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Editorial on the Research Topic

New Advances in Electrocochleography for Clinical and Basic Investigation

Electrocochleography (ECochG) is a technique for recording evoked potentials from the inner
ear, generally believed to originate from hair cells and nerve fibers. It is useful for assessing inner
ear function in both laboratory and clinical settings. The abbreviation ECochG is preferable to
ECoG, because the latter can be confused with “electrocorticogram” (Ferraro, 1986). ECochG
measurements are typically made from the ear canal or eardrum (extratympanic), from the
promontory or round window niche (transtympanic), or from inside the cochlea (intracochlear).
Extratympanic ECochG recordings are most commonly made with “tiptrodes” (gold foil wrapped
around insert earphones) or “tymptrodes” (electrodes placed directly on the tympanic membrane).
While the amplitude of tymptrode measurements can be up to an order of magnitude larger
than tiptrode measurements (Ferraro and Ferguson, 1989), transtympanic amplitudes can be far
more than an order of magnitude larger than those on the eardrum (e.g., Ruth et al., 1988). We
thus suggest that extratympanic measurements are best classified as far-field, and transtympanic
measurements as near-field.

We will give a brief overview of ECochG before reviewing its traditional uses, and surveying
recent advances that promise new applications in the assessment of auditory and vestibular
function. References to the 23 papers collected for this Research Topic have been hyperlinked to
Frontiers webpages. A more extensive historical overview of ECochG, including its basic features
and applications, was provided by Eggermont. A complementary review by Gibson offers tips for
optimizing ECochG recordings in different clinical situations. Electrovestibulography (EVestG) is
an analogous emerging technique for characterizing vestibular hair cell and nerve function, and
was reviewed by Brown et al.

Sensory cells of the inner ear can be manipulated, damaged, or destroyed in varying degrees
depending on the ototoxic agent, administration approach, and dose, giving rise to hearing deficits
at specific sound frequencies and intensities, as well as vestibular problems. Amajor long-term goal
of ECochG is to help differentiate outer hair cell (OHC) from inner hair cell (IHC) or presynaptic
losses, and from auditory nerve fiber (ANF) or postsynaptic losses, which are all presently lumped
together as sensorineural hearing loss. Differential diagnosis of different forms of sensorineural
hearing loss could prove useful in improving hearing aid fitting, in predicting cochlear implantation
outcomes, and in individualized regenerative medicine (McLean et al., 2016, 2017).

ECochG measurements are believed to originate, in general, from at least four distinct cellular
sources, the receptor potentials of OHCs and IHCs, and the dendritic potentials and spikes of ANFs.
The phases or polarities of these components can vary along the cochlea in a complex fashion
that depends on stimulus characteristics and electrode placement, confounding their separation
and interpretation (Chertoff et al., 2012). For example, the origins of the commonly measured
summating potential (SP) and cochlear microphonic (CM) are still unknown for the wide range
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of stimulus parameters and recording locations. The older term
“cochlear response”, which seems to have become passé, thus
remains an adequate descriptor of ECochG recordings as long as
their origins remain elusive. A newer term with the same purpose
appears to be the “total response” (e.g., McClellan et al., 2014).
Continuing the progress toward untangling the different origins
of ECochG measurements is essential to advance the clinical
utility of ECochG (e.g., Forgues et al., 2014; Lichtenhan et al.,
2014; Fontenot et al.).

The first ECochG measurements were obtained somewhat
serendipitously by Wever and Bray (1930), who were attempting
to record from cat ANFs. Their alternating or AC potential
would come to be known as the cochlear microphonic (CM)
and its origin was attributed to the hair cells, primarily to the
more numerous and sensitive OHCs (Dallos and Cheatham,
1976), which amplify and sharpen sound-induced vibrations
before their detection by the sensory IHCs and ANFs. It
was later discovered that ANF spiking could also contribute
to CM measurements, particularly in response to lower-
frequency sounds (<1–2 kHz), and that IHCs contributed as well
(Eggermont, 1974; Chertoff et al., 2002; Lichtenhan et al., 2014).
This blend of responses became known as the auditory nerve
neurophonic (ANN, e.g., Snyder and Schreiner, 1984; Forgues
et al., 2014), which is simply a cochlear response to intense, low-
frequency sounds. The Auditory Nerve Overlapped Waveform
(ANOW; Lichtenhan et al., 2013, 2014) differs from the ANN
in that it is evoked by low to moderate level sounds, and its
cellular and spatial origins are known. ECochG measurements
can be DC-biased by the summating potential (SP), and show
compound action potential (CAP) responses to stimulus onsets
and sometimes offsets, reflecting the synchronous spiking of
ANFs (Davis et al., 1958; Ruben et al., 1961). The CAP is wave
I of the auditory brainstem response (ABR), first characterized
by Jewett and Williston (1971).

A long-standing use of ECochG has been to objectively
corroborate a symptomatic and case-history diagnosis of
endolymphatic hydrops in Meniere’s disease and other
pathological states (endolymphatic hydrops is not limited
to Meniere’s). In ears with endolymphatic hydrops, the SP/CAP
ratio can be increased, due mainly to an increase in the SP, but
also to a decrease in the CAP. Despite much research, it is not
known whether the sensitivity and specificity of ECochG for
detecting endolymphatic hydrops is high enough to be useful
for individual patients. Sass (1998) reported high sensitivity
and specificity (87 and 100%, respectively) when transtympanic
click and 1 kHz tone burst SP/CAP ratios were combined
with the increased CAP latency difference between rarefaction
and condensation stimulus clicks that is also typical of ears
with endolymphatic hydrops. Others have also reported good
sensitivity and specificity by using the SP/CAP area (e.g., Ferraro,
2010). As reviewed by Eggermont and Hornibrook, the results
of some other studies have been less encouraging, but there
is consensus that tone burst ECochG presently yields the best
results (Hornibrook). In a promising new approach, Lichtenhan
et al.induced endolymphatic hydrops in guinea pigs using
three classical manipulations and found that changes in the
ANOW were more sensitive to small degrees of endolymphatic

hydrops than were changes in traditional measures such as CAP
thresholds and the endocochlear potential, suggesting that the
ANOW could be useful in the early detection of endolymphatic
hydrops.

ECochG can be used in the diagnosis of auditory neuropathy
(Widen et al., 1995; Rance and Starr, 2015), an umbrella
term that includes many etiologies such as drug- or hypoxia-
induced IHC loss (Harrison, 1998; Salvi et al.), noise- and age-
related synaptopathy (Kujawa and Liberman, 2015), hereditary
synaptopathy and neuropathy (e.g., mutations of OTOF, OPA1,
and other genes; Santarelli et al., 2013), and even acoustic
neuroma. While MRI can be useful in confirming some cases
of auditory neuropathy (e.g., Roche et al., 2010), it is typically
diagnosed when an absent or abnormal CAP or ABR, even
at high stimulus levels, co-occurs with a robust CM and/or
otoacoustic emissions (OAEs). Speech perception deficits, both in
quiet and in noise, are worse than expected from the audiometric
loss. Identifying ears with auditory neuropathy is important
for predicting cochlear implant outcomes, which are generally
poorer compared to non-neuropathic patients (McMahon et al.,
2008; Walton et al., 2008; Harrison et al., 2015; Santarelli et al.,
2015).

Salvi et al.provided an instructive review of selective IHC loss
in chinchillas due to the cancer drug carboplatin. Substantial IHC
loss had no measurable effect on OAEs or the CM (however, see
Chertoff et al., 2002), but reduced SP and CAP amplitudes. Tone
thresholds in quiet were unaffected by IHC losses of up to 80%,
but thresholds in noise were elevated (Lobarinas et al., 2016).
Importantly, the chinchilla carboplatin studies reviewed by Salvi
et al. were also among the first to provide compelling evidence
for synaptic gain increases in the central auditory system in
response to decreased peripheral input. While increased central
gain can lead to improved audibility in quiet conditions (see
e.g.,Hoben et al.), it might also lead to potentially bothersome
tinnitus and hyperacusis (Noreña, 2011; Schaette and McAlpine,
2011; Pienkowski et al., 2014; Brotherton et al., 2015; Paul et al.,
2017).

ECochG is a promising candidate for detecting noise- and
age-related cochlear synaptopathy (Kujawa and Liberman, 2009,
2015; Sergeyenko et al., 2013). It was recently reported that
college student musicians with normal audiometric thresholds
up to 8 kHz, but mild hearing losses at 10–16 kHz, showed
significantly increased click-evoked SP amplitudes and slightly
decreased CAP amplitudes (Liberman et al., 2016), changes
reminiscent of endolymphatic hydrops but in this case attributed
to noise-induced synaptopathy. Bramhall et al. (2017) found
reduced CAP amplitudes in military veterans with high noise
exposure histories, and in non-veterans who reported a history
of firearm use, compared with veterans and non-veterans with
lower noise histories. Importantly, the reduced CAP amplitudes
could not be explained by OHC dysfunction, as assessed with
distortion product OAEs (DPOAEs). Other studies using CAP
or ABR wave I amplitudes (as well as other metrics) have failed
to detect evidence of synaptopathy in noise-exposed adults (e.g.,
Prendergast et al., 2017). However, it may be that people who
regularly subject themselves to high recreational noise doses do
so because of their “tougher” ears, which sustain less damage
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than the potentially more “tender” ears of people who avoid loud
music and noise (see e.g., Henderson et al., 1993 for a general
discussion of this issue).

Grinn et al. reported CAP and DPOAE amplitudes, and
Words-in-Noise (WIN) performance in a group of young adults
before, and 1 and 7 days after a loud recreational event, typically
a concert (average dose of 93 dB A for 4 h, range 73–104 dB
A for 1.5–16 h). Consistent with the notion of tough vs. tender
ears, there was no correlation between the noise dose and the
amount of temporary threshold shift (TTS) measured across
study participants. Most showed a 1 day TTS of <10 dB (with
full recovery at 7 days), accompanied by correspondingly small
but significant temporary decreases in WIN scores. DPOAE
amplitudes were affected at 1 day but only at 6 kHz, whereas CAP
amplitudes to clicks and 2–4 kHz tone bursts were not affected.
These results argue against the development of synaptopathy
after a single recreational noise dose, consistent with laboratory
noise exposure that caused a TTS in humans (Lichtenhan and
Chertoff, 2008). It is likely that a number of such exposures is
needed to produce permanent damage in primates (Pienkowski,
2017; Valero et al., 2017).

To reduce the prevalence of noise-induced hearing loss,
tinnitus, and hyperacusis, it would be helpful to identify
those with especially tender ears. Maison and Liberman (2000)
showed that the strength of the medial olivocochlear (MOC)
efferent reflex in guinea pigs, as measured by the contralateral
suppression of DPOAEs, was strongly correlated with lower TTS
after acoustic trauma. Unfortunately, this finding has yet to be
replicated in humans (e.g., Hannah et al., 2014). Smith et al.made
measurements of chirp-evoked human CAPs, confirming the
original finding that chirps yield larger CAP amplitudes than
clicks (Chertoff et al., 2010). Smith et al. found that CAP
amplitudes were more strongly contralaterally suppressible than
were DPOAE amplitudes, similar to the results of previous
animal and human studies (Puria et al., 1996; Lichtenhan et al.,
2016). Verschooten et al. made progress in studying the human
MOC reflex triggered by ipsilateral sound, by proposing how to
separate MOC effects from the confounds of mechanical and
neural masking.

This Research Topic reports innovations in recording
techniques and signal processing that point to new potentially
useful roles for ECochG in clinical practice (Charaziak et al.;
Cook et al.; Kennedy et al.). Other innovations have noteworthy
applications associated with cochlear implantation. Bester et al.,
Dalbert et al., Koka et al., and O’Connell et al., used ECochG
to objectively assess residual, low-frequency acoustic hearing in
ears implanted with hybrid electric-acoustic stimulation devices.
He et al. comprehensively reviewed the electrically-evoked CAP

or eCAP, including its applications in establishing implant
candidacy, in intraoperative monitoring for electrode guidance,
and in post-operative device programming and outcome
assessment. Riggs et al. made intraoperative measurements from
child and adult implantees with and without diagnosed auditory
neuropathy, and found results consistent with better hair cell but
poorer neural function compared to non-neuropathic patients.
While it remains a challenge to accurately estimate ANF survival
in implant candidates, Pardo-Jadue et al. suggest that tymptrode

measurements of spontaneous ANF firing (in the absence of
sound or other stimulation) could be helpful in this regard.

The telemetric innovations of modern cochlear implants
have advanced research in intracochlear ECochG. Kim et al.
reported the first intracochlear ECochG measurements from
cochlear implant (Nucleus Hybrid L24) users. Koka and Litvak
performed the first intracochlear ECochG recordings in response
to simultaneous electrical and acoustic stimulation in patients
implanted with Advanced Bionics HiRes 90K Advantage. The
results of these pioneering measurements may point the way
forward to objectively programming hybrid cochlear implants
and better predicting speech outcomes.

The past informs the present, as the saying goes, and this is
certainly true of the field of ECochG. It is usual for even good
data to be misinterpreted in the context of the available theories
of the day. Likewise, it is usual for previous interpretations
to become outdated as new advances are made. Nevertheless,
interpretations, not data, are typically the main intellectual drive
of textbooks and review articles, and new trainees to a field often
begin with these sources. Once a knowledge base becomes firmly
entrenched, it can sometimes be difficult and uncomfortable to
realize that a framework is no longer adequate to encapsulate
new findings, and needs updating. We hope to have clarified
some of the main ideas, terminology, and origins of ECochG
measurements, and encourage all to study the almost 90 year
history of this field.
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