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EEG-based Brain-Computer Interfaces (BCIs) are becoming a new tool for

neurorehabilitation. BCIs are used to help stroke patients to improve the functional

capability of the impaired limbs, and to communicate and assess the level of

consciousness in Disorder of Consciousness (DoC) patients. BCIs based on a

motor imagery paradigm typically require a training period to adapt the system to each

user’s brain, and the BCI then creates and uses a classifier created with the acquired

EEG. The quality of this classifier relies on amount of data used for training. More data

can improve the classifier, but also increases the training time, which can be especially

problematic for some patients. Training time might be reduced by creating new artificial

frames by applying Empirical Mode Decomposition (EMD) on the EEG frames and

mixing their Intrinsic Mode Function (IMFs). The purpose of this study is to explore the

use of artificial EEG frames as replacements for some real ones by comparing classifiers

trained with some artificial frames to classifiers trained with only real data. Results

showed that, in some subjects, it is possible to replace up to 50% of frames with artificial

data, which reduces training time from 720 to 360 s. In the remaining subjects, at least

12.5% of the real EEG frames could be replaced, reducing the training time by 90 s.

Moreover, the method can be used to replace EEG frames that contain artifact, which

reduces the impact of rejecting data with artifact. The method was also tested on an

out of sample scenario with the best subjects from a public database, who yielded very

good results using a frame collection with 87.5% artificial frames. These initial results

with healthy users need to be further explored with patients’ data, along with research

into alternative IMF mixing strategies and using other BCI paradigms.
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INTRODUCTION

Brain-Computer Interfaces (BCI) are systems capable of
controlling external devices using direct measures of the brain
signals (Wolpaw et al., 2002; Wolpaw andWolpaw, 2012). A BCI
has three main parts:

1. Brain signals acquisition system.
2. Processing system.
3. Device/feedback control.

The selection of the brain signal acquisition system relies on the
intended BCI application (Wolpaw et al., 2002; Shih et al., 2012;
Wolpaw and Wolpaw, 2012). EEG is a non-invasive approach
with a high temporal resolution that is suited for real-time
application (Shih et al., 2012). EEG signals are electrical potential
differences from different areas of the scalp caused by the firing of
different neurons, often in response to an external stimulus. The
resulting synchronized activity across large groups of neurons
leads to electrical changes over different brain regions that can
be recorded and sent to the processing system.

In a BCI system (Figure 1), EEG signals are processed by a
computer or processing unit (processing system). These signals
are highly noisy, and the use of filtering and pattern recognition
techniques are needed to acquire useful information from them
(Wolpaw et al., 2002; Wolpaw and Wolpaw, 2012). Paradigms
are instructions that the BCI user must follow to elicit known
brain responses that the processing system can detect and use to
control an external device. Many BCIs are designed to control
monitors, but BCIs have been used with other external devices,
such as functional electrical stimulator (FES) or orthosis as part
of a BCI-based motor rehab system.

Recently, EEG-based BCIs have been extended to new tools for
neurorehabilitation patients who have upper limb impairment
due to a stroke (Ramos-Murguialday et al., 2013; Cho et al.,
2016). They are also being used for patients with disorders
of consciousness to assess their mental state and provide
communication (Guger et al., 2013, 2017).

Different BCIs have used different paradigms (Farwell and
Donchin, 1988; Pfurtscheller, 2001; Oehler et al., 2008), and one
of the most widely used involves Motor Imagery or MI (Guger
et al., 2015). In an MI BCI paradigm, the user is asked to imagine
specific movements, such as left or right hand movements. This
movement imagination activates areas of the motor cortex, much
like the activation resulting from real movement. Thus, MI BCIs
may determine whether a user is imaging left vs. right hand
movement to provide a “yes” or “no” reply to a question or move
a cursor horizontally.

In the MI paradigm, a trial is the time period which the
user imagines movement, as well as any additional time needed
for instructions, cues, or other delays. The BCI presents real-
time feedback to the user that indicates how well the MI task
is being performed and classified. This feedback might be visual
information displayed on a screen, auditory feedback through
headphones or proprioceptive or other feedback from other
devices.

When using the MI BCI approach to help patients regain
movement, the feedback often includes an avatar presented on

a monitor that performs simulated hand/arm movements and
FES electrodes placed over the affected limb. In conventional
therapy, the patient is asked to imagine performing a movement
such as wrist dorsiflexion while a therapist provides instructions
and manages an FES device that triggers wrist dorsiflexion. By
adding the MI BCI into the control loop, rewarding feedback
such as avatar movement and FES activation is only possible
when the patient performs the correct MI. This BCI-based
feedback is much more tightly coupled to each patient’s MI
than conventional means, which should increase the functional
improvement from therapy training (Remsik et al., 2016;
Sabathiel et al., 2016).

BCIs, especially MI BCIs, usually require calibration for each
user for at least two reasons. First, classifiers need time to learn
the unique features of each new user’s EEG activity, such as
ERD/S used in MI BCIs. Second, these features may change
within or across sessions or runs due to fatigue, medication,
motivation, different cap placement, or other factors. Different
cap placement from one session to another could be especially
problematic if BCIs gain wider clinical adoption. Many therapists
and other staff are not trained in precise cap positioning, and
this process can require a few additional minutes. Calibration
at the start of a session can lead to better classifier performance,
but also requires additional time. Since MI BCIs typically require
more calibration time than other BCIs, and patients with stroke
may have limited time andmotivation, new approaches to reduce
calibration time with MI BCIs are needed.

In a typical BCI, a new EEG data frame is obtained from each
trial. The quality of the classifier is directly proportional to the
number of frames from each type of MI (such as left vs. right
hand; Ramoser et al., 2000). This paper explores a new approach
that creates artificial frames, which the classifier can use like
real frames to reduce the need for calibration data. Because of
the non-linear and non-stationary aspects of EEG signals, a new
processing method based on the EMD decomposition (Huang
et al., 1998) is proposed to generate those new artificial frames
(Hawley et al., 2008; Huang et al., 2013; Riaz et al., 2015).

MATERIALS AND METHODS

Subjects
The experiment was performed on 7 healthy men aged 29.8 ±

5.76 years. All subjects reported no history of stroke or other
cause of movement disability and signed an informed consent
document prior to participating in the study.

Equipment
The paradigm was implemented using a closed-loop system that
provides real-time feedback to the user and saves the data for later
analysis. This system uses a 16 EEG channel cap (g.SCARABEO,
g.tec medical engineering GmbH) with the electrodes placed over
the sensorimotor cortex according to the 10/10 international
system: FC5, FC1, FCz, FC2, FC6, C5 C3, C1, Cz, C2, C4, C6,
CP5, CP1, CP2, CP6. The Fpz electrode is connected to the
ground and a reference electrode is placed on the right earlobe.
The EEG cap is connected to a biomedical amplifier (g.USBamp,
g.tec medical engineering GmbH), which is connected to a
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computer using a USB cable. The system provides two kinds of
real-time feedback: a visual feedback through an avatar displayed
on a screen, and proprioceptive feedback through FES electrodes
placed on the extensor digitorum communis muscles of each
subject’s left and right arms.

Experimental Paradigm
At the beginning of each session, each subject was seated in a
comfortable chair about 1m in front of a monitor. The EEG cap
was mounted and FES electrodes were affixed to both arms to
stimulate wrist dorsiflexion. The experimenter visually inspected
the subject’s real-time EEG to check data quality and calibrated
the FES parameters (pulse width and current) for each subject.
Each subject was then asked to sit in front of the monitor and
follow the instructions provided by the system.

Each subject completed one session with two runs. A short
break was provided between these two runs, during which the
subjects remained seated with the cap and FES electrodes in place.
Each run presented 80 trials (40 for each side) to each subject.
During the first 2 s of each trial, the subject rested, after which
an acoustic signal (beep) indicated whether the subject should
imagine left or right wrist dorsiflexion. The subject imagined the
movement from seconds 3 to 8 while the system provided real-
time feedback through the monitor and FES electrodes. After
second 8, the trial ended and a new trial began (Figure 2). There
were an equal number of cues to the left vs. right wrist during

each run, and the order was chosen pseudorandomly. Data were
stored for later offline analysis.

Empirical Mode Decomposition
Common analytical tools like FFT and wavelets would not
be adequate to process EEG signals in this scenario because
they are non-linear and non-stationary. The Empirical Mode
Decomposition (EMD) method is based on an algorithm that
allows users to conduct a data-driven analysis that is more fitting
with non-stationary signals that have changes in the frequency
structure within a short period of time.

The algorithm decomposes the original signal into a finite
number of functions called IMFs (Intrinsic Mode Function)
that each of which represents a non-linear oscillation of the
signal (Huang et al., 1998). Theses intrinsic functions fulfill two
conditions:

1. In the whole signal, the number of maxima is the same as the
number of zero-crossing, or differs by at most one.

2. For any sample, the mean value between the envelope of the
local maxima and the envelope of the local minima is zero.

The process to obtain the IMFs from a signal x(t) is:

1. Set s (t) = ri−1 (t). Initially, i = 1 and r0 (t) = x(t).
2. Detect the local maxima and the local minima of s(t).
3. Interpolate all local maxima to generate the upper envelope.
4. Interpolate all local minima to generate the lower envelope.

FIGURE 1 | Block diagram of a generic EEG-based BCI system. The BCI gets EEG data from the subject, processes it and generates the proper signals to control the

external device and give feedback to the subject.

FIGURE 2 | Motor imagery paradigm trial. During the first 2 s, the user is asked to relax. After 2 s, a beep is played and then an auditory cue indicates whether the

user should imagine left or right movement. One frame consists of the data resulting from one trial.

Frontiers in Neuroscience | www.frontiersin.org 3 May 2018 | Volume 12 | Article 308

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Dinarès-Ferran et al. Artificial Frames for MI EEG-BCI

5. Obtain the local meanm(t) by averaging the upper and lower
envelopes.

6. Get a candidate for IMF by subtracting the local mean m(t)
from the signal: h (t) = s (t) −m (t).

7. If h(t) does not satisfy the IMF’s conditions, begin a new loop
from step 2, setting s (t) = h (t).

8. Otherwise, h(t) is defined as an IMF: IMFi (t) = h (t).
9. ri (t) = ri−1 (t) − IMFi(t).
10. If ri (t) is a monotonic function or does not have enough

extrema to calculate the upper and lower envelopes,
then IMFi(t) is the last IMF function of x(t) and the
decomposition ends.

11. Otherwise, set s (t) = ri (t) and start a new loop from step 2
in order to obtain IMFi+1 (t).

Once all the IMFs have been calculated, the signal can be
recovered using its IMFs (1) and the final residue rn (t), where
n is the number of extracted IMFs (Figure 3).

x (t) =

n
∑

k = 1

IMFk (t) + rn (t) (1)

The number of IMFs depends on the structure of the EEG signal,
and may vary among different EEG data samples. An EEG signal
is completely restored by adding all its IMFs and the final residue.
Likewise, if a single one of these IMFs is replaced with another
IMF from other previously decomposed EEG signal, using the
formula (1), then a different EEG signal is obtained.

New Artificial EEG Frames
Prior work has created EEG artificial frames using some
stationary approaches that use Gaussian noise as a source into
an FFT-based system(Paris et al., 2017), but this approach lacks
the temporal features of the natural EEG signals. Otherwise, in
some studies the artificial EEG is created bymixing different parts
of different temporal EEG signals (Lotte, 2011). In this case, the
method keeps the temporal features of the signal, but without
control of its frequency features.

Using the EMD approach, the new artificial EEG signals can be
created by combining some IMFs from different real EEG signals.
Although those new EEG signals will be different from the real
ones, they will exhibit similar features and the same underlying
structure. Unlike the other approaches described above, the EMD
analysis can keep the features within temporal and frequency

FIGURE 3 | Decomposition of an EEG signal into all of its IMFs.

domains, because each IMF is a representation in the temporal
domain of a specific non-linear oscillation of the signal.

In the paradigm used in this study, eachMI frame is composed
of 16 EEG signals, meaning that any new artificial frame needs 16
new artificial EEG signals.

Starting from a real frame collection, the new frame collection
containing artificial frames is built following these steps:

1. Define the number of frames to be replaced. This requires
replacing the same number of frames from each class (right-
side and left-side) with a maximum of 40 frames.

2. Randomly select the frames to be replaced in the original
frame collection. The rest of the frames contribute with their
IMFs to build the new artificial frames.

3. The selected frames are split in two sets of frames according to
their class (left vs. right).

4. To create an artificial frame of a specific class, a number
of N frames are selected randomly from the set of frames
belonging to the same class (Figure 4). The first selected frame
contributes with all its first IMFs (16 IMFs, one per channel),
the second one with its second IMFs, and successively until the
nth frame, which contributes with its nth IMFs.

5. Add up all the IMFs corresponding to the same channel to
build each new EEG channel of the new artificial frame.

Repeat step 4 for each new artificial frame necessary to complete
the frame collection.

As explained in section Empirical Mode Decomposition,
different EEG signals might have different numbers of IMFs,
and it is necessary to establish beforehand the number of IMFs
of the new artificial frames. In this study, we considered that
an EEG signal to be completely represented using their first 15
IMFs, because none of the decomposed signals had more than
12 IMFs. Thus, in every real decomposed EEG signal with <15
IMFs, additional zero value IMFs were added, reaching 15 IMFs
for every decomposed signal.

We used this procedure to create new frame collections for
each subject’s data. Each of these new frame collections contained
a different number of artificial frames: 2 (2.5%), 4 (5%), 6 (7.5%),
8 (10%), 10 (12.5%), 20 (25%), 30 (37.5%), or 40 (50%). This
process created 9 frame collections: the original data with 0
artificial frames, and eight collections with artificial frames. For
each of those 9 frame collections, we constructed a classifier and
determined the error rate.

Classifier Training and Implementation
The classifier is based on Linear Discriminant Analysis (LDA).
Initially, the frame collection is divided in two groups of frames
according to their class (right or left wrist movement). Next,
every signal is bandpass filtered (8–30Hz) and then artifact
rejection is applied. With the non-rejected frames, a spatial CSP
filter is calculated (Koles et al., 1990; Wang et al., 2005), keeping
only the 2 first and 2 last result vectors as the spatial filter.
Therefore, the 16 EEG signals of a frame are spatially filtered
resulting in four signals. A 1.5 s window variance is calculated
over each of these signals. Finally, these variances are normalized
and scaled logarithmically, then used as features to build the LDA
classifier (Cho et al., 2016).
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FIGURE 4 | A new frame collection containing artificial frames is created using

an original frame collection and randomly selecting the removed frames. The

IMFs of the non-selected frames are randomly mixed to create the artificial

frames that will replace the removed ones.

A frame collection and classifier are needed to calculate the
error rate. Each frame is passed through the classifier, which
outputs a value indicating the estimation of that frame’s class
for each one of its 2,048 samples (256 samples a second). This
result is then compared to the true class and marked as correct if
they match, and incorrect otherwise. After determining the error
of every single sample of a frame collection, a percentage of the
incorrect samples is calculated over the feedback period of each
trial (from second 3.5 to second 8), providing the global error
rate for that classifier. The error rate is expressed as two different
percentage values: right-side error rate and left-side error rate.

Data from each subject’s first run were used to build all the
classifiers, and data from the second run were used to assess
the performance of these classifiers with out-of-sample data
(Figure 5). The out-of-sample error rate of the classifiers without
artificial frames were also calculated.

FIGURE 5 | The paradigm provided two datasets. The first dataset was used

to build the classifier. Next, the classifier was assessed with both datasets:

in-sample (dataset 1) and out-of-sample (dataset 2). Left-side and right-side

error rate (ER) can then be determined to assess classifier performance.

The new frame creation process relies on the random selection
of the removed frames and the IMFs. Repeating the experiment
with a different random seed leads to different frame collections
and very likely to slightly different results. Hence, the frame
creation procedure in section New Artificial EEG Frames and
classification process described in this section were repeated 100
times for each subject.

Median Absolute Deviation
The MAD (Median Absolute Deviation) is a method to detect
outliers from a statistical sample when the sample is small and
has a non-normal distribution (Leys et al., 2013); instead of using
the mean values to fix the boundaries it uses the median value.
Usually, the upper boundary is defined as three times the MAD
above the median, and the lower one as three times below (2). All
samples outside those boundaries are considered as outliers, and
all inside ones as inliers (3).

M − 3×MAD < x < M + 3×MAD (2)
∣

∣

∣

∣

x−M

MAD

∣

∣

∣

∣

< 3 (3)

We used the MAD approach to validate the performance of each
classifier with a specific number of artificial frames. We used the
MAD and the sample’s median to calculate a ratio (4), and two
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values of this ratio were obtained using the error rates of the
classifiers built without artificial frames.

R =

∣

∣

∣

∣

x−M

MAD

∣

∣

∣

∣

(4)

For example, after 100 repetitions of the experiment for a specific
subject, 100 classifiers with N artificial frames were created (using
a frame collection with N artificial frames), and their right and
left error rates were calculated. From this sample, the median and
the MAD values were obtained. Then, the ratio R was calculated
using the error rates of the classifier created with the frame
collection without artificial frames.

This process sought to determine whether the original
classifier could be considered as an inlier of the sample of the
classifiers with N artificial frames. Thus, values of R below 3
meant that the original classifier was not an outlier and the
replacement of the real frame collection with artificial ones is
similar for this specific subject andwith amaximumofN artificial
frames.

RESULTS

In Sample Results
A classifier with a specific number of artificial frames is
considered similar to its original if its right and left ratios are
both below 3 (section Classifier Training and Implementation).
Across all subjects and all classifiers, only one of the classifiers
with 37.5% of artificial frames of subject S02 is considered as
dissimilar (Table 1). From the same subject, the classifiers with
25.0 and 50.0% are just below 3. Using lower maximum ratios
applied stricter conditions to test the classifiers. If we apply a ratio
threshold of 2.6 instead of 3, these two outcomes from S02 would
be considered an outlier. Further, subjects S03 and S06 also have
high ratio values (above 2.6), but below 3. If a maximum ratio of
2 is applied, all the classifiers for all subjects were acceptable if
the frames collection used at most 12.5% of artificial frames. All
classifiers were statistically similar to their corresponding original
classifiers for subjects S01, S04, S05, and S07.

Classifiers with more than 37.5% of artificial frames for
subjects S01 and S06 showed a smaller ratio in the right-side
class than the classifiers with fewer artificial frames. However, the
left-side class of the same classifiers increased considerably.

Out of Sample Results
The previously created classifiers and the second recorded dataset
were used to analyze performance with out-of-sample data. First,
we calculated the error rate of the classifiers built without artificial
frames. We only designated the classifiers with an error rate
below of 33% in both sides as useful. Under these conditions, only
subject S01 and S03 had valid error rates in both sides (Table 2).

Table 3 presents additional details from subjects S01 and S03.
Subject S01 showed very good results, with very small and similar
error rates between the original classifiers and the rest of his
classifiers. Subject S03 showed higher error rates than subject
S01, and the error rates increased slightly with the number of the
artificial frames in the frame collection (Table 3). Nonetheless,
the classifiers built with at most 37.5% of artificial frames had
error rates in both sides below the 33% threshold. However, the
right-side error rate of classifier with 50% of artificial frames is
34.06%, meaning that this classifier should not be considered as
valid.

Considering that only 2 out of 7 subjects were considered valid
to be analyzed in an out of sample scenario, and that an error
rate below 33% can still lead to a valid classifier, we also used an
external EEGMI dataset (Cho et al., 2017) to increase the number
of subjects. We selected the four subjects with best accuracies
and split their dataset in two different sets of data. The first
dataset was used to create the classifier, and the second dataset
was used to calculate the out of sample error rate. Table 4 show
the experimental results, which are very close to the results from
the subjects recorded in the present study. Results are especially
good for subjects E01 and E02. Subject E03 (only) showed a non-
valid value in the classifier built with a density of 50%, meaning
that all his other classifiers should be considered useful. On the
other hand, subject E04 has no value below 33% and any classifier
should be considered valid.

TABLE 1 | Ratio between the error rate for each side and its MAD (Median Absolute Deviation).

S01 S02 S03 S04 S05 S06 S07

AFa Rb Lc R L R L R L R L R L R L

2.5 0.12 0.67 0.22 0.64 0.58 1.27 0.32 0.31 0.32 0.27 0.33 0.64 0.34 0.69

5.0 0.05 1.03 0.82 0.56 1.11 1.02 0.46 0.45 0.18 0.35 0.47 0.83 0.01 0.63

7.5 0.29 0.88 1.03 0.07 1.06 1.51 0.51 0.51 0.00 0.02 1.17 1.49 0.46 0.62

10.0 0.37 1.13 0.99 0.11 1.19 1.75 0.80 0.46 0.38 0.08 1.04 1.66 0.49 0.84

12.5 0.24 0.94 1.42 0.04 1.89 1.86 1.00 0.44 0.46 0.27 0.87 1.52 0.40 0.85

25.0 0.09 1.44 2.79 0.44 2.13 1.94 1.28 0.61 0.96 0.78 0.71 2.09 0.51 1.28

37.5 0.11 1.55 3.12 0.41 1.97 2.01 1.20 0.69 1.07 1.18 0.57 2.66 0.73 1.92

50.0 0.15 1.45 2.86 1.00 2.18 2.68 1.27 1.06 1.42 1.23 0.62 2.76 0.73 1.86

aAF, % of artificial frames in the classifier.
bR, right-side ratio.
cL, left-side ratio.
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TABLE 2 | Error rate of the classifier built with the frame collection without artificial frames.

S01 S02 S03 S04 S05 S06 S07

Ra Lb R L R L R L R L R L R L

5.50 6.68 11.20 66.67 29.83 20.39 42.67 32.96 36.24 35.79 27.27 39.60 58.34 22.74

aR, right-side error rate.
bL, left-side error rate.

TABLE 3 | Error rate of classifiers built with frame collections with artificial frames.

S01 S03

AFa Rb Lc R L

0.0 5.50 6.68 29.83 20.39

2.5 4.02 7.52 22.20 18.64

5.0 4.06 7.46 22.21 19.20

7.5 3.80 7.66 21.94 20.79

10.0 3.79 7.63 24.52 21.52

12.5 3.76 7.77 24.92 19.96

25.0 3.47 8.05 28.15 24.75

37.5 3.86 8.70 31.59 25.79

50.0 3.79 8.84 34.06 31.39

aAF, % of artificial frames in the classifier.
bR, right-side error rate.
cL, left-side error rate.

Additional Out of Sample Results
In the previous experiments we used a maximum density of
artificial frames of 50%. Here we present new experiments
increasing this density above 50% in order to determine
the subject-specific maximum density possible that can still
yield valid classifiers (both mean error rates below 33%). The
experiment was repeated for densities of 62.5, 75, and 87.5%.
As shown in Table 5, subjects S01, E01, and E02 had error rates
below 33%with a frame collection composed of 87.5% of artificial
frames and below. Subject E04 has no valid classifier, and the
other two subjects (S03 and E03) showed error rates above 33%
with densities above 50%. However, data from subject E04 had
not yielded any valid classifier in the latter results with densities
up to 50%.

DISCUSSION

This paper introduced a new method to create EEG artificial
data frames to reduce the calibration time required for a MI
BCI paradigm. The results suggest that the maximum number
of artificial frames that are advisable in a frame collection varies
substantially across different people. This could occur because the
subject’s MI varies within and across each trial, meaning that the
mixing of different IMFs might produce a less helpful artificial
frame. Longer training should help subjects learn to generate
more consistent and distinct MI activity, and shorter trials and
improved feedback could also be helpful.

The in-sample results demonstrate that the method is useful
when creating similar classifiers for four out of seven subjects
when the frame collection has at most 50% of artificial frames,
which allows halving the training time for these subjects. This

could reduce fatigue, stress and discouragement associated with
the training, when feedback is often inaccurate. Additional
research might identify methods to identify priori which subjects
could tolerate frame collections with 50% or even more artificial
frames.

While in-sample results are used to assess the capability of
the neurorehabilitation patient or other users to control the
BCI, out-of-sample processing is used to send the feedback to
the patient. Typically, the BCI uses a classifier created from
the preceding session from the patient. Reducing the error
rate in out-of-sample data results in more accurate feedback,
which should improve the closed-loop synergy between the
user and the BCI. Out-of-sample results showed that subjects
whose classifiers based on real data yielded acceptable error rates
(below 33%) also had acceptable error rates when using the
classifiers with artificial frames. However, only 2 out of the 7
subjects had original classifier error rates below 33%, which is
insufficient to thoroughly validate this method on an out-of-
sample environment.

Our study also included four subjects with good MI accuracy
from an external database. Their out-of-sample error rates
were very close to the ones achieved with the subjects of our
study. Seeing these good out-of-sample results, we extend the
experiment with densities beyond 50%. In 3 of these 6 subjects,
the results showed that classifiers built with 87.5% of artificial
frames still led to error rates below 33%. Additional research
will be needed to explore whether the slight increase in error
rate resulting from the increase of artificial frames in the frame
collection is worth the reduced training time. Further research
could also enlarge the density of artificial frames, which may help
increase the generalization of the classifiers and thereby decrease
their out of sample error rates.

The study showed a similar in-sample behavior in all subjects’
classifiers created with a maximum of 12.5% of artificial frames
in their frame collections and a strict ratio threshold of 2. Using
12.5% artificial frames would improve a motor imagery BCI
system in two ways. First, it would reduce the training time from
720 to 630 s. Second, the method could be used to replace an
artifacted frames with artificial ones. In the CSP calculation, the
number of frames for each side must be exactly the same, and
if there are some artifacted frames in one class, the number of
frames in the other class must be reduced accordingly. This can
reduce classifier accuracy and may necessitate additional training
runs. Instead, up to 12.5% of artifacted frames could simply be
replaced.

This study used an LDA classifier due to its widespread
use in MI BCI paradigms. Further studies could explore test
the artificial frame creation method using different classifiers.
Another interesting direction is the mixing strategy of the IMF
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TABLE 4 | External datasets.

E01 E02 E03 E04

AFa Rb Lc R L R L R L

0.0 12.82 11.43 2.99 18.08 14.56 21.08 4.65 31.51

2.5 12.68 10.85 3.12 17.87 14.04 21.50 4.04 33.49

5.0 12.88 10.65 2.98 18.30 15.37 22.93 4.34 33.66

7.5 13.21 10.48 3.36 17.90 15.13 21.83 4.42 36.77

10.0 13.36 10.80 3.50 17.36 14.65 22.69 4.91 35.91

12.5 13.19 10.64 3.47 17.70 15.54 24.98 4.85 38.27

25.0 14.74 11.10 3.66 17.00 19.47 27.18 7.11 37.38

37.5 15.45 11.72 4.73 16.40 20.90 32.44 7.46 39.52

50.0 15.80 13.34 6.24 17.06 31.04 34.32 9.87 38.20

Out of sample error rates of classifiers built with artificial frames.
aAF, % of artificial frames in the classifier.
bR, right-side error rate.
cL, left-side error rate.

TABLE 5 | Additional results.

S01 S03 E01 E02 E03 E04

AFa Rb Lc R L R L R L R L R L

0.0 5.50 6.68 29.83 20.39 12.82 11.43 2.99 18.08 14.56 21.08 4.65 31.51

25.0 3.47 8.05 28.15 24.75 14.74 11.10 3.66 17.00 19.47 27.18 7.11 37.38

50.0 3.79 8.84 34.06 31.39 15.80 13.34 6.24 17.06 31.04 34.32 9.87 38.20

67.5 10.11 10.76 36.04 46.75 16.15 16.63 7.30 19.28 31.85 41.76 13.15 39.34

75.0 17.98 12.86 39.07 47.67 19.05 18.93 10.87 20.54 34.32 47.03 15.67 44.33

87.5 17.67 28.27 45.30 45.36 23.54 32.25 17.25 26.99 36.56 51.06 26.26 46.39

Out of sample error rate of classifiers built with artificial frames.
aAF, % of artificial frames in the classifier.
bR, right-side error rate.
cL, left-side error rate.

to obtain the artificial frames. The described method mixes 15
IMF from different 15 randomly chosen real frame to build a new
artificial frame. Mixing only the most significant IMFs (instead
of fifteen), or even reducing the number of real frames to three or
four, might both be worth exploring.

This approach might also be extended to other types of BCIs.
For example, some passive approaches for evaluating alertness or
fatigue might benefit. BCIs based on the P300 complex, steady-
state evoked potentials, and similar BCI paradigms that require
focused attention typically require much less training than MI
andmost other BCIs. However, this approach could still be useful
for countering artifact or to improve classifier accuracy in some
users, such as patients using a vibrotactile P300 system.

Most importantly, this new BCI method needs additional
research with more subjects, especially to validate the
out-of-sample behavior. These subjects should include target
patients, including persons with stroke and other persons seeking
rehabilitation. New paradigms could provide training of other
types of rehabilitation, such as lower-limb training. Patients with
locked-in syndrome (LIS) may also benefit from this approach
for communication or other goals.
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