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Metabolic syndrome (MetS) is a cluster of risk factors that lead to microvascular

dysfunction and chronic cerebral hypoperfusion (CCH). Long-standing reduction in

oxygen and energy supply leads to brain hypoxia and protein misfolding, thereby linking

CCH to Alzheimer’s disease. Protein misfolding results in neurodegeneration as revealed

by studying different experimental models of CCH. Regulating proteostasis network

through pathways like the unfolded protein response (UPR), the ubiquitin-proteasome

system (UPS), chaperone-mediated autophagy (CMA), and macroautophagy emerges

as a novel target for neuroprotection. Lipoxin A4 methyl ester, baclofen, URB597,

N-stearoyl-L-tyrosine, and melatonin may pose potential neuroprotective agents for

rebalancing the proteostasis network under CCH. Autophagy is one of the most studied

pathways of proteostatic cell response against the decrease in blood supply to the brain

though the role of the UPR-specific chaperones and the UPS system in CCH deserves

further research. Pharmacotherapy targeting misfolded proteins at different stages in the

proteostatic pathway might be promising in treating cognitive impairment following CCH.

Keywords: metabolic syndrome, chronic cerebral hypoperfusion, neuroprotection, protein misfolding,

endoplasmic reticulum stress, chaperones, neurodegenerative diseases

INTRODUCTION

The energy requirements of the brain are high, and neuronal viability critically depends on
cerebral blood flow (CBF) delivery of oxygen and nutrients (Daulatzai, 2017). Endothelial cells
interact with pericytes, glial cells, and neurons to coordinate functions in a neurovascular unit
(NVU) (Hermann and ElAli, 2012). Endothelial dysfunction is typically associated with metabolic
syndrome (MetS) (Otero-Losada et al., 2013, 2014), and affects CBF distribution andNVU integrity
(McCrimmon et al., 2012) bringing about chronic cerebral hypoperfusion (CCH). CBF impairment
increases the risk of cognitive decline shaping a neurovascular pathway to sporadic Alzheimer’s
disease (AD) (Zlokovic, 2011). Since an adequate protein folding and trafficking in neurons
depends on energy supply by CBF (Wang and Kaufman, 2016), protein misfolding might be
considered amechanism linking CCHwith AD. On these grounds, targeting proteome homeostasis
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portrays a promising neuroprotective approach in AD
prevention (Jackrel and Shorter, 2017; Sweeney et al., 2017)
in the context of MetS.

CHRONIC CEREBRAL HYPOPERFUSION
AS A SILENT CONSEQUENCE OF MetS

MetS is the constellation of vascular risk factors including
hypertriglyceridemia, hyperglycemia, and/or insulin resistance,
hypertension, and visceral obesity in man (Otero-Losada et al.,
2016). These factors embody the prelude to type 2 diabetes (T2D)
(Bruce and Hanson, 2010), characterized by hyperglycemia,
hyperinsulinemia and low insulin sensitivity (American Diabetes
Association, 2002; McCrimmon et al., 2012). Type 2 diabetes
is usually concurrent with several features of the MetS, which
contribute to its severity (McCrimmon et al., 2012). Defective
angiogenesis in T2D leads to immature vascularization (Li
et al., 2010), CCH, neuro-glial dysfunction, and degeneration in
time (ElAli et al., 2013). Endothelial injury and microvascular
dysfunction associated with MetS (McCrimmon et al., 2012)
narrows luminal spaces during sustained periods of high
metabolic demand (de la Monte, 2014) leading to CCH and
cerebral metabolic suffering (Daulatzai, 2017; Obadia et al.,
2017).

Insufficient brain perfusion in CCH is chronic, silent, andmay
last for years, progressively damaging brain tissue and should
be distinguished from sudden CBF obstruction due to brain
ischemia (de La Torre, 2008; de la Torre, 2012). Besides, moderate
hypoperfusion (a 30% CBF rate decrease in De Jong et al., 1999)
and mild neuronal damage observed in experimental models of
CCH (Farkas et al., 2007) contrast with the full CBF deprivation
found in acute ischemia models (Jia et al., 2015; Park and Lee,
2017).

Clinical studies on the circulatory impact of MetS factors’
prevalence show that progressive clustering of MetS factors
escalate microvascular damage due to further weakening of
the cerebral arterial vasodilatation response (Nazzaro et al.,
2013). The concurrence of three or more MetS features leads
to a substantial CBF decrease mainly in the mediolateral areas
of the frontal, parietal, temporal, and occipital gray matter
and weakening of the immediate memory (Birdsill et al.,
2013), attention, processing speed, executive functions, fluid
intelligence, and visuospatial processing (Dik et al., 2007; Muller
et al., 2010; Reijmer et al., 2011). Accordingly, on cerebral
perfusion matters, MetS should be studied as a whole rather than
as the mere concurrency of multiple scattered factors (Mellendijk
et al., 2015).

A systematic revision of longitudinal population-based
studies on the contribution of different MetS features
to the risk of dementia confirmed an association as for
hypertension, dyslipidemia, obesity, and T2D, the two
latter imposing the greatest risk (Kloppenborg et al.,
2008). The progressive brain damage associated with
T2D is known as diabetic encephalophathy (Van den
Berg et al., 2007). However, identifying the actual factors
responsible for diabetic encephalophathy is hampered not

only by the presence of multiple vascular comorbidity
factors in MetS (McCrimmon et al., 2012) but also
by co-variables like glycemic control, disease history,
and treatment modality in T2D (Van den Berg et al.,
2007).

Murine models of MetS and T2D showed time-dependent
cerebrovascular impairment. Mice fed a high-fat diet (HFD)
for 12 weeks developed arteriolar damage in the brain and
CBF alteration (Lynch et al., 2013), and cerebral endothelial
dysfunction appeared around the week 5 in a mouse model
of streptozotocin-induced diabetes (Kitayama et al., 2006).
In both studies, the endothelial dysfunction in cerebral
arterioles preceded that in the carotid arteries (Kitayama et al.,
2006; Lynch et al., 2013). We reported carotid damage in
another mice model 8 weeks after MetS induction (Otero-
Losada et al., 2013), so time-dependency may vary upon the
experimental settings. Recent evidence revealed that aging
exacerbated cerebrovascular alterations in the hippocampus
and the cerebral cortex that ushered cognitive impairment
in HFD mice (Tucsek et al., 2014). Furthermore, cells
exposed to hypoxia and high glucose underwent autophagy
dysregulation, and impaired mitochondrial quality control,
reproducing CCH and diabetes in vitro (Song et al.,
2018).

CHRONIC CEREBRAL HYPOPERFUSION
AND SPORADIC AD

Long before cognitive decline becomes apparent, CCH stands
for an early sign of sporadic AD (Daulatzai, 2017; de la Torre,
2017). In this regard, the sporadic AD has been described as
a vasocognopathy, a vascular-related cognitive disorder (de La
Torre, 2004) upon CCH pathogenic requirement (Austin et al.,
2011). The long-standing decline in cerebral circulation triggers
a neuronal energy crisis and a pathogenic cascade giving way to
the characteristic cognitive decline (de La Torre, 2008) in CCH
(Tanashyan et al., 2016).

As sporadic AD shows aggravated hypoperfusion from the
pre-clinical phases to the advanced stages with the progression
of the disease, CCH may represent a promising biomarker
in the early diagnosis of AD (Austin et al., 2011). In this
regard, the interest on the critical role of vascular risk factors
like hypertension, hypercholesterolemia, and diabetes, and the
ensuing CCH (Austin et al., 2011) in the early stages of the
sporadic AD (Chen et al., 2011) has lately increased. The primary
CBF deficiency concept has replaced that of secondary deficiency
aiming to better understand the initial memory loss in AD
(Mazza et al., 2011).

Most studies have focused on oxidative stress and
neuroinflammation to explain the association between CCH and
AD (Zhao and Gong, 2015). Beyond them, protein misfolding
and aggregation emerges as a novel relevant mechanism (Jackrel
and Shorter, 2017). Extraneuronal accumulation of β-amyloid
peptide (Aβ) is found in the senile plaques long before cognitive
AD deficits. Distinctively, intraneuronal tau protein aggregates
in neurofibrillary tangles (NFTs) appear later upon clinical
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progression impairing axonal transport and synaptic function
(Ashraf et al., 2014).

Not only neuronal cells are particularly vulnerable to protein
aggregation, but also their unique cellular structure precludes
protein quality control. Post-mitotic neurons are unable to
remove cytotoxic proteins after cell division (Ciechanover and
Kwon, 2015), and protein aggregates in dendrites and axons need
to be packaged into autophagic vacuoles to return to the cell
body for lysosomal degradation.While aging slows-down protein
quality control systems (Ciechanover and Kwon, 2015), age-
related stress and protein misfolding play a major role in cerebral
proteopathies, the sporadic forms of the neurodegenerative
disease (Saxena and Caroni, 2011). MetS is a high-risk condition
for premature aging-related changes (Otero-Losada et al., 2011,
2016).

PROTEOME HOMEOSTASIS AND
NEURODEGENERATIVE PROTEIN
DISORDERS

ER Stress and Misfolded Proteins
Clearance Mechanisms
The endoplasmic reticulum (ER) plays a pivotal role in the
high energy-demanding protein folding and trafficking processes.
Energy restriction under stressing conditions leads to unfolded
or misfolded proteins’ accumulation in the ER lumen (Wang and
Kaufman, 2016). In this scenario, triggering the unfolded protein
response (UPR), an adaptive function of protein quality control
that reduces polypeptide synthesis, improves correct protein
folding, and promotes misfolded protein degradation, restores
cell homeostasis avoiding apoptosis (Sims-Robinson et al., 2016;
Figure 1). Three main signaling pathways are activated under
ER stress conditions: the inositol-requiring enzyme 1a (IRE1α),
the protein RNA-like endoplasmic reticulum kinase (PERK), and
the activating transcription factor 6 (ATF6) (Lindholm et al.,
2017; Figure 1). The endoribonuclease IRE1α produces an active
form of the transcription factor X-box binding protein-1 (XBP-1)
triggering the UPR which upregulates chaperone genes involved
in protein folding (Lindholm et al., 2017). Chaperones help
new proteins in their timely degradation and adequate folding,
without influencing their final structure (Balchin et al., 2016).
In this way, proteostasis or proteome functional homeostasis is
partially restored (Lindholm et al., 2017; Figure 1). Conjoinctly,
ER stress activates PERK which phosphorylates the eukaryotic
translation initiation factor-2α (eIF2α), down-regulating protein
synthesis and decreasing misfolded proteins in the ER (Figure 1).
Finally, under ER stress conditions, ATF6migrates to the nucleus
and activates genes of ER chaperones (Cybulsky, 2013).

Endoplasmic reticulum stress also increases protein
degradation in the ER lumen and membrane by way of the
ER-associated degradation (ERAD) mechanism which, together
with soluble cytoplasmatic misfolded proteins, produce the
activation of clearance mechanisms such as the ubiquitin (Ub)-
proteasome system (UPS) (Figure 1). In eukaryotic cells, the
UPS is the most important degradation pathway for a broad
range of short-lived proteins which regulate cellular processes

and those of quality control of protein folding and proteotoxic
stress. The main protease of the UPS is the proteasome which
degrades substrates bearing a poly-ubiquitin chain (Chowdhury
and Enenkel, 2015; Ji and Kwon, 2017; Figure 1).

Chaperone-mediated autophagy (CMA), another line of
defense against misfolded proteins, is a branch of the autophagy-
lysosome system (Figure 1). The heat-shock cognate 70 (Hsc70)
chaperone recognizes misfolded proteins exposing the KFERQ
degradation signal, luring them to lysosomes for degradation by
hydrolases (Ciechanover and Kwon, 2015).

Substrates escaping the surveillance mechanisms are not
vulnerable to the mentioned proteolytic pathways and tend to
form aggregates, which are mainly removed by macroautophagy
(Figure 1). Misfolded protein substrates of macroautophagy
are recognized by molecular chaperones, ubiquitinated, and
delivered into autophagosomes, which are later incorporated to
lysosomes and undergo degradation (Ciechanover and Kwon,
2015).

Misfolded proteins also trigger the UPR (mt) mitochondrial
response, characterized by distinctively own protein quality
control system (De et al., 2018) whereby nuclear transcription of
mitochondrial chaperones takes place for organelle homeostasis
(Lindholm et al., 2017; Figure 1).

All the above-mentioned quality control systems, a collection
of chaperones and protein degradation machinery working
to balance the proteome, embody the proteostasis network
(Figure 1). Nevertheless, there are some aggregated proteins
resistant to quality control systems representing a common
molecular mechanism reported for a group of so-called protein
misfolding disorders (PMD) like the AD, Parkinson’s disease
(PD), Huntington’s disease (HD), and others (Ciechanover
and Kwon, 2015). A defective ER regulation of many cellular
processes may contribute to the progression of the pathology
(Lindholm et al., 2017) while proteostasis alteration leading to
chronic activation of the UPR and other surveillancemechanisms
may contribute to the pathogenesis of many diseases (Ozcan and
Tabas, 2012).

The deposition and accumulation of misfolded proteins
is a common sign in many neurodegenerative diseases,
characterized by cell signaling impairment and defective
neuronal connectivity following cell death (Soto, 2003). Under
cellular ER stress, clearance and protein refolding pathways
are activated while the UPS and other systems are mitigated
by protein aggregates or toxic products including reactive
oxygen species (Soto, 2003). The dysfunctional UPS caused
by the accumulation of proteins in the cell furthermore
aggravates ER stress (Ciechanover and Brundin, 2003). Finally,
altered proteostasis in this stressful cell environment affects
mitochondria, caspases are activated, and cell death ensues (Rao
et al., 2004).

ER Stress in Alzheimer’s Disease and
Other Proteopathies
The hallmarks of Alzheimer’s disease (AD) are the aggregation
of extracellular amyloid-β peptides and intracellular
phosphorylated tau proteins, and the abnormal intracellular
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FIGURE 1 | Chronic Cerebral Hypoperfusion (CCH) induces protein misfolding in the context of Metabolic Syndrome (MetS). Under cell stress, proteostasis network

surveillance systems refold or degrade proteins through several mechanisms. Accumulation of misfolded proteins in the Endoplasmic Reticulum (ER) triggers the

unfolded protein response (UPR) which induces an upregulation in the expression of chaperone genes. This response is characterized by transcription factor 6 (ATF6),

inositol-requiring enzyme 1a (IRE1-α) and X box–binding protein 1 (Xbp1). These ER stress components trigger ER-associated degradation (ERAD) genes, which work

to restore organelle function and maintain cell survival. Under ER stress, protein RNA-like ER kinase (PERK) mediates the phosphorylation of eukaryotic translation

initiator factor 2α (eIF2α), which inhibits translation and attenuates protein synthesis at the ER. Prolonged ER stress increases levels of intracellular calcium, activating

signals of cell death. Mitochondria responds to cell stress throughout its own protein quality control system known as UPR(mt), promoting transcription of

mitochondrial chaperones and factors for organelle homeostasis. Depending on the nature, size and solubility of substrates, misfolded proteins can also be degraded

by the Ubiquitin Proteasome System (UPS), Chaperone Mediated Autophagy (CMA) or macroautophagy. In general, most soluble and monomeric misfolded proteins

are degraded by the UPS and CMA. Substrates targeted by CMA are bound by chaperone heat-shock cognate 70 (Hsc70) and degraded into amino acids by

lysosomal hydrolases. Misfolded proteins in the cytosol are also conjugated to ubiquitin through an enzymatic cascade involving the ubiquitin-activating (E1),

ubiquitin-conjugating (E2), and ubiquitin-protein (E3) enzymes. Then, ubiquitinated substrates are degraded by the proteasome. Other substrates, such as protein

aggregates, are recognized by molecular chaperones, ubiquitinated and delivered to the autophagosome via Beclin-1 complex. The autophagosomes are fused with

lysosomes to form autolysosomes, where misfolded proteins are degraded. Agents targeting proteostasis network pathways in CCH-induced protein misfolding are

shown in blue color text. N-stearoyl- L-tyrosine (NSTyr), Lipoxin A4 methyl ester (LXA4 ME).

calcium levels with neuronal deterioration, that lead to
death (Ozcan and Tabas, 2012). The brain of deceased AD
patients showed activated UPR expressing chaperone Grp78
(Hoozemans et al., 2005), and immunohistochemical evidence
of PERK and eIF2α activation (Unterberger et al., 2006;
Scheper and Hoozemans, 2015). Inhibiting PERK decreased
p-eIF2α levels and partially reversed memory impairments
in an AD mouse model (Ma et al., 2013). The evidence
unquestionably confirms the specific ER signaling effect on
neurons and neuronal connections not only in the AD but
also in other PMD like Parkinson Disease (PD) in which UPR
dysfunction has been currently reported. Mutations in the
Parkin gene impaired the degradation of unfolded proteins
(Ciechanover and Kwon, 2015). Also, the accumulation of a
substrate from Parkin gene led to ER stress and apoptosis,
and phosphorylated forms of PERK (p-PERK) and eIF2α

(p-eIF2α) increased in PD neurons (Ozcan and Tabas,
2012).

EXPERIMENTAL FINDINGS OF
CCH-INDUCED NEURODEGENERATION
BY PROTEIN MISFOLDING

The impact of CCH on neurodegeneration has been investigated
using different animal models (Zhao and Gong, 2015). Increasing
evidence shows that protein misfolding is involved in CCH-
induced neurodegeneration. Both a bilateral common carotid
artery occlusion (BCCAO) murine CCH model (Ozacmak
et al., 2009), and another animal model of CCH designed
to reproduce human hemodynamic insufficiency (Hai et al.,
2002) showed a compensatory defensive neuronal loss in the
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hippocampal CA1 region. Years later, ultrastructural analysis
using ethanolic phosphotungstic acid (EPTA)-stained electron
microscopy confirmed that neurodegeneration was induced
by protein aggregation after protein synthesis machinery
destruction (Jian et al., 2013).

The stress-sensitive and novel negative modulator of
myelination Redd1 (RTP801/Dig2/DDIT4) expresses in
response to hypoxia, ER stress, and autophagy. It underwent
time-dependent changes in a rat CCH model induced by
permanent BCCAO and two-vessel occlusion (2VO) (Park and
Lee, 2017). Following surgery, Redd1 increased in pyramidal
neurons of the CA1 region by day 7 and gradually decreased
by day 28, being associated with CCH-induced neuronal
damage (Park and Lee, 2017). Autophagy upregulation by
CCH in bilateral common carotid artery ligation (BCCAL)
and oxygen-glucose deprivation (OGD) models associated with
brain atrophy and neuronal apoptosis in the CA1 area (Liu
et al., 2015). Likewise, neuronal damage and high level of the
autophagy markers LC3-II and beclin-1 were found in the
CA1 area after CCH, along with ultrastructural evidence of an
increased number of apoptotic neurons showing the typical
pyknotic nuclei, autophagosomes and autolysosomes, and of ER
fragmentation among other changes. These observations have
been correlated with the spatial working memory impairment
(Wang et al., 2017).

Cognitive and pathological features and the associated
autophagic modifications were evaluated from week 2 to 20
after BCCAO to elucidate the long-term neurological effects of
CCH-induced autophagy after CBF recovery, and CBF changes
were monitored in a two-step BCCAO rat model. Unlike the
sustained increase in the autophagy markers Beclin-1, light
chain 3B, and P62, CBF returned to baseline. Regardless CBF
recovery, a striking cognitive decline, and neuronal damage
were observed revealing the early contribution of the early
autophagy impairment to the later neurodegeneration and
cognitive decline. Autophagic dysfunction may hamper the
successful clearance of the Aβ peptide, leading to cognitive
alterations. Other interesting findings suggested that cortical
neurodegeneration and autophagic changes precede those in the
hippocampus, the same as white matter damage precedes gray
matter degeneration. However, only hippocampal deposition of
Aβ plaques was related to cognitive failure (Zou et al., 2017).
The hippocampus is the archetypical brain area of learning and
memory that becomes dysfunctional in AD (Ashraf et al., 2014),
and the CA1 area is specifically vulnerable to hypoperfusion (Liu
et al., 2015). Hippocampal neurodegeneration also developed
in a rat model of BCCAL and 2VO (Jia et al., 2015).
Sustained ER stress due to CCH was inferred from the
expression of the CCAAT/enhancer binding protein, C/EBP,
homologous protein. Besides, CCH stimulated macroautophagy
based on the ratio of microtubule-associated protein light chain
3 II (LC3-II) to LC3-I and beclin1 marker level (Jia et al.,
2015).

Over and above, dysfunction of the UPS might be related
to hippocampal CA1 degeneration after CCH as concluded
after finding long-term locally decreased proteasome peptidase
activity, and accumulation of ubiquitinated protein aggregates

in a rat model (Hai et al., 2013). Earlier studies had reported
similar results suggesting that the reduced activity of the
UPS might impair the removal of misfolded proteins leading
to protein aggregation and eventual neurodegeneration
(Hai et al., 2011). The following cognitive impairment
might compromise both learning and spatial memory skills
concurrently with long-term potentiation (LTP) inhibition
(Hai et al., 2009). Right common carotid artery permanent
ligation also induced protein aggregation and mild CCH
resulted in NVU dysfunction and rapid Aβ deposition in
ipsilateral brain capillaries (ElAli et al., 2013). The same as
observed in amyloid protein precursor (APP)- transgenic
(APP-Tg) mice, bilateral carotid artery stenosis (BCAS) induced
CCH-accelerated Aβ deposition. Accordingly, CCH might
precipitate the neurodegenerative process in AD (Kitaguchi
et al., 2009). Previous findings in a rat model of BCCAL and
2VO demonstrated that CCH fostered the aberrant processing
of APP (Bennett et al., 2000). Unilateral common carotid
artery occlusion (UCCAO) resulted in CCH and induced
tau hyperphosphorylation, memory deficits, dysregulation of
synaptic proteins, and decreased post-translational tau O-
GlcNAcylation by β-N-acetylglucosamine (Zhao et al., 2014).
Earlier studies had suggested that brain glucose metabolic
dysfunction down-regulated tau O-GlcNAcylation mediated by
tau hyperphosphorylation (Liu et al., 2004; Liu F et al., 2009; Liu
Y et al., 2009).

CCH in AD leads to increased tau protein
hyperphosphorylation and intracellular aggregation upon
conformational changes (Šimić et al., 2016; Lathuilière et al.,
2017), same as found after UCCAO in mice or 2VO in rats (Li
et al., 2015; Qiu et al., 2016). Accordingly, stepwise BCCAO-
induced CCH increased the cortical expression of proteins
involved in protein synthesis and folding like glycine-tRNA
ligase (GARS), heterogeneous nuclear ribonucleoprotein
K (HNRNPK), nitrilase homolog 1 (NIT1), histidine triad
nucleotide-binding protein 1 (HINT1), ATP-dependent
RNA helicase DDX1, and the protein disulphide-isomerase
A6 (PDIA6). Proteins involved in ubiquitin-mediated
degradation also increased, including the COP9 signalosome
complex subunit 2 (COPS2), the proteasome subunit alpha
type-1 (PSMA1), the 26S protease regulatory subunit 6A
(PSMC3), and the 26S protease regulatory subunit 6B (PSMC4)
(Völgyi et al., 2017).

Genetic risk factors like the apolipoprotein E (APOE) gene
cause vascular impairment (Farrer et al., 1997). In the elderly,
mounting evidence suggests that AD links to atherosclerosis
under brain hypoperfusion (de la Torre, 2002). In the general
population, the e4 allele of the APOE gene poses the highest
risk for sporadic AD (Farrer et al., 1997). It is a modest
genetic risk factor for atherosclerosis (Wilson et al., 1996),
associated with decreased efflux of cholesterol from cultured
neurons (Michikawa et al., 2000). It might also boost APP-to-Aβ

production (Casserly and Topol, 2004), contribute to proteostasis
dysregulation impairing Aβ plaques’ clearance, foster Aβ

oligomer formation, and increase tau hyperphosphorylation
(Casserly and Topol, 2004; Inbar et al., 2010; Argon and
Gidalevitz, 2015).
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NEUROPROTECTIVE AGENTS TARGETING
PROTEIN MISFOLDING IN CCH

Lipoxin A4 methyl ester (LXA4 ME) ameliorated hippocampal
degeneration in rat under CCH induced by BCCAL and 2VO,
attributable to regulation of ER stress and macroautophagy
decreasing the level of C/EBP homologous protein, beclin-1,
and the LC3-II-to-LC3-I ratio (Jia et al., 2015). Alternatively,
the activation of the extracellular signal-regulated kinase/nuclear
factor erythroid 2-related factor 2 (ERK/Nrf2) pathway might
account for LXA4 ME neuroprotection (Jin et al., 2014). Also,
baclofen has protective properties against hippocampal atrophy
and neuronal apoptosis after CCH. Chronic treatment with
baclofen induced suppression of the cytodestructive autophagic
activity through protein kinase B (Akt)/ERK- B-cell lymphoma
2 (Bcl2)-beclin-1 signaling pathway and up-regulation of the
protective autophagy activating the ionotropic metabotropic γ-
aminobutyric acid (GABA)A receptor-connexin (CX)43/CX36

signaling pathway. Since autophagy is a double-edged sword
mechanism, bi-directional regulative effects on autophagy render
neuroprotection (Liu et al., 2015). The modulation of autophagy
also provides neuroprotection in a murine model of CCH
through BCCAO. Treatment with the fatty acid amide hydrolase
(FAAH) inhibitor URB597, might regulate autophagy, suppress
apoptosis, and ameliorate ultrastructural neurodegeneration
and cognitive decline in the CA1 area via the m-TOR
pathway. This FAAH inhibitor also reversed the CCH-induced
decrease in cannabinoid receptor (CB)1 level (Wang et al.,
2017).

Melatonin administration modulated CCH-induced stress
protein expression restoring chaperone HSP70 level in the
hippocampus in a rat model of BCCAO (Ozacmak et al., 2009).
N-stearoyl-L-tyrosine (NSTyr), an analog of the endogenous
endocannabinoid anandamide (AEA), regulated the UPS
and induced neuroprotection in rat hippocampus increasing
proteasome peptidase activity and consequently inhibiting
ubiquitinated proteins’ intracellular aggregation (Hai et al.,
2013). Previously, NSTyr had mitigated the cognitive deficits
and restored hippocampal levels of the microtubule-associated
protein 2 (MAP-2) and the synaptophysin protein in rats
subjected to CCH (Lin et al., 2010). Besides, NSTyr induced
neuroprotective effects on rat brain slices under OGD as
well (Yao et al., 2009) (Table 1). In our laboratory, we have
also found an AEA analog, Palmitoylethanolamide, could

reverse behavioral dysfunctions and attenuate alterations in
hippocampal MAP-2 levels in a murine model of acute hypoxia
(Herrera et al., 2018). This experimental model of hypoxia is
also known for inducing protein ubiquitination (Herrera et al.,
2017).

FUTURE DIRECTIONS

Neuroprotective targets in protein misfolding are represented by
the different steps in the production and processing of proteins:
synthesis, folding, repair, and degradation. The down-regulation
of translation stands for an initial approach, aimed at reducing
the load on molecular chaperones system. Enhancing and
potentiating this system might represent an alternative approach
since chaperones are responsible for the adequate protein folding
and conformational repair when necessary. The up-regulation of
the degrading pathways is another possibility along with non-
toxic inclusions formation (Sweeney et al., 2017). Additionally,
ER stress attenuation may protect from protein misfolding
and aggregation. To date, increasing evidence pinpoints this
strategy as a promising intervention in different animal models of
neurodegeneration via genetic or pharmacological therapy (Hetz
and Mollereau, 2014).

CCH is a chronic and silent disease characterized by years-
standing of insufficient brain perfusion, concurrent with the
worldwide highly prevalent MetS. Several studies were published
using different models of CCH focusing mainly on inflammatory
processes and cell death. Little research has paid attention to early
signs of neurodegeneration like protein misfolding. The adequate
function of the protein folding machinery critically depends on
CBF and appears as a potential mechanism linking CCH with
AD. With regard to CCH, active research is ongoing to uncover
the mechanisms responsible for proteostatic network disbalance
like the chaperones, UPR, and autophagy. Cellular autophagy is
one of the most studied pathways of proteostatic cell response
to insufficient brain blood supply. Future studies are encouraged
to evaluate how mTOR affects autophagy and ER stress. Also,
regulating the degree of eIF2α phosphorylation, which can be
modified using specific compounds, may offer a promising
approach to control ER stress in various diseases (Lindholm
et al., 2017). Further investigation is required to explore the
role of specific chaperones and the UPR system in CCH
models. Conjointly, different animal models should be brought

TABLE 1 | Neuroprotective agents targeting protein misfolding in CCH.

Agent Pathway Proteostatic complex References

NSTyr N-stearoyl- L-tyrosine UPS Hai et al., 2013

LXA4 ME Lipoxin A4 methyl ester m-TOR ER stress—macroautophagy Jia et al., 2015

Melatonin HSP70 HSP70 Ozacmak et al., 2009

Baclofen GABAB receptors agonist Autophagy Liu et al., 2015

URB597 m-TOR Autophagy Wang et al., 2017

This table summarizes the most relevant findings on targeting protein misfolding in CCH over the last few years. Chronic Cerebral Hypoperfusion (CCH), Ubiquitine Proteosome System

(UPS), Heat Shock Protein (HSP).
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about to broaden our knowledge in this matters. Therapeutic
drug options targeting misfolded proteins at different points
in the proteostatic pathway are likely to emerge as promising
neuroprotective treatments for cognitive impairment following
CCH.
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Šimić, G., Babić Leko, M., Wray, S., Harrington, C., and Delalle, I., Jovanov-
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