 2005), and integration (e.g., Backus et al.,
2016), spatial navigation (e.g., Cornwell et al., 2008; Kaplan et al.,
2012; Pu et al., 2017), violation detection (e.g., Ioannides et al.,
1995; Nishitani et al., 1999; Garrido et al., 2015), and transverse
patterning (e.g., Moses et al., 2009) (for more experimental
paradigms, please refer to Table 3). The empirical evidence
indicates that MEG can not only detect hippocampal signal
reliably, but also contribute to revealing the neural mechanism
and timing of cognitive processes in both normal healthy
participants and patients.

Hippocampal low frequency theta oscillations during virtual
navigation are of considerable interest because of the linkages to
classic studies in rodents (e.g., Buzsaki et al., 1983; Fox et al.,
1986; O’Keefe and Recce, 1993) showing that when animals are
actively exploring the environment, there is a striking increase in
theta power in the hippocampus. Theta oscillations are believed
to provide a timing mechanism for place cell firing (O’Keefe
and Recce, 1993; Colgin, 2016) and are thought to play an
important role in learning (Burgess and O’Keefe, 2011; Buzsaki
and Moser, 2013; Lever et al., 2014). Subsequently, iEEG studies
(e.g., Ekstrom et al., 2005; Jacobs et al., 2009; Watrous et al., 2013;
Vass et al., 2016; Aghajan et al., 2017; Bohbot et al., 2017) have
reported a comparable low frequency theta power increase in the
human hippocampus during virtual, real and mental navigation.

Using a whole-head MEG system with 275 first-order axial
gradiometers, Cornwell et al. (2008) recorded neuromagnetic
responses of the brain of normal healthy participants while
they were performing a virtual version of Morris water maze
task (Morris, 1984), which has been used extensively to elicit
hippocampal theta oscillations in rodent studies (e.g., Olvera-
Cortes et al., 2004, 2012). In the virtual water maze task,
participants are required to find a hidden platform fixed in a
goal location in hidden platform condition and to randomly
swim in a control condition. Beamforming was used to localize
hippocampal theta signals. It was found that hippocampal
theta power in the hidden platform condition was significantly
stronger than that in the random swimming condition, in
agreement with what has been found by human iEEG studies and
animal studies in a similar behavioral context. Using a similar
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TABLE 3 | Empirical MEG studies of the human hippocampus.

Article Task MEG system Forward model Inverse model

Backus et al., 2016 Memory integration Whole-head system with 275

axial gradiometers

Single shell head model Beamforming

Breier et al., 1998, 1999 Memory recognition Auditory

verbal and non-verbal Memory

148 magnetometers Spherical head model Dipole fitting

Campo et al., 2005, 2012 Working memory 148 magnetometers Spherical head model Multiple sparse priors (MSP)

Cornwell et al., 2008, 2010,

2012, 2014

Spatial navigation 275 axial gradiometers Spherical head model Beamforming

Cousijn et al., 2015 Resting state 102 magnetometers and 204

planar gradiometers

Spherical head model Beamforming and Independent

component analysis (ICA)

Crespo-Garcia et al., 2016 Item-place encoding 148 magnetometers Realistic anatomical and

electrophysiological model

Beamforming

Engels et al., 2016 Resting state 102 magnetometers and 204

planar gradiometers

Spherical head model Beamforming

Fuentemilla et al., 2014 Autobiographical and Semantic

retrieval

275 axial gradiometers Single shell head model Beamforming

Guderian and Duzel, 2005;

Guderian et al., 2009

Memory encoding Memory

retrieval

148 magnetometers Not reported Minimum-norm current–density

reconstruction

Hamada et al., 2004 Oddball task 80 axial gradiometers Spherical head model Dipole fitting

Hanlon et al., 2003, 2005,

2011

Transverse patterning 122 planar gradiometers;

275 axial gradiometers

Spherical head model;

Not reported in the paper of

2011

Dipole fitting;

standardized Low Resolution

Electromagnetic Tomography

(sLORETA)

Heusser et al., 2016 Sequence encoding 275 axial gradiometers Single shell Beamforming

Hopf et al., 2013 Transverse patterning 151 axial gradiometers Not reported Beamforming

Ioannides et al., 1995 Oddball task 7 second-order gradiometers Spherical head model Magnetic field tomography (MFT)

Kirsch et al., 2003 Eyebink conditioning 122 planar gradiometers Not reported Dipole fitting

Kaplan et al., 2012 Spatial navigation 275 axial gradiometers Single shell head model Beamforming

Leirer et al., 2010 Transverse patterning 148 magnetometers Spherical head model Dipole fitting

Garrido et al., 2015 Sequence violation 275 axial gradiometers Single shell head model Beamforming

Martin et al., 2007 Transverse patterning

Oddball task

102 magnetometers and 204

planar gradiometers

Spherical head model Dipole fitting

Moses et al., 2009 Transverse patterning 151 axial gradiometers Not reported Beamforming

Nishitani et al., 1998, 1999;

Nishitani, 2003

Oddball task

Emotional picture discrimination

122 planar gradiometers Spherical head model Dipole fitting

Papanicolaou et al., 2002 Memory retrieval 148 magnetometers Spherical head model Dipole fitting

Poch et al., 2011 Delayed match-to-sample task 275 axial gradiometers Single-shell head model Beamforming

Pu et al., 2017 Spatial navigation 160 axial gradiometers Spherical head model Beamforming

Riggs et al., 2009 Scene recognition 151 axial gradiometers Not reported Beamforming

Taylor et al., 2011, 2012 Working memory

Face recognition

151 axial gradiometers Spherical head model Beamforming

Tesche et al., 1996; Tesche,

1997; Tesche and Karhu,

1999, 2000

Oddball task

Mental calculation and picture

viewing

Sensorimotor integration

Working memory

122 planar gradiometers Single compartment boundary

element conductor model

Signal-space projection (SSP)

Zouridakis et al., 1998 Word recognition 148 magnetometers Spherical head model Dipole fitting

experimental task and another MEG system (a whole-head MEG
system with 160 first-order axial gradiometers), Pu et al. (2017)
replicated Cornwell et al. (2008)’s result that there was stronger
left hippocampal theta power during hidden platform condition
than the random swimming control condition. The consistency
of the results from the two studies using different MEG systems
and with different cohorts of participants provide good evidence
that hippocampal signals can be reliably detected by MEG and
constructed by source localization algorithms.

By adding another training set to the task, Pu et al. (2017)
further found that human right hippocampal theta power was
modulated by environmental novelty and the strength of right
hippocampal theta power during new environmental encoding
was associated with path lengths in both new (r = −0.5) and
familiar (r = −0.57) environments (Figure 2), arguing strongly
that human hippocampal right hippocampal theta rhythms
play an important role in environmental encoding to form a
cognitive map of the space, as shown in animal studies (e.g.,
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FIGURE 2 | MEG measures of human hippocampal theta oscillations (4–8Hz) during spatial navigation and its behavioral correlates. Upper: Group image (N = 18) of

main effect of environmental novelty in the time window of 1.25–2.25 s during virtual spatial navigation in the right hippocampus revealed by beamforming analyses

and the time frequency representations (TFRs) of the virtual sensor placed in the peak voxel of right hippocampus in new and familiar environment. The black squares

on the TFRs indicate more theta power during 1.25–2.25 s in the new (1st training set) vs. familiar (2nd training set) environment. Lower: Theta power in the first

training set (new environment) in the right hippocampal region shown in the upper left panel plotted against averaged path lengths (arbitrary units) in the first or second

training set in the navigation task. This figure is reproduced with permission from Pu et al. (2017).

Penley et al., 2013). The association between hippocampal theta
power and behavioral performance on spatial navigation task
advances our understanding of the behavioral correlates of
human hippocampal theta rhythms, which is an important goal
of decades of studies in this field (see Ekstrom et al., 2014 for a
review). Moreover, the association also provides further evidence
that the reconstructed hippocampal theta signal from MEG data
should not be artifactual.

Comparison of source reconstructed images of patients with
the hippocampus removed to that of normal controls in a
hippocampus-dependent task offers a way to evaluate the validity
of using MEG to detect hippocampal signals in empirical
experiments. In an auditory oddball paradigm (a deviant sound
embedded in a series of standard sounds) shown with iEEG
(Halgren et al., 1980) to activate the hippocampus, Ioannides
et al. (1995) and Okada et al. (1983) successfully localized
hippocampal activity using 7-channel MEG recordings and
suggest that the hippocampus is crucial in online violation
detection (Garrido et al., 2015). In addition, Ioannides et al.
(1995) compared the source localization image of a patient
with hippocampus and amygdala removed to that of normal
participants. They found no activation in the hippocampus and
amygdala complex in the MEG source image of the patient, while
clear hippocampal activities were seen in normal participants
responding to the deviant sound. In another study with a
whole-brain MEG recording and an auditory oddball paradigm,

Nishitani et al. (1999) compared both event-related magnetic
fields (ERFs) at the sensor level and the source activity responding
to the deviant sound of the patients before and after resection
of the hippocampus. They reported that after hippocampus
resection, M400 at the anterior temporal channels on the
resected side disappeared, and at the source level the activity
in the resected mesial temporal area was lost. However for
the patient who underwent inferior lateral temporal resection,
M400 at the sensor level and the activity in the mesial temporal
lobe were intact. These findings support the contention that
MEG is sensitive to hippocampal signals, and argue against
the possibility that the reconstructed hippocampal signals are
artifactual. The results from patients also indicate that MEG is
not only useful in investigating the hippocampal function of
normal healthy participants, but can also be used to investigate
the pathophysiology related to the hippocampus. With a virtual
Morris water maze (vMWM) task and MEG recording, Cornwell
et al. (2010) reported that people with major depressive disorders
(MDD) showed impaired navigation performance on the vMWM
task and this behavioral impairment was related to decreased
right hippocampal theta power during navigation. The MEG
result of the abnormal hippocampal functioning of MDD
populations provide further support to the idea that hippocampal
dysfunction is a key component of pathophysiology of MDD.

Simultaneous iEEG and MEG recordings provide perhaps
the strongest evidence that that MEG can reliably measure
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hippocampal activity. In an intensive reading task, with depth
electrodes placed in the hippocampus of four patients with
epilepsy, Dalal et al. (2013) simultaneously recorded MEG
and iEEG data. Results showed that depth EEG in the theta
frequency range (4–8Hz) from the hippocampus was strongly
correlated at zero lag with MEG sensor signals over the
temporal lobe (Figure 3). In another study, with a whole-
head MEG system with 248 magnetometers, MEG signals were
acquired while participants were performing an associative
memory task. Crespo-Garcia et al. (2016) found that the power
of low frequency (2–3Hz) oscillations in the mid-posterior
hippocampi reconstructed by beamforming was significantly
stronger than that in the pre-trial interval, and the increased
hippocampal power was negatively correlated with subsequent
memory accuracy, indicating that local suppression of low-
frequency activity is essential for more efficient processing of
detailed information. These results were corroborated by results
from simultaneously recorded iEEG data. Note that the direction
of correlation with behavioral performance is opposite to what
has been found for higher frequency 4–8Hz in other studies
(e.g., Cornwell et al., 2008; Kaplan et al., 2012; Pu et al., 2017),
suggesting that there might be different subsequent memory
effects for lower and higher low frequency oscillations. Further
studies are needed to clarify the functional difference of the two
hippocampal low frequency rhythms. Nevertheless, these results
suggest MEG is able to uncover nuances of the functions of
human hippocampal rhythms.

Although this review has mainly focused on evaluating
hippocampal MEG signals in cognitive experiments, another
good piece of evidence for detectability of hippocampal signals
with MEG came from a recent study by Hillebrand and his
colleagues, which used MEG and iEEG recordings to measures
epileptic seizures. Hillebrand et al. (2016) found that the time
series of the virtual sensor in the hippocampi reconstructed
by beamforming from the MEG sensor signals accurately
matched the spike discharges identified in recordings from depth
electrodes placed in hippocampi.

Findings from parallel MEG and fMRI provide further
validation for using MEG to detect hippocampal signals.
Although fMRI signals are blood oxygen level-dependent
(BOLD) signals related to neuronal activities (Ogawa et al., 1990)

and MEG directly measures the magnetic fields induced by
neuronal activities, the origin of at least some of the signals of the
two imaging modalities are likely to originate from comparable
underlying physiological processes (i.e., post-synaptic current
flow; Hall et al., 2014). Moreover, a number of studies (e.g.,
Singh et al., 2002; Brookes et al., 2005; Muthukumaraswamy and
Singh, 2008) have shown a close spatial relationship between
MEG-derived oscillatory power inmultiple frequency bands with
BOLD. Further, it was found that the use of fMRI based priors
to solve the MEG inverse problem would return higher model
evidence in a Bayesian framework for fMRI constrained MEG
source reconstruction (Henson et al., 2010). All these lines of
evidence support the contention that fMRI and MEG have some
spatial concordance (Hall et al., 2014).

Following this logic, using parallel fMRI and MEG recordings
during a virtual spatial navigation task, Kaplan et al. (2012)
reported fMRI observed increased hippocampal activation
during movement initiation periods vs. stationary periods.
Constructing the time series of this location from MEG sensor
data using beamforming revealed that there was a theta power
increase during movement initiation periods (0–1 s, 0 s was
the movement onset), supporting the idea that hippocampal
theta supports volitional navigation. The results indicate that
MEG can not only tell us where the hippocampal region is
responsible for a certain cognitive process, but can also tell
us the specific neural mechanism and timing of this process
(Dalal et al., 2008; Moses et al., 2011). In another study of
functional connectivity in the resting state (Cousijn et al., 2015),
independent component analysis (ICA) was used to identify
networks in resting state fMRI data and MEG theta band
activity reconstructed by beamforming. ICA of MEG theta
band activity and fMRI data identified similar left and right
lateralized hippocampal networks. Moreover, the spatial patterns
of regions coactivated with the hippocampal network for fMRI
and MEG was found to be highly correlated (r = 0.54). Further
analyses showed that intrahippocampal theta obtained from
MEG was negatively correlated with hippocampal-prefrontal
cortex coactivation obtained from fMRI. While the exact
relationship between MEG and fMRI signals is a complicated
topic (Hall et al., 2014) and beyond the scope of this paper, the
point here is hippocampal activities reported by both fMRI and

FIGURE 3 | Simultaneously recorded magnetoencephalogram (MEG; black trace) and hippocampus depth electroencephalogram (EEG; red trace) from a pre-surgery

patient. Theta oscillations recorded by MEG and those recorded by the depth electrode are correlated without any phase delay. This figure is reproduced with

permission from Korczyn et al. (2013).

Frontiers in Neuroscience | www.frontiersin.org 10 April 2018 | Volume 12 | Article 273

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pu et al. MEG Deep Source Imaging Review

MEG argue strongly that hippocampal activities can be detected
by MEG.

Important albeit indirect evidence that MEG is sensitive to
deep source comes from dynamic causal modeling (DCM). Using
simulation data, David et al. (2011) showed that DCM is able
to differentiate data without hidden sources and the data where
hidden sources were present. Based on this, they applied DCM
to an empirical dataset of language processing to investigate
whether there was an assumed hidden source (the thalamus,
which was revealed by an iEEG study (Wahl et al., 2008) with
a similar experimental paradigm) or not. They found that the
model including the thalamus explained the data better than
the model without the thalamus. In a recent effort, using MEG
measurement, Garrido et al. (2015) reported more hippocampal
theta and medial prefrontal theta activation during sequence
violation detection. The sources were also documented in a
previous fMRI study (Kumaran and Maguire, 2006) using the
same experimental task. Further, using DCM, the models which
support interactions between the medial prefrontal cortex and
the hippocampus and the model which supports no interactions
between the two sources were compared. It was found that the
model in which prefrontal theta drives the hippocampal theta
explained the data best, in line with the idea that the circuit
between the prefrontal cortex and the hippocampus supports
important cognitive processing (Yoon et al., 2008; Weilbacher
and Gluth, 2016; Eichenbaum, 2017) and the idea that theta is
critical in long-range information transformation (Miller, 1991;
Buzsaki, 1996; Siapas et al., 2005; Benchenane et al., 2010). This
idea has been corroborated by more recent MEG studies in
various cognitive tasks (e.g., Kaplan et al., 2014; Backus et al.,
2016) which have demonstrated that the hippocampus and the
medial prefrontal cortex form a functional network through theta
power or phase coupling between the two regions for information
communication.

CONCLUSIONS AND FUTURE
DIRECTIONS

Taken together, the evidence reviewed above strongly supports
the contention that MEG can reliably detect signals from
the hippocampus. We can draw on three converging lines of
evidence:

(1) Physiological considerations. The principal neurons of the
hippocampus are uniformly aligned with their dendrites
in parallel in the same direction perpendicular to the
hippocampal surface (Lorente de No, 1947), such that
the intracellular currents produced by synchronization of
those neurons should be detectable by MEG (Murakami
and Okada, 2006). In addition, the current dipole moment
density in the hippocampus is larger than that in the
neocortex (Okada et al., 1997), such that it can generate
magnetic fields strong enough to be sensed by distant MEG
sensors (Attal et al., 2007). Although the geometry of the
hippocampal formation is folded, it can be shown that
significant cancellation occurs only when all hippocampal

subfields and dentate gyrus are activated simultaneously
(Stephen et al., 2005).

(2) Simulation studies. Simulations show that hippocampal
signals can be sensed by MEG sensors even with different
pick up coil configurations, such as axial vs. planar
gradiometers. Various source localization algorithms can be
used to reconstruct hippocampal sources fromMEG data, as
long as the algorithm can suppress the strong signals from
other brain regions including the neocortex. Beamforming
algorithms are effective in suppressing the signal outside
the region of interest without compromising the signal
from the region of interest. Compared to source image
reconstructed by MNE, the source images reconstructed
by beamforming were shown to be more focal and the
peak was better localized to the hippocampus (Meyer et al.,
2017b). Compared to dipole fitting or MSP, no priors about
activation locations need to be specified for beamforming.
However, it is important to consider appropriate control
conditions during experimental design, to alleviate leakage at
the group level, as well as other factors such as the number of
trials to increase the amount of the data used for computing
the covariance matrix (Brookes et al., 2008). Although the
main focus here was on spatial accuracy of the reconstructed
hippocampal signals, it is also worth noting that temporal
accuracy of the reconstructed hippocampal signal is high.
As shown in Stephen et al. (2005), the mean amplitude-peak
time difference between modeled and simulated peaks was
∼1ms. Accurate temporal resolution is critical for reliability
of connectivity analyses.

(3) Empirical studies. A range of empirical studies have
successfully shown that MEG can reliably detect and localize
the hippocampal signals in various experimental paradigms
which have already been shown hippocampal activation
using other modalities andmethods. Simultaneous iEEG and
MEG recordings, and parallel MEG and fMRI studies both
provide good evidence that MEG is capable of detecting
hippocampal signals. The finding that hippocampal
signals could not be extracted from MEG data in a
patient after resection of the hippocampus and amygdala
complex supports the conclusion that hippocampal signals
reconstructed in normal participants are not artifactual
(Ioannides et al., 1995; Nishitani et al., 1999).

Currently, empirical MEG studies of the hippocampus still
heavily rely on group averages. It is still challenging to study
hippocampal function using MEG at the individual level, an
important step for studies of individual differences and clinical
implications. As shown in the simulation study of Meyer et al.
(2017b), at the individual level, if the co-registration error was
> 3mm, model comparison could not choose the correct model.
This problem was compensated with subject-specific headcasts
using 3D printing recently introduced to the MEG community
(Meyer et al., 2017a). Although the latter approach is likely
not feasible or cost-effective for general application, taking
care to minimize head motion will significantly improve the
sensitivity of MEG to hippocampal signals. Moreover, accurately
detecting the hippocampal signal also depends on accurate

Frontiers in Neuroscience | www.frontiersin.org 11 April 2018 | Volume 12 | Article 273

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Pu et al. MEG Deep Source Imaging Review

BOX 1 | Critical factors in using MEG to study hippocampal function.

Hardware considerations. All types of MEG sensors are able to detect weaker deeper brain activity. However, in presence of higher noise (including activities from

other brain areas), MEG systems with axial gradiometers with appropriate baselines may have a slight advantage to detect hippocampal activity (Vrba and Robinson,

2001; Lopes da Silva, 2010). The next generation of OPM-based MEG systems offer new possibilities for interrogating hippocampal function with SNRs three to four

times greater than the current state-of-the-art.

Forward modeling. Simulation and empirical studies have shown that both analytical (spherical head models) and numerical (realistic head models) forward models

can be used to reliably localize hippocampal activities. In principle, the more accurate the forward modeling is, the more accurate the reconstructed source activities

will be.

Inverse operators. A variety of inverse operators have been successfully used to image the hippocampus, provided methods are used to suppress stronger signals

from other brain regions. Beamforming is good at suppressing the activity outside the region of interest without compromising the signal from the region of interest. If

the interest is in hippocampal rhythms, SAM (Robinson and Vrba, 1998), LCMV (Van Veen et al., 1997) or DICS (Gross et al., 2001) beamformers should be employed.

Event-related magnetic fields from the hippocampus can be studied with event-related beamforming methods that utilize signal averaging with advantages over dipole

modeling (Cheyne et al., 2007). Weighted minimum-norm methods are recommended to avoid bias toward superficial sources (Attal et al., 2007).

forward modeling, although it still needs to validate the realistic
model based on individual MRI segmentations (Dalal et al.,
2013). Moreover, not every MEG toolbox has implemented
realistic head modeling and it is still computationally expensive
to construct a realistic forward model. Nonetheless evidence to
date suggests that the accuracy of reconstructed hippocampal
signals will be improved if the hippocampal subfields are
modeled based on the realistic electrophysiological properties.
To this end, acquiring individual MRI images using ultra-
high field MRI system at 7 or more tesla would facilitate
more accurate segmentation of the hippocampus and more
accurate forward modeling. This will be a significant step in
the effort to improve the differentiability of MEG signals in
hippocampal subfields. Of course, more efficient computational
approaches in realistic forward models are important for
future advances and implementation. This in combination with
decreased head motion and modeling error can further improve
the spatial resolution of the reconstructed MEG signal at the
level of hippocampal subfields. Improved spatial resolution and
a decrease in the cross talk among the reconstructed signals
will also advance the capabilities of connectivity analysis for
investigating interactions between the hippocampus and the
neocortex.

Box 1 summarizes the crucial factors to be considered for an
MEG experiment aiming at studying the hippocampal function.

Finally, although this review focuses on current MEG
methodology, it should be noted that recent hardware advances
such as the introduction of new types of MEG sensors may
further improve MEG measures of deep sources. For example,
optically pumped magnetometers (OPMs; Boto et al., 2017)
although having poorer sensitivity than conventional SQUID
sensors, do not require cooling with liquid helium and can
thus be brought much closer to the surface of the head than

conventional SQUID-based sensors, resulting in a three-to four-
fold increase in SNR; and it also allows movement and thus
opens up new possibilities of studying hippocampal rhythms
during real navigation and scanning populations like children
and patients (Boto et al., 2018). The evidence of the current
review confirms that conventional SQUID MEG systems are
capable of interrogating human hippocampal function; although
still in early stages of development, OPM-based MEG systems
promise significantly better sensitivity deep source activity by
substantially reducing the distance between the hippocampus
and sensors (Borna et al., 2017).

To conclude, we have reviewed evidence indicating that MEG
is capable of detecting hippocampal signals reliably and provides
sensitive and behaviorally-relevant measures of hippocampal
functions across a variety of experimental paradigms in both
normal healthy participants and patients. It opens a unique
window for us to study the functional and behavioral correlates of
hippocampal rhythms and the neurophysiological mechanisms
of inter-regional connection between the hippocampus and other
brain regions without depending on the limited opportunities for
recordings from pre-surgical patients. This advantage will thus
allow us to bridge the gap between animal studies and human
hippocampal studies and between the computational models and
human neurophysiological data in routine experimentations.
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