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The level of pain perception is correlated with the magnitude of pain-evoked brain

responses, such as laser-evoked potentials (LEP), across trials. The positive LEP-pain

relationship lays the foundation for pain prediction based on single-trial LEP, but

cross-individual pain prediction does not have a good performance because the

LEP-pain relationship exhibits substantial cross-individual difference. In this study, we aim

to explain the cross-individual difference in the LEP-pain relationship using inter-stimulus

EEG (isEEG) features. The isEEG features (root mean square as magnitude and mean

square successive difference as temporal variability) were estimated from isEEG data (at

full band and five frequency bands) recorded between painful stimuli. A linear model

was fitted to investigate the relationship between pain ratings and LEP response for

fast-pain trials on a trial-by-trial basis. Then the correlation between isEEG features and

the parameters of LEP-pain model (slope and intercept) was evaluated. We found that

the magnitude and temporal variability of isEEG could modulate the parameters of an

individual’s linear LEP-pain model for fast-pain trials. Based on this, we further developed

a new individualized fast-pain prediction scheme, which only used training individuals with

similar isEEG features as the test individual to train the fast-pain prediction model, and

obtained improved accuracy in cross-individual fast-pain prediction. The findings could

help elucidate the neural mechanism of cross-individual difference in pain experience and

the proposed fast-pain prediction scheme could be potentially used as a practical and

feasible pain prediction method in clinical practice.
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INTRODUCTION

Pain is a subjective perception and is primarily assessed by means of self-report. Because
the capacity to effectively report pain is limited in vulnerable population groups (e.g., babies
and people with cognitive or communicative impairments), assessment of pain levels based on
physiological signals has attracted a growing interest (Wager et al., 2013). For example, several
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pain prediction models based on functional magnetic resonance
imaging (fMRI) have been developed to assess pain in
healthy persons and patients with chronic pain (Wager
et al., 2013; López-Solà et al., 2017). As compared to fMRI,
electroencephalography (EEG) could capture a wealth of pain-
related brain activities in a cheap and easy-to-use manner, so
EEG-based pain assessment is a promising technique in clinical
settings. The most commonly used pain-related EEG activities
in research are laser-evoked potentials (LEP), and the strong
relationship between the LEP amplitudes and the subjective pain
intensity on a trial-by-trial basis has been well characterized
(Garcíalarrea et al., 1997; Iannetti et al., 2005; Hu et al., 2014).
Based on the singe-trial LEP-pain relationship, our previous
study has been able to predict subjective pain ratings from single-
trial LEP features and achieved an accuracy greater than 80%
(Huang et al., 2013a). The relationship between EEG activities
and pain rating in other pain paradigms has also been identified
and been used to develop EEG-based pain predictionmodels. For
example, based on the spectral characteristics of EEG before drug
treatment, one study classified responders and non-responders
and presented the application of EEG-based pain models in the
prediction of analgesic effect (Gram et al., 2015).

An EEG-based pain prediction model can be achieved at
within-individual level (themodel is trained on and applied to the
same individual) or at cross-individual level (the model is trained
on a group of individuals but applied to different individuals)
(Huang et al., 2013b). Cross-individual pain prediction is more
desired in clinical practice but it normally has a lower accuracy
than within-individual prediction (Huang et al., 2013b), because
the relationship between brain activity and pain ratings could
vary largely among individuals. Actually, each individual has a
unique prediction model that links his/her neural activities and
pain perception. The substantial cross-individual variability in
pain experience has been well studied, and it could be attributed
to genetic constitution, socio-cultural variables, and cognitive
states (Coghill et al., 2003; Tracey and Mantyh, 2007).

Some studies have also explored neural correlates of cross-
individual variability in pain experience. The modulating effect
of EEG on perceived pain intensity and pain-evoked neural
responses (such as LEP) has been well documented in literature
(Babiloni et al., 2008; Zhang and Ding, 2010; Anderson and
Ding, 2011; Lange et al., 2012) and studied in our previous work
(Bai et al., 2016; Tu et al., 2016). For example, an individual’s
pain-evoked LEP responses are significantly correlated with
his/her spontaneous EEG in terms of magnitude (Bai et al.,
2016), and the magnitudes of pre-stimulus EEG alpha and
gamma oscillations modulate the forthcoming pain perception
and LEP amplitude (Tu et al., 2016). Besides the magnitude
of EEG, the temporal variability of EEG is also found to play
a key role in effective functioning of various sensory systems,
including visual (Treisman, 1964), auditory (Galin , 1964) and
somatosensory (Zotterman, 1953). But, it remains unknown
whether temporal variability of EEG is related to pain perception.
As for fMRI studies, it has been shown that temporal variability
of fMRI Blood Oxygenation Level Dependent (BOLD) signals
is correlated with cross-individual variability in pain perception
(Rogachov et al., 2016). Actually, investigating the functions

and mechanisms of temporal signal variability, or moment-to-
moment variability, of neural activities has gradually gained
popularity. Temporal variability of neural signals can be observed
at every level of the nervous system (Faisal et al., 2008), and it
is not merely noise but functionally meaningful. An increasing
number of work has confirmed the role of temporal brain
signal variability as an individual differences measure across
cohorts and across tasks (Garrett et al., 2013b). Based on
above-mentioned studies, we can conclude that the mean and
temporal variability of EEG and fMRI in the resting-state could
be correlated with subjective pain ratings as well as pain-related
neural responses.

In this study, we hypothesize that the parameters of a
single-trial LEP-based pain prediction model are correlated with
features of inter-stimulus EEG (isEEG). We are interested in
isEEG correlates because isEEG is readily available during LEP
recording and it is not necessary to do extra experiments
to collect resting-state EEG or potential correlates of other
modalities, such as genomic data and socio-culture variables.
Also, previous studies have shown that the features extracted
from inter-stimulus brain signals and spontaneous brain signals
shared some similarities (Fair et al., 2007; Ganger et al., 2015).
We aim to explore isEEG features (in terms of magnitude and
temporal variability of isEEG rhythms) that are correlated with an
individual’s LEP-pain model parameters. More precisely, for each
individual we train a simple linear prediction model to link the
intensities of perceived pain and corresponding LEP magnitudes
and then correlate the model parameters (slope and intercept)
with isEEG features. Toward this goal, we collected isEEG/LEP
data from 34 healthy subjects in a laser-evoked pain experiment.
Then, we extracted magnitude and temporal variability of isEEG
and correlated them with parameters of LEP-pain models across
individuals.

Further, we aim to utilize the isEEG correlates of the cross-
individual variability in the LEP-pain model to guide the design
of individualized LEP-pain prediction models. To this end, we
proposed a scheme to individualize the parameters of the LEP-
pain prediction model based on isEEG correlates to improve
the accuracy of cross-individual pain prediction. More precisely,
an individual’s pain prediction model will be trained only from
those individuals with similar isEEG correlates, and our results
show that such a scheme can achieve higher accuracy in pain
prediction.

MATERIALS AND METHODS

Participants
Thirty-four right-handed healthy undergraduates (21.6 ± 1.7
years; 17M/17F) were enrolled and the inclusion criteria include:
(1) non-smokers; (2) no history of chronic pain; (3) no acute pain
symptom up to 4 weeks before the experiment; (4) no currently
use of any medication. Before the experiment, all participants
were familiarized with the details of procedure and gave written
informed consent. The study was approved by the local ethics
committee. Note that this dataset has been used in previously
published articles (Hu et al., 2014; Bai et al., 2016).
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Experimental Design
Nociceptive stimulation was produced by an infrared
neodymium yttrium aluminum perovskite (Nd:YAP) laser with
a wavelength of 1.34µm (Electronical Engineering, Italy). With
this wavelength, laser pulse could activate nociceptive terminals
in superficial skin (Iannetti et al., 2006). The stimulation site was
located at the medial side of the dorsum of left hand, between the
first and third metacarpus. A helium-neon laser pointed to the
region to be stimulated and the laser beam was transmitted via
an optic fiber with a preset diameter of 38 mm2. The duration
of laser stimulation was fixed at 4ms and the target region
was shifted by more than 1 cm in a random direction to avoid
sensitization or nociceptor fatigue.

For each trial, the intensity of perceived pain was evaluated
using a numerical rating scale (NRS) from 0 (no pain) to 10 (pain
as bad as possible). In this experiment, participants were asked
to report the intensity of pain perception with 4 as the pinprick
pain (typical sensation for Aδ fiber-related fast-pain) threshold
(Magerl et al., 1999; Basbaum and Bushnell, 2009). Only fast-
pain trials will be included in following data analysis since the
N2-P2 amplitude increased significantly only when the subjective
pain intensity was larger than 4 (Bai et al., 2016). Prior to EEG
experiment, the tolerable highest energy of the laser stimulation
was determined for each participant by increasing the energy in
steps of 0.25 J, until an NRS rating of 8 was reported. For each
participant, 12–15 different levels of laser energies (from 1 to
the tolerable highest energy in the range of 3.75–4.5 J, in step
of 0.25 J) were adopted and 10 laser pulses at each energy level
were delivered, resulting in a total of 120–150 pulses. The number
of laser energy levels was different between subjects, because of
the fixed lower limit (1 J) and the variable upper limit (3.75–
4.5 J). The order of energy levels was pseudorandomized and
the inter-stimulus interval varied randomly between 10 and 15 s
(rectangular distribution).

EEG Data Acquisition and Preprocessing
EEG experiment was carried out in a silent and temperature-
controlled room. Participants were seated in a comfortable
chair and wore protective goggles. The EEG data collection
was performed with a 64-channel EEG cap (Brain Products
GmbH, Munich, Germany). The sampling rate was 1,000Hz and
the passband was 0.01–100Hz. The electrode impedances were
kept lower than 10 k�. Electrooculographic (EOG) signals were
simultaneously recorded using surface electrodes to monitor
ocular movements and eye blinks.

EEG data were analyzed using EEGLAB (Delorme and
Makeig, 2004) and in-house MATLAB scripts (MathWorks).
Continuous EEG data were band-pass filtered from 1 to
30Hz using FIR filters. EEG data were further corrected using
independent component analysis (ICA) algorithm (Makeig et al.,
1997; Delorme and Makeig, 2004; Onton et al., 2006). ICA
components that were considered as purely or predominantly
driven by artifacts (such as ocular artifacts, myogenic artifacts)
were discarded based on visual inspection of power spectrum,
time course and topography. The remaining components were
re-referenced to nose.

Feature Extraction
The N2-P2 complex is the largest deflection in LEP, which
is a negative-positive vertex potential with maximal scalp
distribution over the central region (Iannetti et al., 2008). LEP
was quantified by the N2-P2 amplitude (peak-to-peak), which
was calculated as the absolute difference between the N2 and P2
peak amplitudes measured from the most negative and positive
deflections between 150 and 500ms after stimulus onset.

The isEEG features (magnitude and temporal variability)
were estimated from spontaneous EEG data recorded between
adjacent laser stimuli. As shown in Figure 1, in the whole
isEEG/LEP recording, we extracted a number of isEEG epochs
from 2 s after each stimulus to the onset time of the next
stimulus. Because the inter-stimulus interval varied randomly
between 10 and 15 s, these isEEG epochs have a length ranging
from 8 to 13 s. To avoid the influence of different data lengths
on the estimation of isEEG features, these isEEG epochs were
further segmented into isEEG epochs of 2 s so that each isEEG
epoch could have 4–6 epochs. Next, we used random sampling
with 100 repeated times to approximate the distribution of
isEEG features. At each random sampling, we randomly selected
one 2 s-epoch from each isEEG trial, and calculated its isEEG
feature (magnitude or temporal variability), and then averaged
the isEEG feature across epochs. After 100 times of random
resampling, a distribution of isEEG features was obtained
and its 50% percentile was used in subsequent data analysis
procedures.

The magnitude of each isEEG epoch is quantified by root
mean square (RMS):

RMS =

√

1

K

∑K

k=1
S2
k

(1)

where sk is the k-th sample point of one isEEG epoch, and K =

2000 is the total number of time points of one isEEG epoch.
Temporal variability can be calculated in many forms, such

as variance (He, 2011), standard deviation (SD) (Garrett et al.,
2013a), mean square successive difference (MSSD) (Samanez-
Larkin et al., 2010; Li et al., 2017). Here in this study, the temporal
variability of isEEG was quantified by the normalized mean
squared successive difference (nMSSD) (Neumann et al., 1941).
Mean squared successive difference (MSSD) is a popularly used
metric to characterize the temporal variability of physiological
signals such as heart rate and fMRI BOLD signals (Berntson
et al., 2005; Samanez-Larkin et al., 2010). Compared with other
measures of temporal variability (such as SD), MSSD is not
affected by low frequency drift and thus is more robust and
reliable (Neumann et al., 1941; Li et al., 2017). Furthermore,
because of the inherent relationship between signal strength and
signal variability (i.e., the temporal variability calculated asMSSD
or SD is positively correlated with the magnitude), MSSD should
be normalized by RMS to disassociate the influence of signal
strength (i.e., the magnitude) from signal variability. Hence, the
normalized MSSD (nMSSD) was calculated as MSSD divided by
the square of RMS:
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FIGURE 1 | Illustration of extraction of isEEG epochs in the pain experiments. These 2s isEEG epochs were extracted from inter-stimulus EEG activity between laser

stimuli.

FIGURE 2 | Group averages and scalp topographies of LEP responses at different NRS levels. LEP waveforms were recorded from the vertex (Cz-nose). The group

mean value for N2 peak is −7.58 ± 8.88 µV, −19.06 ± 12.72 µV and −30.13 ± 18.84 µV for three levels respectively. The group mean value for P2 peak is 7.14 ±

8.20 µV, 19.38 ± 11.98 µV and 31.34 ± 12.70 µV for three levels respectively. The scalp topographies of N2 and P2 waves are displayed at their peak latencies.

nMSSD =

[

1

K − 1

∑K−1

k=1
(Sk+1 − Sk)

2

]

/RMS2 (2)

where sk and sk+1 are the k-th and (k + 1)-th sample points one
isEEG epoch, and K = 2000 is the total number of time points
of one isEEG epoch.

The magnitude and temporal variability of isEEG (as
quantified by RMS and nMSSD) were calculated for full-band
isEEG waveforms as well as for band-limited isEEG waveforms
at five frequency bands: delta (1–3Hz), theta (4–7Hz),
alpha-1 (8–10Hz), alpha-2 (11–13Hz) and beta (14–30Hz).
The isEEG epochs were band-pass filtered with minimum-
phase causal FIR filters to obtain waveforms at these five
frequency bands.

Relationship Between isEEG Features and
LEP-Pain Model Parameters
A linear regression model was fitted to investigate the single-
trial relationship between pain ratings and LEP response for
fast-pain trials. Note that, here we only consider fast-pain trials
(NRS>4) because our previous study (Bai et al., 2016) has shown
that significant correlation has only been observed between
pain ratings and LEP responses of fast-pain trials. Actually, the
magnitude of low-pain LEPs has no difference with that of isEEG.

For the i-th trial, the relationship between perceived pain
rating and corresponding LEP magnitude could be described
with a simple linear regression model as:

yi = axi + b (3)

where yi is the pain rating, xi is the LEP magnitude, a and b
are respectively the slope and intercept of the linear regression
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FIGURE 3 | Relationship between pain intensity and N2-P2 amplitude at Cz.

Colored dots represent the N2-P2 amplitudes of fast-pain trials averaged

across participants, and error bars denote the SD values across participants.

The blue line represents the fitted linear model for low-pain trials and fast-pain

trials separately. Note that, when NRS = 10, the N2-P2 amplitudes are slightly

lower than those of NRS = 9. The possible reason is that only 18 participants

had fast-pain trials of NRS = 10, which might make the estimation have large

variance and not reliable.

model. Therefore, for each participant, its individual LEP-pain
model is characterized by two parameters: the slope a and the
intercept b.

For a better interpretation of the model parameters, the linear
model of (3) can be re-written as another equivalent linearmodel:

xi =

(

1

a

)

yi −
b

a
= cyi + d (4)

where c = 1/a and d = –b/a are respectively the slope and
intercept of the linear model (4). It can be seen clearly that, the
slopes of two linear models (3) and (4) are reciprocals, and d in
(4) is the “x-intercept” (where the linear line crosses the x-axis or
the value of x when y= 0) in (3).

Subsequently, the correlation between isEEG features (RMS
and nMSSD of full-band isEEG waveforms and isEEG at five
frequency bands) and the parameters of LEP-pain model (4) was
evaluated in order to identify isEEG correlates of the LEP-pain
model parameters. Bonferroni correction is used to address the
multiple comparison problem.

Individualized LEP-Pain Prediction
Based on the identified isEEG correlates of the linear LEP-pain
prediction model, we further develop a scheme for individualized
fast-pain prediction. The basic idea is: an individual’s pain rating
will be predicted only using models from those individuals with
similar distributions of model-related isEEG correlates. These
isEEG correlates include magnitude and temporal variability of

full-band isEEG and band-limited isEEG at each frequency band,
and they were identified by the method in section of feature
extraction. The scheme is detailed as follows.

(1) A linear LEP-pain prediction model is trained within each
individual, resulting in N prediction models.

(2) Taking m-th individual as the test individual, his/her pain
ratings can be predicted using each of the prediction models
of otherN – 1 training individuals. That is, the i-th LEP trial of
the m-th individual has N – 1 predicted NRS values, denoted

as R
(n)
m,i, n= 1, 2, . . . , N and n 6= m.

(3) The difference (measured as the Euclid distance) of isEEG
correlates, diffn, is calculated between the test individual and
the n-th training individual. A weight wn is then calculated
from diffn and assigned to the predicted NRS values of the
m-th individual from the n-th training individual. The weight
is calculated as follows: (i) if diffn is larger than the mean
value across all N – 1 individuals, wn is set to 0; (ii) otherwise,
the weight is wn = max(diff )–diffn, where max(diff ) is the
maximum value of all N – 1 diffn values.

(4) Finally, the pain rating of the i-th LEP trial of the m-th

individual is calculated as the weighted average of R
(n)
m,i:

Rm,i =
1

∑

w

∑N

n = 1
n 6= m

wnR
(n)
m,i,with

∑

w
=

∑N

n = 1
n 6= m

wn (5)

It can be seen from the proposed scheme that only individuals
with similar values of isEEG correlates (i.e., individuals with
similar LEP-pain relationship) are used to predict the pain ratings
of the test individual, and the weight is inversely proportional to
the distance of isEEG correlates between the test individual and
the training individual.

Leave-one-individual-out cross validation was performed for
the proposed individualized pain prediction scheme as well as for
the conventional cross-individual pain prediction. To evaluate
the prediction performance, Mean Absolute Error (MAE) was
calculated as follows,

MAE =
1

T

∑T

i=1

∣

∣

∣
Ri − R̂l

∣

∣

∣
(6)

where T is the number of trials, Ri and R̂l are the true and
predicted pain rating for the i-th trial. The MAE values obtained
from the proposed individualized pain prediction scheme and
from the conventional cross-individual pain prediction model
were compared using two-sample paired t-test.

RESULTS

Relationship Between LEP Responses and
Pain Ratings
Two participants were discarded from the further analysis
because of he/she only had fast-pain trials with NRS< 7. Figure 2
shows the group-averaged waveforms of the LEP responses
elicited at Cz with three different NRS levels (4<NRS≤6,
6<NRS≤8, 8<NRS≤10), and the scalp topographies at the peak
latencies of the N2 and P2 waves. When only fast-pain trials

Frontiers in Neuroscience | www.frontiersin.org 5 May 2018 | Volume 12 | Article 340

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. EEG Modulate LEP-Pain Relationship

FIGURE 4 | Significant correlation between temporal variability (nMSSD) of isEEG in alpha-2 band (11–13Hz) and the fitting slope of the linear LEP-pain model (4).

were included, linear correlation was observed between pain
perception and corresponding brain responses (as shown in
Figure 3).

Relationship Between isEEG Features and
LEP-Pain Model Parameters
The isEEG of alpha-2 band (11–13Hz) across almost the whole
brain showed significant negative correlation between nMSSD
and the model slope of (4), as shown in Figure 4. Also, we
observed that the model intercept of (4) showed significant
positive correlation with RMS of isEEG across almost the
whole brain in all frequency bands, as shown in Figure 5.
Non-significant results are only reported in the Supplementary
Material, as shown in Figure S1 and Figure S2.

Individualized LEP-Pain Prediction Model
The individualized LEP-based fast-pain prediction scheme can
achieve a prediction error (MAE) of 1.19 ± 0.35 (mean ± SD),
which is significantly smaller than the MAE, 1.36 ± 0.51, of the
conventional cross-individual LEP-pain prediction (p = 0.002;
two-sample paired t-test).

DISCUSSION

In this study, by analyzing isEEG data recorded during pain
experiments from healthy participants, we obtained two main
findings. First, both the magnitude (measured by RMS) and
temporal variability (measured by nMSSD) of isEEG are
related to cross-individual difference in the parameters of LEP-
pain model for fast-pain prediction. Second, by selecting and
weighting training individuals according to isEEG correlates of
LEP-pain model, cross-individual fast-pain prediction accuracy
could be significantly improved.

Linear LEP-Pain Prediction Model
The strong correlation between perceived pain intensity and
the N2-P2 amplitude of LEP response at the single-trial level
has been validated by numerous studies (Iannetti et al., 2008;
Huang et al., 2013b; Hu et al., 2014). However, previous LEP
studies usually adopted painful stimuli which can produce a
clear pinprick pain sensation (Iannetti et al., 2008; Huang et al.,
2013b; de Tommaso et al., 2017). Different from that, this study
collected LEP data during stimulation with a wide range of energy
intensities, including lower energy intensities which could not
induce Aδ-related N2-P2 response. Based on this dataset, it has
been shown that the linear relationship between pain ratings and
LEP amplitude only exists for fast-pain trials (with NRS> 4) (Bai
et al., 2016). Therefore, if the N2-P2 amplitude at Cz is used as
the LEP feature to predict pain ratings of fast-pain trials, then the
LEP-pain prediction model is defined by two parameters (slope
and intercept). Different individuals have different LEP-pain
relationship, so there is substantial cross-individual variability
in the slope and intercept of the linear pain prediction models.
A complex and nonlinear pain prediction model (other than
the linear model) could be used for pain prediction, but it
contains more model parameters whose meanings are difficult to
be interpreted. So, we used a simple linear model to describe the
relationship between single-trial LEP and pain rating.

Positive Correlation Between isEEG
Magnitude and Model Intercept
Significant positive correlation was observed between RMS
of isEEG and the intercept of the LEP-pain model for fast-
pain prediction (4) at almost all frequency bands. Because the
intercept is an inherent part of the LEP responses in (4) and the
magnitude of LEP responses is positively correlated with isEEG
magnitude for each individual (Bai et al., 2016), the intercept also
has a positive relationship with isEEG magnitude. Actually, the
positive relationship between the magnitude of isEEG and LEP

Frontiers in Neuroscience | www.frontiersin.org 6 May 2018 | Volume 12 | Article 340

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. EEG Modulate LEP-Pain Relationship

FIGURE 5 | Significant correlation between isEEG magnitude (RMS) and the fitting intercept of the linear LEP-pain model (4).

has been observed in our earlier research from the same data
set (Bai et al., 2016), which is due to anatomical factors (such
as skull thickness and the orientation of the gray matter) and
scale-electrode impedances.

Negative Correlation Between Alpha-2
isEEG Temporal Variability and Model
Slope
Significant negative correlation between isEEG temporal
variability (nMSSD) and the model slope was only observed in
alpha-2 band (11–13Hz). Alpha band activities are the dominant
oscillations in the human brain, with a mean frequency of
approximately 10Hz. Growing evidence has shown that two
independent alpha rhythmical components exist (alpha-1 and
alpha-2 sub-bands) and they have different cortical sources and
different physiological meanings and functional roles (Bazanova
and Vernon, 2014). For example, their activities are different for
dissimilar cognitive demands (Michels et al., 2008). Therefore,

in pain research, alpha activities mediating the cognitive
modulations of pain experience may display different activities
in two alpha sub-bands. In this study, the significant correlation
we observed in alpha-2 was maximal over ipsilateral and central
electrodes. During the inter-stimulus period, alpha activities over
central regions may mainly reflect the cognitive modulations
such as anticipation and attention, since previous studies have
revealed that the expectation period before the noxious stimulus
is characterized by increased activations within pain-related
cortical regions, including the bilateral anterior cingulate cortex,
and medial prefrontal cortex (Keltner et al., 2006). Besides, as
revealed in our previous study, pre-stimulus alpha activities,
located bilaterally over central regions, significantly modulated
the perceived pain intensity of subsequent stimulus and may
partly reflect the neural activity of the sensory-motor network
(Tu et al., 2016). Thus, alpha oscillation with greater dynamic
range may represent better capacity for subject to engage
antinociceptive and sensory-motor system and to manage their
pain.
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Individualized Cross-Individual Pain
Prediction Using isEEG Correlates
Compared with within-individual pain prediction, cross-
individual prediction is more useful for clinical uses because
it does not need subjective pain ratings for new individuals.
However, the performance of cross-individual pain prediction
is still not satisfactory because of the inherent cross-individual
variability in pain perception. Cross-individual variability in
pain perception could be observed in subjective pain ratings,
pain-evoked brain responses or the relationship between
them. In order to solve this problem for higher accuracy in
cross-individual pain prediction, our previous study employed
EEG-based normalization to incorporate individual traits that
are related to cross-individual variability into the pain prediction
model (Bai et al., 2016). The proposed normalization method
was based on the stronger cross-individual correlation between
the magnitude of isEEG and LEP (Bai et al., 2016). Here in
this study, we observed that isEEG magnitude and temporal
variability are related to cross-individual variability that in
the LEP-pain model, and used isEEG correlates to tailor the
parameters of the LEP-pain model to improve the accuracy of
fast-pain prediction. The idea is to only use individuals with
similar isEEG correlates to construct a LEP-pain prediction
model for a new individual. The proposed method has achieved
significantly lower estimation error in cross-individual pain
prediction and could be potentially used as a practical and
feasible pain prediction method in clinical practice.

LIMITATIONS AND FUTURE WORK

Proper assessment of pain is imperative for the development
of an effective pain management plan, however, self-report
pain is not available in some vulnerable populations (e.g.,
non-communicative patients with disorders of consciousness)
(Schnakers et al., 2010). Therefore, the objective assessment
of perceived pain from brain activity would be of enormous
clinical implications (Huang et al., 2013b; Hu and Iannetti, 2016).
In order to develop a more accurate and practical EEG-based
pain prediction method, it is an important issue to reduce the
error brought by cross-individual difference in pain (Fillingim,
2016). Characterizing the relationship between isEEG activities
and LEP-pain prediction model parameters enables to capture
isEEG correlates of cross-individual difference in the LEP-pain
relationship, which is an important step to achieve individualized
pain prediction. Here are some limitations of the current work
and also outlines directions for future research. In this study, we

observed isEEG features which were related to cross-individual
differences in pain perception. However, much more factors,
including genetic, environmental, psychological, and cognitive
factors, may contribute to cross-individual differences in pain
perception (Ochsner et al., 2006; Coghill, 2010). Future study
with larger sample size and integrated dataset might find more
kinds of features with significant correlation, then can make
much more improvement in cross-individual pain prediction.
Besides, we used isEEG data extracted from the inter-stimulus
periods from nociceptive-stimulation experiment, which were
inevitably affected by the periods with stimulation. Thus, future
study could record resting-state EEG signal to validate the results
we have achieved. Last but not least, advanced machine learning
methods, such as transfer learning, could be applied to reduce
cross-individual variability.
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