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White matter hyperintensities (WMH) are common in acute ischemic stroke patients.

Although WMH volume has been reported to influence post-stroke cognition, it is still

not clear whether WMH location, independent of acute ischemic lesion (AIL) volume

and location, contributes to cognitive impairment after stroke. Here, we proposed a

multiple-lesion symptom mapping model that considers both the presence of WMH and

AIL to measure the additional contribution of WMH locations to post-stroke cognitive

impairment. Seventy-six first-ever stroke patients with AILs in the left hemisphere were

examined by Montreal Cognitive Assessment (MoCA) at baseline and 1 year after

stroke. The association between the location of AIL and WMH and global cognition

was investigated by a multiple-lesion symptom mapping (MLSM) model based on

support vector regression (SVR). To explore the relative merits of MLSM over the existing

lesion-symptom mapping approaches with only AIL considered (mass-univariate VLSM

and SVR-LSM), we measured the contribution of the significant AIL and/or WMH clusters

from these models to post-stroke cognitive impairment. In addition, we compared the

significant WMH locations identified by the optimal SVR-MLSM model for cognitive

impairment at baseline and 1 year post stroke. The identified strategic locations of WMH

significantly contributed to the prediction of MoCA at baseline (short-term) and 1 year

(long-term) after stroke independent of the strategic locations of AIL. The significant

clusters of WMH for short-term and long-term post-stroke cognitive impairment were

mainly in the corpus callosum, corona radiata, and posterior thalamic radiation. We noted

that in some regions, the AIL clusters that were significant for short-term outcome were

no longer significant for long-term outcome, and interestingly moreWMHclusters in these

regions became significant for long-term outcome compared to short-term outcome.

This indicated that there are some regions where local WMH burden has larger impact

than AIL burden on the long-term post-stroke cognitive impairment. In consequence,
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SVR-MLSMwas effective in identifying the WMH locations that have additional impact on

post-stroke cognition on top of AIL locations. Such amethod can also be applied to other

lesion-behavior studies where multiple types of lesions may have potential contributions

to a specific behavior.

Keywords: lesion location, white matter hyperintensity, cognitive impairment, ischemic stroke, multiple-lesion

symptom mapping, support vector regression

INTRODUCTION

Preexisting white matter hyperintensity (WMH) is frequent in
ischemic stroke patients. Recently, the global and regional WMH
burden has been realized as an independent risk factor for
cognitive impairment early after stroke. The total WMH volume
predicted poor cognitive performance after stroke independent
of acute infarct volume in minor (Sivakumar et al., 2017;
Zamboni et al., 2017) and mild-to-moderate (Kliper et al., 2014)
stroke, especially in processing speed (Jokinen et al., 2005; Prins
and Scheltens, 2015) and executive function (Wen et al., 2004;
Jokinen et al., 2005; Prins and Scheltens, 2015). In terms of
post-stroke outcome prediction, the WMH lesion burden also
influenced the critical outcome-predicting infarct thresholds
(Patti et al., 2016). In addition, several studies investigated the
impact of WMH location on post-stroke cognitive impairment,
and found that periventricular WMH (Prins et al., 2004; Jokinen
et al., 2005; Kang et al., 2013) or deep WMH (Kandiah et al.,
2011; Kang et al., 2013) were associated with cognitive deficits
and incident dementia after stroke independent of the presence
of cerebral infarcts. Furthermore, preexisting WMH might also
have a potential long-term effect on post-stroke cognition,
especially in patients with lacunar infarcts where the post-
event cognitive deficits caused by acute lesions were relatively
temporary (Kang et al., 2013; Sivakumar et al., 2017). However,
most of these studies did not exclude the patients with prior
stroke, which is a significant confounder when evaluating the
impact of WMH on post-stroke cognition. In addition, it is
still not clear whether WMH locations are associated with post-
stroke outcomes if infarct locations are also considered. We
hypothesized that there are certain strategic WMH locations that
have independent contributions to short-term and long-term
post-stroke cognitive impairment regardless of infarct volume
and locations.

This hypothesis can be validated with lesion-symptom
mapping (LSM) analysis, but the existing LSM methods (either
mass-univariate or multivariate LSM) still fall short in terms of
analytical power and need to be improved. Althoughmultivariate
lesion-symptommappingmethods have been realized as superior
to mass-univariate lesion symptom mapping in terms of
sensitivity and accuracy (Karnath and Smith, 2014), they only
considered the presence of a single type of lesion. If two (or
more) kinds of lesions generally coincide in the brain (for
example acute infarct as a major event and WMH as a secondary
event) and are both important for the behavior, there might be
some distortions in the expected strategic regions of the major
event (e.g., acute infarct) identified by these conventional lesion
symptom methods, and the power of behavior prediction by

the lesion sites of the secondary event (e.g., WMH) might be
underestimated.

In this regard, we aimed to develop amultiple-lesion symptom
mapping (MLSM) model that simultaneously considers the
presence of different kind of lesions (acute infarct and WMH in
this case) on a voxelwise basis. Inspired by the recently developed
multivariate lesion symptom mapping approach using support
vector regression (SVR-LSM) (Zhang et al., 2014), we proposed
a multiple-lesion version, the SVR-MLSM, which considers
not only inter-voxel correlations within acute ischemic lesions
(AILs) but also inter-lesion correlations between AIL and WMH
throughout the brain. The SVR-MLSM model was applied to a
first-ever stroke cohort with AILs in the left cerebral to investigate
the strategic WMH locations for short-term (3–6 months after
stroke) and long-term (15–18 months after stroke) cognitive
deficits post stroke. To evaluate the relative merits of SVR-
MLSM, we also performed LSM analyses that only considered the
presence of AIL (including the mass-univariate VLSM and the
SVR-LSM), and compared their behavior prediction performance
based on the significant clusters of AIL and/or WMH of these
models. Different volume control strategies were attempted in
these LSM models for a more comprehensive comparison. In
addition, we also compared the significant WMH locations
identified by the optimal SVR-MLSM model for the short-term
and long-term cognitive impairment after stroke.

THEORY

MLSM Through Multiple Regression
Suppose that there are two kinds of lesions presented in a
simulated image dataset as shown in Figure 1A. The real lesion
map X contains N voxels and M subjects: X = (x1, x2 x3, . . . .,
xN), where xi = (xi1, xi2, xi3 . . . , xiM) T indicates the lesion status
of the ith voxel (i =1, 2, . . . , N). Each voxel has three kinds of
lesion status among the subjects: normal tissue, lesioned with AIL
or lesioned with WMH.

In a mass-univariate VLSM model (the conventional VLSM)
that only considers the presence of AIL, the lesion-symptom
relationship for the ith voxel can be expressed as

y = βixi + b, (1)

Where xi indicates the lesion status of the ith voxel for different
subjects as damaged by AIL (with 1) or not (with 0), and y is the
behavior score; βi is the fitting coefficient and b are the fitting
errors. Such amodel is also constructed for the other voxels of the
lesionmap independently (Figure 1B). In contrast, a multivariate
model, such as SVR-LSM (Zhang et al., 2014), considers the

Frontiers in Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 290

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zhao et al. Multiple-Lesion Symptom Mapping in Stroke

FIGURE 1 | Simulation of model construction for MLSM. The simulated real lesion map (A) and the corresponding lesion maps considered in mass-univariate VLSM

(B), SVR-LSM (C) and MLSM (E,F) are provided. The way that MLSM considers the information of both lesions (AIL and WMH) is also illustrated (D). The simulated

lesion map (A) contains N voxels for each of the M subjects, with N’ voxels lesioned by AIL in at least one subject, and with N” voxels lesioned by WMH in at least one

subject (N’≤N, N”≤N).

voxels as a whole lesionmap and combines the lesion status of the
voxels (damaged with AIL or not) in a single model (Figure 1C),

y = β1x1 + β2x2 + β3x3 + · · · + βNxN + b. (2)

As is shown in Figure 1, the information about the presence
of WMH is not tested in both mass-univariate VLSM or SVR-
LSM. The motivation for the MLSM model (multiple-lesion
version of LSM) arises from the intention to account for more
complete information of the lesion map for the LSM analyses
where multiple kinds of lesions are presented. Here, the status
of a voxel for a subject is exclusive in terms of lesion type, namely
the voxel cannot be damaged with different lesions at the same
time. To represent the lesion status in MLSM, we can identify
each voxel in X with a single variable, which has different non-
zero values that indicate different lesion status. However, it’s
difficult to allocate appropriate values for different lesion status

and we can only do it empirically if possible (e.g., define 1 as
lesioned with WMH, 2 as lesioned with AIL and 0 as normal
for each voxel). More importantly, as the status of different
lesions (nominal variable) would be treated as an ordinal variable
in multiple regression, the impact of the locations of different
lesions can hardly be separated in the analyses. Alternatively,
each voxel in the lesion maps can be represented with separate
variables in linear combinations, where each variable refers to the
lesion status of one type of lesion for this voxel.

For example, if we consider both the presence of AIL and
WMH in the multiple regression, each voxel xi in the real
lesion map can be represented with two separate lesion-specific
variables: xia for AIL and xiw forWMH (Figure 1D). In detail, xia
indicates the status of the ith voxel with respect to AIL (damaged
with AIL as 1 or not as 0), and xiw indicates the status of the
ith voxel with respect to WMH (damaged with WMH as 1 or
not as 0). In this way, we can model each voxel (e.g., the ith
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voxel for subject m) with three kinds of status: (1) xim,a = 1 and
xim,w = 0 for the presence AIL, (2) xim,a = 0 and xim,w = 1 for
the presence WMH, (3) xim,a = 0 and xim,w = 0 for the normal
tissue. In addition, we can assign different weights to xia and xiw
to evaluate their impact on behavior separately in the multiple
regression model. As such, Equation (2) can be adjusted to an
MLSMmodel as follows:

y = (β1ax1a + β1wx1w)+ (β2ax2a + β2wx2w)+ · · ·

+(βNaxNa + βNwxNw)+ b. (3)

This model corresponds to the lesion map shown in Figure 1E.
As not all voxelwise variables (xi) involve both the presence of
AIL and WMH among the subjects (for example when xia or xiw
is a zero vector), we can exclude the lesion-specific variables that
carry no information (blank columns in Figure 1E) and simplify
the model as follows (Figure 1F),

y = (βa1xa1 + βa2xa2 + · · · + βaN
′ x

aN
′ )

+(βw1xw1 + βw2xw2 + · · · + βwN′′xwN ′′ )+ b. (4)

Here, N’ indicates the number of voxels damaged with AIL in at
least one subject and N” indicates the number of voxels damaged
with WMH in at least one subject (N’≤N, N”≤N). The number
of the voxels for AIL and WMH considered in the real analysis
should be even smaller, as the general criteria that a voxel can be
included in the LSM analysis is that it’s damaged in at least three
to five or even more subjects (Biesbroek et al., 2015).

Equation (4) can also be simplified as

y = βaXa + βwXw + b, (5)

Where Xa = (xa1, xa2, . . . , xaN′ )T and βa = (βa1, βa2, . . . , βaN′ )
indicate the lesion map and corresponding weighting coefficients
with respect to AIL, and Xw = (xw1, xw2, . . . , xwN′′ )T and βw =

(βw1, βw2, . . . , βwN′′ ) with respect to WMH. As such, the lesion
maps of AIL and WMH are combined as an entire lesion map
in the MLSM model (Figure 1F) that represents the complete
information of the real lesion map (Figure 1A). To calculate the
beta coefficients and their significance levels, we applied support
vector regression as detailed in the next section.

MLSM Through Support Vector Regression
(SVR-MLSM)
Solving the multiple regression model as Equation (5) is difficult
due to the collinearity of the adjacent voxels and the under-
determinacy caused by the much greater number of voxels
(unknown variables) than the number of subjects (observations)
(Zhang et al., 2014). Furthermore, for a voxel xi, its lesion-
specific variable xia (for AIL) and xiw (for WMH) might also
be highly correlated (as the presence of AIL and the presence
of WMH on a voxel is exclusive for a certain subject), which
further improves the multicollinearity in the model. However,
the machine learning approaches that are not sensitive to
multicollinearity, such as support vector regression (SVR), will be
able to highlight the most significant lesion status for each of the
voxels. Therefore, we adjusted the recently developed SVR-LSM

approach (Zhang et al., 2014) to amultiple-lesion version (named
SVR-MLSM) with the intuition in Equation (5) to investigate
the association between the locations of AIL and WMH and
post-stroke cognition.

The published SVR-LSMmodel for a single lesion type (Zhang
et al., 2014) was nonlinear, which helped to map the lesion-
behavior correlations to a high dimensional space. To project
this high dimensional relationship back to a linear space for
the statistical inference, the authors performed volume control
by weighting the lesioned voxels (X) in inverse proportion to
the square root of the lesion size for each subject, and they
assumed that the total lesion burden is large enough to make the
normalized-value of each voxel (xi,j and xj as in Equation 6) in
the lesion maps very close to zero. In this regard, the nonlinear
model of Equation (6) in the SVR-LSM paper can be expressed
as a linear form with the approximation based on the first order
Taylor expansion (Zhang et al., 2014).

y =
∑

j

∑
i
λi · e

−γ‖xi,j−xj‖
2

(6)

When it comes to theMLSMproblem, this approximation cannot
be guaranteed. When different kinds of lesions are considered in
the same model, the volume control cannot be simply performed
by weighting the voxels with the sum of the total AIL volume
and the total WMH volume. Even if the lesion-specific variables
Xa and Xw were normalized by the lesion size of AIL and WMH
respectively, the equivalent multiple-lesion version of Equation
(6) still cannot be approximated to a linear form, because the
normalized values for each voxel in Xa and Xw can hardly be
balanced to achieve a similar first order Taylor expansion-based
approximation as in nonlinear SVR-LSM. Therefore, we adjusted
the nonlinear SVR model to a linear model for the SVR-MLSM
analysis considering the feasibility for statistical inference.

Without volume control, LSM might unintentionally identify
brain regions that are related to larger lesion size, but not to
the symptom of interest itself (Sperber and Karnath, 2017).
In this case, volume control is generally performed in both
mass-univariate VLSM and SVR-LSM studies. Regarding volume
control for the SVR-MLSM, it can be achieved by normalizing the
variables in Xa by the lesion size of AIL and those in Xw by the
lesion size of WMH for each subject. In addition, volume control
by regressing out the AIL volume and WMH volume should also
be attempted as it enables the direct comparison between the
voxelwise weight coefficients of different lesion types (βa and
βw), which is not available for the voxelwise normalization-based
volume control.

The statistical inference of SVR-MLSM was similar with that
of SVR-LSM, which was realized by shuffling the observations
of the behavior scores to create pseudo weight coefficients, and
the significance level of each voxel was calculated by counting
the number of pseudo weights larger than the real weight in
the permutations (if the behavior score is positively correlated
with the deficits). The only difference is that in SVR-MLSM the
permutation-based pseudo weights of AIL and WMH voxels are
generated at the same time, and we can identify the strategic
voxels of AIL and WMH with the same significance level by
permutations. To be consistent with the SVR-LSM methodology
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paper (Zhang et al., 2014), where the behavior score is an index of
deficits, we will perform a linear transformation for the behavior
score prior to the model training when the behavior score (e.g.,
MoCA) is negatively correlated with the deficits (Zhao et al.,
2017).

MATERIALS AND METHODS

Subjects
Participants were patients of the ongoing Chinese University -
Stroke Registry Investigating Cognitive Decline (CU-STRIDE)
study (Yang et al., 2015). The CU-STRIDE study recruited 1,013
consecutive acute stroke/TIA patients, who were admitted to
the Prince of Wales Hospital in Hong Kong between 2009 and
2010, aiming to investigate mechanisms of cognitive decline
over 5 years. The CU-STRIDE study obtained the approval
from the Joint Chinese University of Hong Kong – New
Territories East Cluster Clinical Research Ethics Committee with
written informed consent from all participants. The inclusion
and exclusion criterion of the CU-STRIDE trial were described
previously (Yang et al., 2015). Among the 510 patients who were
examined by MRI, we further excluded the patients without
visible AILs on diffusion-weighted imaging (DWI) and those not
available for fluid-attenuated inversion recovery (FLAIR) scans.

As we intended to associate both locations of AILs and
WMHs and post-stroke cognition in this study, which was a
relatively complex issue, we need to purify the study sample
for subsequent analyses and interpretations. Firstly, we expect
that the presence of old infarcts at baseline would be a strong
confounder when we investigate the association between WMH
locations and post-stroke outcomes. Therefore, the patients
with prior stroke were excluded. Secondly, although both AIL
and WMH locations were considered, the rough AIL locations
(infratentorial or supratentorial, right or left) should be purified
for easier interpretations of the MLSM results. In this regard,
we further excluded the patients with infratentorial AIL [less
important than supratentorial stroke for cognitive impairment
(Bastos Leite et al., 2006)] and those with right supratentorial AIL
[generally with better recovery in cognition than patients with
AIL in the left cerebral (Hochstenbach et al., 2003)].

In addition, the patients who were not available for cognitive
assessment of the Hong Kong version of Montreal Cognitive
Assessment (MoCA) (Wong et al., 2009) both at baseline (3–
6 months after the first onset of stroke as short-term outcome)
and 1 year (15–18 months after the first onset of stroke as long-
term outcome) post stroke were also excluded. Furthermore, we
excluded the patients with recurrent stroke at 1 year after baseline
stroke to make the long-term lesion-symptom mapping more
reasonable, because there would be great changes to the brains
with recurrent stroke compared to the baseline images. Finally,
the remaining 76 patients with first-ever stroke in the left cerebral
were included in this study (Figure 2).

Generation of Lesion Maps
Brain MRI examinations were performed for the patients within
1 week of hospital admission on a 1.5T scanner (Sonata; Siemens
Medical, Erlangen, Germany) or a 3.0T scanner (Achieva 3.0T

TX Series; Philips Medical System, Best, the Netherlands)
using standard protocols (Yang et al., 2015). The applied MRI
sequences in the proposed study included DWI, axial FLAIR
and axial spin echo T1-weighted fast field echo, and their
imaging parameters were previously described (Yang et al., 2015).
AILs were manually delineated on DWI, and WMHs were
automatically segmented using a previously published approach
(Shi et al., 2013) with manual correction when needed. The DWI
and FLAIR sequences were first linearly registered to the T1
sequences of the patients and were further registered to the 1-mm
T1 MNI-152 (Montreal Neurological Institute) template (Fonov
et al., 2009). The registration procedure was performed with a
linear registration followed by a non-linear registration using
elastix (Klein et al., 2010), and the resulting transformations were
combined to transform the corresponding lesion maps of AIL
and WMHs to the MNI-152 template. Rigorous quality checks
of the registration results were performed by comparing the
location of the lesion maps of AIL and WMH on native scan
to that on MNI-152 template. Manual correction of the mapped
lesions was performed when necessary. The lesion size of AIL and
WMH were both calculated in the MNI space and used in the
subsequent analyses.

LSM Analyses With Mass-Univariate VLSM,
SVR-LSM and SVR-MLSM
The mass-univariate VLSM was performed to associate the
presence of AIL in each voxel and the norm-corrected MoCA
scores. Voxels affected by AIL in less than three patients were
not considered for the analysis, and this threshold has been
used in previous studies with a sample size of less than one
hundred subjects (Buiatti et al., 2012; Tsuchida and Fellows, 2013;
Biesbroek et al., 2015, 2016). The baseline and year 1 MoCA
scores were norm-corrected for age, gender and education year.
Parametric t-test with multiple comparison corrections based
on 1,000 permutations was used for statistical inference. Here,
we selected permutation test rather than FDR or Bonferroni
correction to make the statistical inference procedure consistent
with that of SVR-LSM and SVR-MLSM analyses. Considering
the volume control issue, we prepared two models for mass-
univariate VLSM. The total volume of AIL was additionally
regressed out from the MoCA scores for the mass-univariate
VLSM model with volume control. As regressing out the lesion
size may reduce the statistical power (Karnath et al., 2004), we
also tested the model without volume control. For these two
mass-univariate VLSMmodels, the voxels with p < 0.05 after the
1,000 permutations were treated as significant.

Regarding the SVR-LSM and SVR-MLSM analyses, we
designed several models with different volume control strategies
to have a more comprehensive comparison of these methods.
In the published SVR-LSM paper (Zhang et al., 2014), the SVR-
LSM model was nonlinear with voxelwise normalization as the
volume control. To make an equivalent comparison with the
SVR-MLSMwhere only linear kernel can be used, we additionally
performed linear SVR-LSM with the similar volume control
strategies for SVR-MLSM. Finally, there were four SVR-LSM
models for comparison: (1) nonlinear model with voxelwise
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FIGURE 2 | Flowchart of patient inclusion.

volume control (Zhang et al., 2014); (2) linear model without
volume control; (3) linear model with voxelwise volume control
by weighting the voxels in inverse proportion to the square root
of the AIL volume (Zhao et al., 2017); (4) linear model with
volume control by regressing out the AIL volume fromMoCA. In
line with the mass-univariate VLSM models, we only considered
the voxels damaged with AIL in at least three patients in the SVR-
LSM analyses. The MoCA scores were norm-corrected for age,
gender and education year [and lesion size of AIL only for volume
control strategy (4)] and then transformed to deficit scores.

In the SVR-MLSM (with linear kernel) analyses, we selected
three models as follows: (1) without volume control; (2) volume
control with voxelwise normalization, namely by weighting the
voxels of AIL (Xa) in inverse proportion to the square root of the
AIL volume and the voxels of WMH (Xw) in inverse proportion
to the square root of the WMH volume; (3) volume control by
regressing out the AIL volume and WMH volume from MoCA.
In the SVR-MLSM analyses, we also only considered the voxels
damaged with AIL in at least three patients for Xa and the
voxels damaged with WMH in at least three patients for Xw. We
norm-corrected the MoCA scores at baseline and 1 year after
stroke for age, gender and education year [and the lesion size of
AIL and WMH only for volume control strategy (3)] and then
transformed the norm-corrected scores to deficit scores.

The analyses with SVR-LSM and SVR-MLSMwere realized by
model training and subsequent statistical inference. The model
training was applied to optimize the prediction accuracy of an
SVR model by searching the model parameters during cross-
validations. Here, the lesion map X preprocessed by different
volume control strategies and the behavior score y preprocessed
by norm-correction were entered in the SVR-LSMor SVR-MLSM
models, and parameter optimization with leave-one-out cross-
validation was performed for these SVR models. In detail, using
a specific set of parameter(s) and within the 76 observations
(subjects), each time we selected one observation for testing and

the remaining 75 for training until all the observations had been
used in the testings. In this way, 76 predicted behavior scores were
generated, and the prediction accuracy of an SVR-LSM or SVR-
MLSM model with this set of parameter(s) was calculated as the
Pearson correlation coefficient between the predicted behavior
scores and the real behavior scores (Yourganov et al., 2016).
During the parameter training, we searched C (box constraint)
from 2−20 to 220 that achieved best prediction accuracy for the
corresponding linear SVR-MLSM and linear SVR-LSM models,
and searched C from 2−20 to 26 and γ (kernel scale) from 1
to 16 for the nonlinear SVR-LSM with radial basis function
(RBF) kernel. Here, the box constraint (C) controls the trade-
off between the flatness and the tolerable fitting error, and the
kernel scale (γ, the free parameter of the Gaussian radial basis
function in a nonlinear model) controls the trade-off between
error due to bias and variance. With the optimized parameter(s)
for a specific SVRmodel, we generated the real weight coefficients
for the voxels in the lesion map. Then we performed statistical
inference by shuffling the observations of MoCA deficit scores
to create pseudo weight coefficients, and the significance level
of each voxel was calculated by counting the number of pseudo
weights larger than the real weight in 1,000 permutations. In
line with the mass-univariate VLSM models, significant clusters
generated from SVR-LSM and SVR-MLSM should survive the
threshold of p < 0.05 in the 1,000 permutations.

Behavior Prediction Based on the Results
of the LSM Methods
The performance of the SVR-MLSM and SVR-LSM models
can be compared by the optimal prediction accuracy derived
from leave-one-out cross-validations during parameter training.
However, this kind of comparison is not available for the
mass-univariate VLSM due to the difference in their statistical
inference procedures. As all these LSM methods shared
the objective to highlight the significant anatomical regions
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TABLE 1 | Characteristics of the study cohort.

Characteristics Study cohort (n = 76)

DEMOGRAPHIC CHARACTERISTICS

Age, mean ± SD (years) 65.8 ± 10.1

Education, mean ± SD (years) 6.8 ± 4.2

Female, n (%) 32 (42.1)

HANDEDNESS

Right, n (%) 75 (98.7)

Ambidextrous, n (%) 1 (1.3)

STROKE SUBTYPE

Large-artery atherosclerosis, n (%) 47 (61.8)

Small-artery occlusion, n (%) 21 (27.6)

Cardioembolism, n (%) 6 (7.9)

Others, n (%) 2 (2.6)

VASCULAR RISK FACTORS

Smoking, n (%) 17 (22.4)

Hypertension, n (%) 55 (72.4)

Diabetes mellitus, n (%) 27 (35.5)

LESION MEASURES

Median acute infarct volume, ml (range) 2.10 (0.14-62.99)

Median white matter hyperintensity volume, ml (range) 8.59 (1.47-55.89)

COGNITIVE MEASURES

Baseline MoCA, mean ± SD 21.6 ± 5.7

Year 1 MoCA, mean ± SD 21.1 ± 6.1

Year 1 MoCA < baseline MoCA, n (%) 39 (51.3)

for a specific behavior, we can alternatively compare their
behavior prediction performance based on the significant clusters
from these models that are generated by statistical inference.
Specifically, we can combine the significant clusters from a
specific LSM model as a single region and calculate the
lesion volume of the subjects that overlap with this significant
anatomical region (Forkert et al., 2015; Munsch et al., 2016). In
the following context, we defined this measure as the significant
clusters-based volume of interest (SVOI).

To compare the behavior prediction power of the SVOI
from different LSM methods, we used the SVOI of AIL
(SVOI-AIL) and/or WMH (SVOI-WMH) and some covariates
as independent variables and the raw MoCA score as the
dependent variable in a linear SVR model. In detail, in the
SVR model with SVOI generated frommass-univariate VLSM or
SVR-LSM, demographic variables (age, gender, education year),
lesion size of AIL and SVOI-AIL were entered as independent
variables. And in the SVR model with SVOI generated from
SVR-MLSM, demographic variables, lesion size of AIL, lesion
size of WMH, SVOI-AIL and SVOI-WMH were entered as
independent variables. Several models with only demographic
variables and lesion size were also attempted for comparison.
The model training procedure here was similar with that of
SVR-LSM or SVR-MLSM. The prediction accuracy of each SVR
model was measured by the Pearson correlation coefficient
between the predicted behavior scores and the real behavior
scores, and it was optimized through parameter training during
leave-one-out cross-validation. The contribution of SVOI-AIL
and SVOI-WMH can be measured by the change in prediction

accuracy of MoCA scores before and after adding them as
independent variables in the SVR models. The SVR-MLSM
model that gained best prediction accuracy of both baseline and
year 1MoCA scores (with its SVOI-AIL and SVOI-WMH)will be
selected for the subsequent comparison of the significant lesion
locations for short-term and long-term outcomes.

RESULTS

Patient Characteristics
Clinical characteristics of the patients in this study are provided
in Table 1. Although the mean education level (6.8 years) was
relatively low and might limit the ability to estimate cognition
using standardized testing, we have validated the Hong Kong
version of the MoCA against a group of patients with a mean
education of 5.9 years and it has been shown that this test is
a reliable and useful cognitive screening instrument in patients
with small vessel disease (Wong et al., 2009). Although the
distribution of MoCA scores at baseline and 1 year after stroke
appeared similar as shown in Table 1, most of the patients
had cognitive changes (either decline or recovery) at follow-
up as shown in Figure 3. In fact, more than half (51.3%) of
the patients had cognitive decline in global cognition at 1 year
post stroke compared to their baseline performance, which
would help to investigate the varied significant regions for short-
term and long-term outcomes. The median AIL volume was
2.10ml, indicating that the majority of patients had relatively
small acute infarcts rather than large infarcts. The distribution
of AIL and WMH in the study cohort were illustrated by the
lesion prevalence maps in Figure 4. Lesion prevalence of AIL
(Figure 4A) was higher in the basal ganglia than the white
matter and cortex, and the prevalence of periventricular WMH
(Figure 4B) was higher than deep WMH. In addition, Figure 5
illustrated the lesion size topologies (Sperber and Karnath, 2016)
of AIL and WMH in the study cohort. Although the lesion
distribution of WMH appeared to be similar with that in
normal aging subjects, we demonstrated in the Supplementary
Materials (Figures S1, S2 and Table S1) that the lesion size
of WMH was larger and the distribution of WMH spread
more to the deep white matter in our stroke cohort than a
normal aging cohort (well-matched in age, gender and education
level).

Parameter Training of SVR-LSM and
SVR-MLSM Models
The optimized parameters and prediction performance of the
SVR-LSM and SVR-MLSM models were shown in Table 2.
The prediction accuracy based on leave-one-out cross-validation
during parameter training was generally higher in SVR-LSM
models than that in SVR-MLSM models. When volume control
was not performed, or performed by weighting each voxel in
the lesion map, the linear SVR-LSM model with no volume
control best predicted the norm-corrected baseline MoCA, and
the SVR-MLSM model with no volume control best predicted
the norm-corrected year 1 MoCA. When the lesion size was
additionally regressed out from the norm-corrected MoCA
scores, the corresponding SVR-LSM and SVR-MLSM models
were inferior to the other models in prediction accuracy.
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FIGURE 3 | Cognitive changes for the patients. The baseline MoCA scores

were sorted in descending order for the included cases, and year 1 MoCA

scores were subsequently displayed for these cases correspondingly.

Behavior Prediction Based on Significant
Lesion Locations From LSM Analyses
The results of behavior prediction based on the significant
AIL locations (for mass-univariate VLSM, SVR-LSM, and SVR-
MLSM) and WMH locations (for SVR-MLSM) were shown in
Table 3. The visualization of the significant clusters generated
by different LSM models were also provided in Figures S3, S4.
The total lesion size of AIL (Model 2) had little contribution
to the prediction of baseline MoCA and it improved the
prediction accuracy of year 1 MoCA by 9.24% compared to
the model with only demographic variables (Model 1). The
lesion size of WMH (Model 3) contributed little to both
short-term and long-term outcomes on top of the lesion size
of AIL.

Regarding the variables of SVOI-AIL generated by mass-
univariate VLSM and SVR-LSM (Model 4 ∼ Model 9),
they generally had significant contribution to baseline MoCA
and improved the prediction accuracy of baseline MoCA
by about 10% on top of the AIL size and demographic
variables (Model 2), but had little contribution to year 1
MoCA, where the most improvement (4.29%) was achieved
by the SVOI-AIL from the SVR-LSM model with voxelwise
volume control (Model 7). In addition, the linear SVR-
LSM with voxelwise volume control (Model 7, with the best
performance among the SVR-LSM models) performed a little
better than the mass-univariate VLSM models (Model 4 and
Model 5) in both predictions of short-term and long-term
outcomes.

The SVOI-AIL generated by SVR-MLSM models (Model 10
∼ Model 12) performed similar with those from the SVR-LSM
models (Model 6 ∼Model 9). When the SVOI-WMH generated
from SVR-MLSM was considered alone, the corresponding
models (Model 13 ∼ Model 15) generally improved the
prediction accuracy of both short-term and long-term outcomes

by over 10% compared with the models with only SVOI-
AIL considered (Model 4 ∼ Model 12). With both SVOI-AIL
and SVOI-WMH from SVR-MLSM considered, the prediction
accuracy was further slightly improved as shown in Model 16
∼ Model 18. Specifically, the SVR-MLSM model with voxelwise
volume control (Model 17) achieved the best performance in the
behavior prediction with its SVOI-AIL and SVOI-WMH (86.00%
for baseline MoCA and 88.26% for year 1 MoCA), and it was
used to compare the significant AIL and WMH locations for
short-term and long-term outcomes in the subsequent analyses.

SVR-MLSM Results for Baseline and
Follow-Up Outcomes
The thresholded statistical results of the optimal SVR-MLSM
model (with voxelwise volume control, Model 17 inTable 3) were
shown in Figure 6. The clusters of the AIL (in red) and WMH
(in green) were thresholded with p < 0.05 from the statistical
inference based on 1,000 permutations. The corresponding beta
(voxelwise fitting coefficient) maps for the cognitive impairment
at baseline and 1 year after stroke were shown in Figures S5, S6.
The significant clusters of AIL were mapped to the AAL and
ICBM-DTI-81 atlases in Table S2, and the significant clusters of
WMH were mapped to ICBM-DTI-81 atlas in Table 4.

The significant AIL locations for the baseline cognitive
dysfunction were mainly in the left basal ganglia, left frontal,
temporal and occipital cortex and white matter. At 1 year after
stroke, the significant AIL locations appeared as a subset of those
significant AIL clusters at baseline (Figure 6 and Table S2), and
most associated with the cognitive dysfunction were the AILs
in the left basal ganglia. The significant WMH locations were
generally similar at baseline and at 1 year after stroke, which
weremainly in the corpus callosum, corona radiata, and posterior
thalamic radiation, and there were larger contralesional clusters
in the posterior white matter at 1 year after stroke compared
with baseline (Table 4). The significant clusters of AIL andWMH
were also interleaved with the lesion prevalence maps to show
the number of patients the significant results were based on
(Figure 7). The results of AIL were more biased to the voxels
with only three to five patients involved than the results of
WMH. By comparing the significant regions shared by AIL
and WMH (Table 5), we found that in some regions, the AIL
clusters that were significant for short-term outcome were no
longer significant for long-term outcome, and interestingly more
WMH clusters in these regions became significant for the long-
term outcome compared to short-term outcome. For example,
as was shown in slice Z = 22 and Z = 30, the significant AIL
clusters at baseline in the left parietal white matter were no longer
significant at 1 year after stroke, while the size of significant
WMHclusters increased in this region for the long-term outcome
compared to baseline (Figure 6).

DISCUSSION

In this study, we developed a multiple-lesion symptom mapping
approach based on support vector regression (SVR-MLSM),
which considers both the presence of AIL and WMH,
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FIGURE 4 | Lesion prevalence of acute ischemic lesion (A) and white matter hyperintensity (B). Voxels that are damaged in at least three patients are projected on the

1mm MNI-152 template (Z coordinates: −9, 0, 7, 13, 22, 30, 40). Bar indicates the number of patients with a lesion for each voxel.

FIGURE 5 | Lesion size topologies of acute ischemic lesion (A) and white matter hyperintensity (B). Bar indicates the median acute infarct volume (A) or median white

matter hyperintensity volume (B) a patient would have, given that the specific voxel is lesioned.

to investigate the strategic WMH locations for post-stroke
cognitive impairment on a voxelwise basis. The strategic WMH
locations identified by SVR-MLSM improved the prediction
accuracy of the cognitive impairment both at baseline and
at 1 year after stroke, compared with models that only
used AIL locations as predictors. The findings of this pilot
study confirmed the relevance of WMH location for post-
stroke cognition and provided a more comprehensive map of
strategic brain regions affected by acute event (AIL) and chronic
event (WMH) for post-stroke impairment in global cognitive
functioning.

To our knowledge, it was the first study that applied voxel-
based analyses to explore the spatial relationships between two
kinds of ischemic lesions (AIL and WMH) and post-stroke
outcomes. Compared to mass-univariate VLSM and SVR-LSM
which only consider the presence of a single type of lesion,
SVR-MLSM tries to model more comprehensive information of
the lesion status in a LSM problem where multiple kinds of

lesions are presented. In detail, we represented each voxel in the
lesion map with two lesion-specific variables which measured
the lesion status of AIL and WMH respectively (Figure 1), and
thus three lesion statuses (normal tissue or damaged with AIL
or WMH) could be represented with these two variables. While
the performance of the map-based methods SVR-LSM and SVR-
MLSM can be measured through cross-validations with the
optimizedmodels from parameter training, it is not applicable for
themass-univariate VLSM. Tomake an equivalent comparison of
the three LSMmethods, we resorted to the significant anatomical
regions (SVOI) identified by these methods and measured their
contribution to behavior prediction. In general, the SVOI-AIL
of SVR-LSM models had slightly better prediction performance
than that of mass-univariate VLSM, which was in line with the
reported merits of SVR-LSM over mass-univariate VLSM (Zhang
et al., 2014). Furthermore, when the presence of WMH was
also considered, the SVOI-AIL and SVOI-WMH generated from
SVR-MLSM models jointly contributed more to the behavior
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TABLE 2 | Optimized parameters and prediction accuracy of SVR-LSM and SVR-MLSM models.

Model Baseline MoCA Year 1 MoCA

Prediction accuracy p Parameters Prediction accuracy p Parameters

SVR-LSM with AIL Linear - no volume control 0.4062 <0.001 c =2−13 0.3788 <0.001 c = 2−10

Linear - voxelwise normalization 0.2813 0.014 c = 4 0.3418 0.003 c = 2

Linear - total volume regressed out* 0.2753 0.016 c = 2−11 0.1642 0.156 c = 2−3

Nonlinear - voxelwise normalization 0.3715 <0.001 γ = 8, c = 2−20 0.3648 0.001 γ = 8, c = 2−20

MLSM with AIL and WMH Linear - no volume control 0.3097 0.007 c = 2−17 0.4033 <0.001 c = 2−12

Linear - voxelwise normalization 0.2509 0.029 c = 0.25 0.2899 0.011 c = 0.5

Linear - total volumes regressed out∧ 0.2538 0.027 c = 2−16 0.1818 0.116 c = 2−16

*The total lesion burden of AIL was regressed out from the baseline and year 1 MoCA in this SVR-LSM model.
∧The total volume of AIL and that of WMH were regressed out from the baseline and year 1 MoCA in this SVR-MLSM model.

TABLE 3 | Behavior prediction based on the significant clusters of mass-univariate VLSM, SVR-LSM, and SVR-MLSM.

Model Independent variables Baseline MoCA Year 1 MoCA

Accuracy p Accuracy p

1 Age, gender, education year 0.5897 2.08E-08 0.6075 5.94E-09

2 Model 1 + Total infarct volume 0.6219 2.02E-09 0.6999 1.99E-12

3 Model 2 + Total WMH volume 0.6020 8.83E-09 0.7108 6.33E-13

4 Model 2 + VLSM SVOI-AIL (noVol) 0.7173 3.10E-13 0.7208 2.10E-13

5 Model 2 + VLSM SVOI-AIL (totalVol) 0.6214 2.11E-09 0.7000 1.98E-12

6 Model 2 + SVR-LSM SVOI-AIL (noVol) 0.7328 5.31E-14 0.7067 9.82E-13

7 Model 2 + SVR-LSM SVOI-AIL (voxelwise) 0.7264 1.12E-13 0.7428 1.57E-14

8 Model 2 + SVR-LSM SVOI-AIL (totalVol) 0.6779 1.73E-11 0.7121 5.49E-13

9 Model 2 + SVR-LSM SVOI-AIL (nonlinear) 0.7009 1.80E-12 0.7355 3.81E-14

10 Model 3 + MLSM SVOI-AIL (noVol) 0.7026 1.50E-12 0.7290 8.25E-14

11 Model 3 + MLSM SVOI-AIL (voxelwise) 0.7074 9.07E-13 0.7593 1.89E-15

12 Model 3 + MLSM SVOI-AIL (totalVol) 0.7086 8.01E-13 0.7622 1.27E-15

13 Model 3 + MLSM SVOI-WMH (noVol) 0.7935 1.26E-17 0.8140 3.91E-19

14 Model 3 + MLSM SVOI-WMH (voxelwise) 0.8467 5.71E-22 0.8525 1.52E-22

15 Model 3 + MLSM SVOI-WMH (totalVol) 0.7906 2.00E-17 0.8730 8.89E-25

16 Model 3 + MLSM SVOI-AIL + MLSM SVOI-WMH (noVol) 0.8237 6.58E-20 0.8443 9.70E-22

17 Model 3 + MLSM SVOI-AIL + MLSM SVOI-WMH (voxelwise) 0.8600 2.56E-23 0.8826 5.74E-26

18 Model 3 + MLSM SVOI-AIL + MLSM SVOI-WMH (totalVol) 0.8112 6.42E-19 0.8750 5.10E-25

The prediction performance was evaluated using support vector regression through leave-one-out cross-validation. The prediction accuracy was calculated as the Pearson correlation

coefficient of the real MoCA score and the predicted MoCA score, and the corresponding p-value was also provided. SVOI, significant clusters-based volume of interest; noVol, without

volume control; voxelwise, voxelwise normalization by weighting each voxel with inverse proportion to the square root of the corresponding lesion size; totalVol, volume control by

regressing out the total lesion size from baseline or year 1 MoCA.

prediction than the SVOI-AIL from the other models. These
results verified our hypothesis about the additional impact of
specific WMH locations on post-stroke cognition. As most of
the included patients had small infarcts, it appeared that the
MLSM models with or without SVOI-AIL as predictor had
similar performance in behavior prediction (Table 3). Therefore,
our results had less relevance with a cohort with more major
stroke and might not be generalizable to patients with larger
infarcts.

Of note, the SVR-MLSM models performed no better or even
worse than the SVR-LSM models during parameter training
prior to statistical inference (Table 2). This might result from

the large number of noisy WMH voxels included in SVR-
MLSM compared to SVR-LSM, as WMH is a chronic and
relatively inferior event compared to AIL. The increased number
of predictors with very limited contributions to the behavior
being measured will inevitably cause lower performance during
model training. In fact, the number of lesion-specific voxels
for WMH (N” = 99,987) was much larger than that for AIL
(N’ = 39,051) in the LSM analyses. Although support vector
regression can penalize the features that are irrelevant with the
dependent variable, the prediction performance will be inevitably
influenced by the curse of dimensionality if the number of
noisy features is very large, and that’s why denoising process
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like feature selection is often recommended (Weston et al.,
2001; Guyon and Elisseeff, 2003). In a recent study, we
demonstrated that feature selection could also improve the
performance of SVR-LSM analyses where only the presence
of AIL was considered (Zhao et al., 2017). In this study, we
turned to the statistical inference which served as a post-
denoising process rather than feature selection prior to model
training, as feature selection for a lesion map with multiple
lesion status in SVR-MLSM is more complex than that in SVR-
LSM. In the subsequent comparison of the behavior prediction
power based on statistical inference results (SVOI), the superior
performance of SVR-MLSM over the other models demonstrated
the effectiveness of this post-denoising procedure for the MLSM
analyses.

Volume control is an issue commonly mentioned for lesion-
symptom mapping. In this study, we applied different volume
control strategies in the mass-univariate VLSM, SVR-LSM
and SVR-MLSM models for a comprehensive comparison.
Regarding the mass-univariate SVR-LSM models, the model
without volume control (Model 4) performed better than that
with volume control (Model 5) in behavior prediction based on
SVOI-AIL (Table 3). This result coincided with the comment
that regressing out the lesion size from behavior score might
reduce the statistical power of LSM analyses (Karnath et al.,
2004). Regarding the SVR-LSM models, the best volume control
strategy (with the best prediction performance of SVOI-AIL
in Table 3) was generally not consistent between the outcomes
at baseline and 1 year after stroke. It indicated that the
optimal volume control strategy for SVR-LSM might vary in
different lesion-symptom mapping problems. Even though the
nonlinear model with voxelwise normalization (Model 9) was
proposed as the optimal approach in the published SVR-LSM
paper (Zhang et al., 2014), it did no better than the linear
model with voxelwise volume control (Model 7) in SVOI-
based predictions (Table 3). This discrepancy might result from
the relatively smaller lesion size and the insufficient lesion
coverage of the brain in our study. Regarding the SVR-MLSM
models, volume control by voxelwise normalization achieved
the best performance in the SVOI-based predictions of both
baseline and year 1 post-stroke outcomes (Table 3). However,
the volume control method for SVR-MLSM should still be
selected with caution when applied to other lesion-behavior
data, as there might not be one-size-fits-all volume control
strategy for SVR-MLSM just like the case of SVR-LSM as
aforementioned.

The study cohort was carefully selected regarding the rough
lesion sites of AIL. Only the patients with unilateral AILs in
the left cerebral were included, where the associations between
the AILs and post-stroke cognitive impairment (both short-
term and long-term) were relatively stronger than those in
the other lesion sites (infratentorial regions or right cerebral)
(Hochstenbach et al., 2003; Bastos Leite et al., 2006). Even in
this screened cohort with relatively important AIL sites, we
identified WMH in the corpus callosum, corona radiata, and
posterior thalamic radiation in both hemispheres as strategic
substrates for short-term and long-term post-stroke cognitive
impairment independent of AIL locations (Figure 6, Table 4).

In fact, many of these white matter regions were shared
by the significant clusters of AIL and WMH in our study
(Table 5) and they corroborated with the strategic AIL locations
identified in previous studies (Munsch et al., 2016; Biesbroek
et al., 2017; Shahid et al., 2017; Zhao et al., 2017). Previous
findings about the strategic WMH locations for post-stroke
cognitive impairment were not consistent (Prins et al., 2004;
Jokinen et al., 2005; Kandiah et al., 2011; Kang et al., 2013),
where they only roughly divided WMH into perivascular
WMH (PWMH) and deep WMH (DWMH). In our study,
the identified significant WMH clusters covered both PWMH
and DWMH for short-term and long-term outcomes. By
comparing the significant lesion locations at baseline and 1
year after stroke, we found that AILs in the basal ganglia
had a stronger long-term effect on the cognitive impairment
(Figure 6, Table S2). In addition, as AILs became completely
chronic lesions at 1 year after stroke, the influence of AIL
decreased while the impact of preexisting WMH increased
on post-stroke cognitive impairment in some specific regions,
such as posterior thalamic radiation (Table 5). Such information
is of clinical value, as this provides hints to understand
the long-term effect of AIL and preexisting WMH and the
alteration of their roles with time in post-stroke cognitive
impairment.

There are several limitations to this study that should be
taken into account. Firstly, the sample size of the study cohort
is relatively small and the lesion distribution was relatively focal
without sufficient lesion coverage (especially for AIL) throughout
the brain, as we applied very strict exclusion criteria to remove
potential confounders of the multiple-lesion symptom problem.
In fact, only the patients with relatively mild to moderate
stroke can be included in this study, because it would be
difficult for the patients with severe stroke to accomplish MoCA
assessments (Chiti and Pantoni, 2014), and that only including
stroke patients with MRI may be systematically biased toward
smaller strokes (Sperber and Karnath, 2017). As only a limited
portion of the brain was damaged with AIL in our cohort,
the power of the MLSM analyses might be influenced and
the results regarding the identified strategic WMH locations
on top of AIL should be explained with caution. Moreover,
the significant clusters of AIL in our study was largely based
on only three to five patients (Figure 7), and the independent
contribution of these clusters to the behavior being measured
was only slight compared with WMH clusters (by comparing
Model 16∼18 with Model 13∼15 in Table 3). This might further
limit the statistical power of our results, which also requires
a larger cohort with sufficient lesion coverage of AIL in the
brain to validate our findings in the future. Secondly, we did
not test the prediction effect of the statistical results (SVOI-
AIL and SVOI-WMH) from the LSM analyses on an external
validation set due to our small sample size. Consequently,
some of our findings may not be generalizable to the patients
with significantly different lesion distribution. Thirdly, we tested
the performance of different volume control strategies on the
real lesion-behavior data, although a more favorable way is
to compare their performance on a simulation dataset based
on the lesion data (Zhang et al., 2014; Sperber and Karnath,
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FIGURE 6 | Results of multiple-lesion symptom mapping (the SVR-MLSM model with volume control by voxelwise normalization, Model 17 in Table 3). Voxelwise

associations between the presence of a lesion (AIL or WMH) and global cognition at baseline and 1 year after stroke were determined using SVR-MLSM. This

multivariate approach assesses inter-voxel and inter-lesion correlations and identifies the voxels of AIL or WMH which have an independent contribution to the

outcome. The significant clusters of AIL (in red) and WMH (in green) were shown with p < 0.05 from statistical inference based on 1,000 permutations.

TABLE 4 | SVR-MLSM results of white matter hyperintensities.

Region Patients with lesion (n)∧ Region size in voxel (n) Tested voxels (n) Significant voxels of WMH [n (%)]

Baseline MoCA Year 1 MoCA

Body of corpus callosum 45 17,849 4,621 83 (1.80) 0

Splenium of corpus callosum* 36 19,535 4,610 329 (7.14) 363 (7.87)

Anterior corona radiata L* 29 7,507 3,428 154 (4.49) 192 (5.60)

Superior corona radiata L 40 8,929 6,886 34 (0.49) 0

Superior corona radiata R 52 8,759 6,062 219 (3.61) 40 (0.66)

Posterior corona radiata L* 35 5,325 3,766 157 (4.17) 324 (8.60)

Posterior corona radiata R* 49 5,953 4,670 152 (3.25) 383 (8.20)

Posterior thalamic radiation L* 27 6,387 3,391 149 (4.39) 347 (10.23)

Posterior thalamic radiation R 32 5,400 3,335 398 (11.93) 142 (4.26)

Sagittal stratum L* 12 2,184 280 76 (27.14) 99 (35.36)

Sagittal stratum R 14 2,173 415 164 (39.52) 99 (23.86)

Superior longitudinal fasciculus L 14 9,386 2,045 64 (3.13) 0

Superior longitudinal fasciculus R* 11 9,580 2,737 0 55 (2.01)

Tapetum R 36 663 613 36 (5.87) 0

Regions where there were significant WMH clusters (p < 0.05) for global cognition at baseline and 1 year after stroke. The remaining regions in ICBM-DTI-81 white matter tract atlas

contained no significant voxels either for baseline or 1 year cognitive impairment; these regions are not shown here. L, left; R, right. ∧Number among 76 included patients had WMH

that overlapped (≥1 voxel) with the specified region of interest in ICBM-DTI-81 atlas. *Regions where more WMH clusters were significantly associated with the long-term cognitive

impairment than short-term cognitive impairment.

2017). However, as two kinds of lesions are considered in the
SVR-MLSM at the same time, the volume control is more
complex as it involves the lesion size of both lesions. As the
distribution of AIL is relatively focal to a limited portion of
the brain, it’s also difficult to select specific regions of interest
with sufficient lesion prevalence of both AIL and WMH to
construct the simulation as in the SVR-LSM paper (Zhang
et al., 2014). Finally, the long-term cognitive function was
assessed at 15–18 months after stroke, and there might be
some change in the brain compared to baseline MRI for the

included patients. Therefore, the MLSM map for the long-
term outcome should be interpreted with caution. However, we
excluded the patients who had incident stroke at 15–18 months,
as the hospital would perform rescanning (at least with a CT
scan) for the patients with recurrent stroke to describe the
type and location of stroke. This additional exclusion criterion
helped to make the lesion map at follow-up close to the baseline
as much as possible. The analysis of the impact of WMH
progression, which is another potential confounder that mediates
the influence of baseline WMH locations on the long-term
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FIGURE 7 | Number of patients with a lesion in each of the significant voxels of AIL or WMH from the SVR-MLSM analyses (corresponding to Model 17 in Table 3).

Bar indicates the number of patients with a lesion for each voxel. The figures are shown in neurological convention (left is on the left).

TABLE 5 | Significant regions shared by AIL and WMH from SVR-MLSM analyses.

Region Significant voxels of AIL [n (%)] Significant voxels of WMH [n (%)]

Baseline MoCA Year 1 MoCA Baseline MoCA Year 1 MoCA

Body of corpus callosum 60 (13.36) 36 (8.02) 83 (1.80) 0

Anterior corona radiata L* 413 (55.28) 0 154 (4.49) 192 (5.60)

Superior corona radiata L 689 (14.92) 411 (8.90) 34 (0.49) 0

Posterior corona radiata L* 133 (9.58) 0 157 (4.17) 324 (8.60)

Posterior thalamic radiation L* 447 (49.34) 54 (5.96) 149 (4.39) 347 (10.23)

Superior longitudinal fasciculus L 0 105 (19.85) 64 (3.13) 0

*Regions where the size of significant AIL clusters decreased while the size of significant WMH clusters increased from baseline to 1 year after stroke. L, left.

post-stroke outcomes (Prins and Scheltens, 2015), is currently
not available in this study, as most of the patients without
recurrent stroke would not be rescanned at follow-up due to
the general hospital routine. In this case, the impact of WMH

progression can only be evaluated in the future studies where
follow-up brain MRI scans are available for all the included

patients.
In conclusion, this study provides a novel perspective to

measure the additional contribution of WMH locations to post-
stroke cognitive impairment, using the proposed multiple-lesion

symptom mapping approach on a voxelwise basis. The maps

of significant brain regions affected by AIL and WMH for
short-term and long-term global cognitive impairment may

help clinicians to understand the cognitive impact of AIL and
WMH locations, and initiate adequate rehabilitation strategies
for the ischemic stroke patients at the earliest possible stage. The
multiple-lesion symptom mapping approach can also be applied
to other cohorts where multiple kinds of lesions often coincide in
the brain and have potential contributions to a specific behavior.
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