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The amygdala plays a major role in the processing of physiologic and behavioral

responses to stress and is characterized by gamma-aminobutyric acid (GABA)-mediated

high inhibitory tone under resting state. Human and animal studies showed that stress

lead to a hyperactivity of amygdala, which was accompanied by the removal of inhibitory

control. However, the contribution of hyperactivity of amygdala to stress-induced

neuropsychiatric diseases, such as anxiety and mood disorders, is still dubious. In this

review, we will summarize stress-induced various structural and functional alterations

in amygdala, including the GABA receptors expression, GABAergic transmission

and synaptic plasticity. It may provide new insight on the neuropathologic and

neurophysiological mechanisms of neuropsychiatric diseases.
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INTRODUCTION

Stress is defined as a dynamic process to maintain organismal dynamic homeostasis, which is
depicting the physiological and psychological responses of the organism to environmental stimulus.
Various psychopathic diseases are generated while the organismal adaptive response is insufficient
to sustain the basic homeostasis (Herbert, 1997; Bale, 2006). Thus, stress is an established and
pivotal precipitating factor for several neuropsychiatric diseases, especially for anxiety, mood
disorders and post-traumatic stress disorder (PTSD) (Koenigs and Grafman, 2009; Mahan and
Ressler, 2012). Acute or chronic exposure to stress can lead to numerous long lasting adaptive
changes in stress-susceptible brain regions, one of which exhibits entire disparate functional and
structural alterations is the amygdala nuclei (Davidson et al., 2002; McEwen et al., 2016; Liu et al.,
2017). Mounts of animal models indicate that the amygdala is hyperactivated or hyperreactive
under stress state (Roozendaal et al., 1997; Pitman et al., 2012). Neuroimaging data also showed
that patients withmood disorder always display an increased amygdalar activity (Bryant et al., 2008;
Frodl et al., 2008).

Although the significant role of amygdalar activity in affecting stress-induced neuropsychiatric
diseases is consistent, the specific molecular mechanisms and underlying neural circuitry are
still obscure. Notably, GABA is one of the most important inhibitory neurotransmitters in the
central nervous system (CNS) (Shiah and Yatham, 1998). Under resting state, the amygdala
sustains a high GABAergic inhibitory control which contributes to the organism’s resistance to
various physiological and environmental stressors (Skórzewska et al., 2015). The hyperactivity
and hyperresponsiveness of amygdala induced by stress is always accompanied by the removal
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of inhibitory control. Whether the impaired inhibitory control
is the potential pathological cause of the generation of various
neuropsychiatric diseases is still inconclusive. Therefore, in this
article, we reviewed the current relatively studies and attempt
to conclude the stress-induced neurotransmission alterations in
amygdala and throw light on the potential therapeutic capacity
in stress-related neuropsychiatric diseases.

STRESS-RELATED NEUROPSYCHIATRIC
DISEASES AND AMYGDALA

Neuropsychiatric illness is affected by several risk factors,
including epigenetic factors, genetic factors, internal stimulus
and environmental stimulus (Duman et al., 2016; Bartlett et al.,
2017). Long-lasting stress condition induced by severe trauma,
emotional arousal or stressful experiences appears to be one
of the most prior inductive factors of several neuropsychiatric
disorders, such as anxiety disorder, depression, schizophrenia,
and PTSD (Yin et al., 2016). Common acute environmental
stimuli for animal models comprise foot shock, restraint,
social defeat and predator exposure (Fuchs, 2005; Hill et al.,
2012). Acute exposure to these stimuli can lead to anxiety-like
behavior (Sandi and Richter-Levin, 2009). Long lasting stress is a
participating factor for anxiety and othermood disorders. Instead
of physical stimuli mentioned above, fear conditioning models
are selected to evaluate the persistence of traumatic memories
and the extinction of fear (Mahan and Ressler, 2012). Arousal of
traumatic memories is significantly associated with PTSD (Klein
et al., 2003). Moreover, due to the hyperactivated hypothalamic
pituitary adrenal (HPA) axis under stress situation, repeated
management of glucocorticoid can be used as an experimental
stress model (Angelier and Wingfield, 2013).

Clinical and animal studies showed that exposure to acute
or chronic stress can induce morphological and functional
changes in amygdala nuclei, which remarkably differ from that
represented in the prefrontal cortex (PFC) and hippocampus.
The predisposition of the amygdala to respond to emotional
stimuli might influence the individual susceptibility to anxiety
disorders. High anxious individuals are particularly more liable
to process emotional information along with the hyperactivity of
amygdala (Sandi and Richter-Levin, 2009).

PFC-AMYGDALA NEURALCIRCUITY IN
STRESS

Amounts of studies have confirmed the significant role of the
PFC in integrating and processing sensory information (Zhuo,
2008; Miskovic and Keil, 2012; Harris and Mrsic-Flogel, 2013).
The PFC can regulate the sensory or emotive stimuli-induced
behavioral and physiological responses via complex connectional
network with other brain structures (Negrón-Oyarzo et al., 2016).
Human and animal studies have implicated the dysfunction
of PFC-amygdala and PFC-hippocampus circuitry in the
pathogenesis of stress-induced neuropsychiatric disorders (Kim
et al., 2011; Duvarci and Pare, 2014). Earlier research suggests
that stimulation of different subregions of the medial prefrontal

cortex (mPFC) projections to the amygdala exerts respectively
inhibitory or excitatory action on the central amygdala (CeA)
neurons (Vidal-Gonzalez et al., 2006). Then, further research
found that restraint stress was reported to induce an increment
of 5-hydroxytryptamine (5-HT) output in the mPFC which
subsequently promote GABA in the basolateral complex of
amygdala (BLA) and selective 5-HT depletion in mPFC can
decrease the stress-induced GABA release in BLA and attenuate
the depression-like behavior (Andolina et al., 2013). These results
indicate that the dysfunction of PFC-amygdala circuit might
implicate in the stress-induced hyperreactivity of amygdala.

The amygdala is a series of nuclei complex and usually divided
into the BLA, the medial amygdala (MeA) and the CeA (Sah
et al., 2003; Gilpin et al., 2015). The BLA can be further divided
into lateral amygdala (LA) and basal amygdala (BA) (Pare and
Duvarci, 2012). The existence of GABAergic interneurons and
projections in amygdala complex is widely acknowledged and it’s
important to sustain the high inhibitory control over amygdala
under resting state. As the major output nucleus of the amygdala,
the CeA contains abundant local GABAergic interneurons and
projections which can inhibit the other subordinated regions
(Ehrlich et al., 2009). Morphological and physiological studies
demonstrated that the intercalated cell clusters (ITCs) comprise
a group of dense GABAergic neurons situated between the
CeA and the BLA, which played an important role in the high
inhibitory control over amygdala. The ITCs of amygdala can
receive projections from BLA (de la Mora et al., 2010; Palomares-
Castillo et al., 2012). As showed in Figure 1, the amygdala mainly
receives sensory input from mPFC and subsequently integrates
and transmits the signaling to other brain regions (McDonald,
1998). The ITCs can also directly receive projections from the
mPFC (Duvarci and Pare, 2014). In addition, the dorsal raphe
nucleus (DRN) 5-HT neurons were reported to participate in
processing stress stimuli via regulating the neurotransmission
in BLA (Christianson et al., 2010). A functional control of
DRN 5-HT neurons by projection from mPFC was reported
(Celada et al., 2002). Therefore, mPFC can also affect amygdala
GABAergic system via regulating DRN 5-HT neurons.

FIGURE 1 | Schematic of PFC-BLA-CeA circuitry. The PFC transmits the

sensory information to the BLA via amounts of glutamatergic projections.

Subsequently, the glutamatergic BLA neurons directly project to the CeA or

indirectly via GABAergic interneurons of ITCs. The PFC can affect BLA

GABAergic system via regulating DRN 5-HT neurons under stress conditions.

Projections from CeA mainly target to regions and brain circuits involved in

physiological and behavioral responses to stress glu-ergic, glutamatergic.
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Taken together, stress-activated mPFC neurons could directly
project to BLA neurons and disrupt the GABAergic control
in BLA, which contributes to the consequent inappropriate
hyperactivation of downstream structures. Therefore, the mPFC
might serve as a gate for sensory information transmission
from BLA to CeA within amygdala microcircuitry. The CeA
of amygdala could finally target to other regions involved in
physiological and behavioral responses to stress (Akmaev et al.,
2004; Pare and Duvarci, 2012).

STRESS, HPA AXIS ACTIVATION AND
AMYGDALA

The HPA axis is the central stress response system. Exposure to
stress can significantly promote the activities of HPA axis and the
synthesis of stress hormones (Menzaghi et al., 1993; Kalin et al.,
1994; Heinrichs et al., 1995; Deppermann et al., 2014). Under
long-lasting stress conditions, sustained hyperactivated HPA
axis and the consequent high circulating glucocorticoids levels
can lead to structural and functional disruption in amygdala
via activating specific receptors (Gray and Bingaman, 1996).
Reciprocally, the amygdala can strengthen the HPA activity via
direct projections to the paraventricular nucleus of hypothalamus
(PVN) (Davis and Shi, 1999).

Several animal studies have shown that administration of
corticosterone into the CeA can potentiate anxiety-like behavior
(Myers et al., 2005). Chronic administration of corticosterone
can imitate the depressed effect of chronic stress on GABAergic
tonic inhibition in LA. Such inhibition is mainly attributed
to the activation of glucocorticoid receptor (GR) rather than
mineralocorticoid receptor (MR) (Liu et al., 2014). Consistently,
it was reported that chronic or acute administration of
dexamethasone, a potent agonist of GR, can significantly cause
a neurotransmission imbalance between glutamate and GABA
via upregulation of GABAergic neurons and downregulation
of glutamatergic neurons in amygdala (Wang et al., 2016). A
substantial number of studies have confirmed the pivotal role of
GR in the HPA axis regulation followed chronic stress (Furay
et al., 2008). These findings suggest that stressors can lead to a
hyperactivity of HPA axis and corticosterone release which both
can despair the GABAergic control of the amygdala via activating
GR, while the specific molecular mechanisms are stilled elusive.

Exposure to chronic stressors and stress-promoted
corticosterone can upregulate the corticotropin releasing
factor (CRF) expression in amygdala (Kalin et al., 1994; Shekhar
et al., 2005). Pharmacological and genetic literatures have shown
that CRF expression in amygdala can mediate the adequate
behavioral responses to stress and increase the anxiety-like
behaviors (Skórzewska et al., 2011; Regev et al., 2012; Callahan
et al., 2013). Administration of a selective CRF1 receptor
antagonist reversed the high corticosterone-induced anxiety-like
behavior (Myers et al., 2005). Depression of CRF expression in
CeA was found to mildly attenuate stress-induced behavioral
abnormality (Regev et al., 2012; Callahan et al., 2013). On
the one hand, GABA is the predominant co-transmitter in
CRF neurons of amygdala (Gafford and Ressler, 2015). Several

studies suggest that the anxiety-facilitated effects of CRF and
CRF receptors partially depend on the interactions with GABA
neurotransmission system in amygdala (Gray, 1993). It was
found that administration of urocortin, a CRF1 and 2 receptors
agonist, into the BLA promoted a long lasting anxiety-like
behavior in rats, which showed a prominent reduction in both
spontaneous and stimulation-evoked inhibitory postsynaptic
currents (IPSCs) (Rainnie et al., 2004). Furthermore, it was found
that application of exogenous CRF can significantly increase the
mean frequency of GABAergic miniature inhibitory postsynaptic
currents (mIPSC). The presynaptic GABA release might be
promoted in the CeA of amygdala, which was associated with the
kappa-opioid receptor (KOR) system in amygdala (Kang-Park
et al., 2015). A recent research demonstrated that chronic,
unpredictable stress increased the amplitude of evoked IPSCs
and connectivity between CRF-expressing neurons in CeA
(Partridge et al., 2016). These results suggest that stress-induced
excessive CRF might induce a depression of local GABAergic
inhibition and a resultant hyperexcitability of the amygdala.
On the other hand, the CRF neurons in CeA of the amygdala
can directly project to the PVN or via indirect GABAergic
projections to the bed nucleus of the stria terminalis (BNST),
which contribute to a further activation of HPA axis and CRF
release (Davis and Shi, 1999). In addition, the MeA of amygdala
can also lead to a disinhibition of PVN via GABAergic projection
neurons (Jankord and Herman, 2008). Inversely, the basal HPA
activity or the HPA axis responses to social interaction is not
affected when the BLA is injured, indicating that the BLA and
HPA axis might be weakly linked (Jankord and Herman, 2008).

AMYGDALAR NEUROTRANSMISSION IN
REGULATION OF STRESS

Other than the internal activation of HPA axis and excess
secretion of stress hormones, short-term or long-term exposure
to external stressors can induce hyperactivity of amygdala.
Stress can induce various alterations of neurotransmission
system in amygdala, mainly in GABA receptors adaption, the
GABAergic inhibition and the synaptic neurotransmission.
Lasting hyperactivity in amygdala might contribute to higher
susceptibility to stress-related neuropsychiatric diseases. It
was well known that the amygdala contains abundant local
GABA interneurons and GABAergic projection neurons (Gilpin
et al., 2015). Enduring high GABAergic inhibition in amygdala
contributes to the resistance from various physiological
and environmental stressors stimuli. Whether the impaired
GABAergic control and hyperactivity in amygdala under stress
exposure contribute to the pathogenesis of the neuropsychiatric
diseases is worthy of investigation.

STRESS-INDUCED PHASIC AND TONIC
INHIBITION

Amygdala activation followed stress exposure is extensively
reported in electrophysiology studies, while the majority of such
studies focus on effect of single external stressor on the firing
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rate or action potentials in amygdala neurons. Few researches
put emphasis on the long lasting stress animal models and their
consequent anxiety- or depression-like behavior alterations.

Isoardi et al. demonstrated that acute restraint stress
suppressed the IPSPs, which is generated by recurrent
activation of GABAergic interneurons in BLA, contributing
to a disinhibition of BLA pyramidal neurons (Isoardi et al.,
2007). Consist with that, the BLA neurons of previously
restrained animals preferred to be evoked and the evoked
response can be normalized by a positive GABAergic modulator
perfusion (Rodríguez Manzanares et al., 2005). These findings
indicate that acute stress contributes to an impairment of evoked
GABAergic inhibition in BLA.

A striking literature investigated the effects of both chronic
immobilization and unpredictable stress on the GABAergic
inhibitory modulation in amygdala. Instead of altering the
GABAergic phasic inhibition, the most basic neurotransmission
form via producing an inhibitory postsynaptic current in a
“point-to-point” way (Mody, 2001), chronic stress was found to
lead to a long-term loss of tonic GABAA receptor (GABAA-R)
currents in the projection neurons in LA of amygdala (Liu et al.,
2014). In contrast to the phasic inhibition, tonic inhibition is
characterized by persistent inhibitory currents via continuously
activation of extrasynaptic GABAA-Rs resulting from ambient
GABA release (Carver and Reddy, 2013). GABAergic inhibitory
control in BLA depends on both GABAergic phasic and tonic
inhibition under resting state and the latter one contributes to
sustaining a high threshold of activating the amygdala (Davern
et al., 2014). A possible explanation for the unaffected phasic
inhibition is that the impairment of phasic inhibition might
occur instantly following exposure to stressor and recover
in the stress-free phase. Furthermore, they also found that
the long-lasting loss of tonic inhibition impaired the ability
of GABA to suppress neuronal firing. Another interesting
result was that long-term exposure (6–8 days) and daily 2 h
exposure both reduced the tonic currents while no significance
was detected in short-term exposure group and daily 15min
exposure group (Liu et al., 2014), indicating that the severity
and duration of stressor exposure proportionally altered the
tonic inhibition in LA. In addition, Aroniadou-Anderjaska1
et al. elucidated that activating the α1A adrenoceptors located in
GABAergic presynaptic terminals of BLA can facilitate GABA
release, which contributes to the tonic inhibition of BLA
pyramidal neurons under resting state (Aroniadou-Anderjaska
et al., 2007). Notably, Rajbhandari et al. first reported that
the noradrenergic (NE) α1 receptors and CRF1 receptors are
colocalized on BLA glutamatergic projection neurons that
innervate the nucleus accumbens (NAcc) (Rajbhandari et al.,
2015). A long-lasting CRF1 receptors activation might induce
a long lasting functional sensitization of the α1 receptors and
subsequently have an effect on the GABAergic transmission of
BLA (Rajbhandari et al., 2015). Taken together, acute or chronic
exposure to external stressors can dampen the GABAergic
inhibition of BLA in different manner through which both
acute and chronic stress can overly activate the downstream
brain regions and contribute to abnormal anxiogenic-like
responses.

STRESS-INDUCED GABA LEVELS AND
GABA RECEPTOR ALTERATION

A number of studies have reported that stress can induce
GABA and GABA receptors alterations in amygdala (Sanders
and Shekhar, 1995; Delaney and Sah, 1999). Accumulating
evidence suggest that GABAA-R subunits in BLA of amygdala
have been reported to mediate the anxiety in contextual
fear conditioning (Jasnow and Huhman, 2001; Maren et al.,
2001; Lin et al., 2009). Traumatic stress can also alter the
expression of GABAA-R subunits (Ardi et al., 2016). An earlier
research showed that juvenile stressor exposure increased the
GABAA α2 and GABAA α3 subunits expression in amygdala
(Jacobson-Pick and Richter-Levin, 2012). Whereas the opposite
results exist, Tzanoulinou S et al. found that peripuberty stress
induced a reduction of GABAA α3 expression in amygdala
and peripubertally stressed mice displayed an increment of
anxiety-like behaviors and impaired sociability at adulthood
(Tzanoulinou et al., 2014). Another research showed that animals
sustaining mild traumatic brain injury (mTBI) displayed anxiety-
like behaviors, in the meanwhile the expression of α1, β2, and
γ2 GABAA-Rs subunits decreased in BLA, which might relate
to the acetylcholine receptor signaling pathway (Almeida-Suhett
et al., 2014). These results suggest that stress-induced reduction
of GABAA-Rs expression, indicating an impaired GABAergic
transmission in amygdala, might affect the vulnerability to stress-
induced behavioral abnormality. A research provides further
support that high-anxiety rats sustaining repeated corticosterone
treatment showed more anxiety-like behavior accompanying
with a decrease in GABAA α2 subunit density in the CeA.
Acute midazolam administration can significantly reverse the
behavior impairment and increase GABAA α2 subunit density
(Skórzewska et al., 2015). Different experimental conditions
and procedure might explain the paradoxical results. Also,
genetic factors, affecting the adaptive expression of GABAA-Rs
followed stress, might result in the susceptivity to stress-induced
neuropsychiatric diseases (Sarro et al., 2014). As we mentioned
above, impaired extrasynaptic GABA receptors-mediated tonic
inhibition contributes to the neuronal hyperactivity induced by
chronic stress in BLA. The synaptic and extrasynaptic GABAA-
Rs adapt to external and internal stressor stimuli in different
manner (Jacob et al., 2008). The available studies mainly focus
on the expression and sensitivity changes of GABAA-Rs followed
stress and few of them discriminate these two types of receptors.
Since the expression of GABAA-Rs displayed a tendency to
be reduced followed stress exposure, this might explain the
suppressed GABAergic inhibition in amygdala under stress
conditions at molecular level.

Previous research has found that patients with mood
disorder, particular depression and anxiety, had a lower GABA
levels in plasma and cerebral spinal fluid than control (Petty
and Sherman, 1984). Stress caused a reduction of glutamic
acid decarboxylase (GAD) expression in amygdala, both in
mRNA level and protein level in amygdala of stressed mice
(Gilabert-Juan et al., 2011; Jacobson-Pick and Richter-Levin,
2012). However, opposite results showing that increased GABA
levels in the venous blood of amygdala were also reported
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followed exposure to predator stress (Cook, 2004). Vivo
microdialysis studies showed that acute restraint stress can
increase GABA efflux in the BLA (Reznikov et al., 2009).
Reagan et al. reported that acute restraint stress can increase
the extracellular glutamate levels while have no effect on GABA
levels in the BLA (Reagan et al., 2012). A recent research
showed that restraint stress can induce an increment of 5-
HT output in the mPFC and subsequently promote the GABA
release in the BLA (Andolina et al., 2013). Taken together,
due to the limitation of current experimental methods, the
neurotransmitter level remains relatively low-sensitivity to be an
indicator or biomarker to assess amygdala’s response to different
stressor stimuli. Contradictory results still exist and need to be
further studied.

STRESS-INDUCED SYNAPTIC PLASTICITY
CHANGES

Lately, an emerging hypothesis revealed that the N-methyl-
D-aspartate receptor (NMDAR)-dependent synaptic plasticity
changes might implicate the pathogenesis of mood disorders
(Gerhard et al., 2016). Thus it’s appropriate to investigate the
stress-induced synaptic plasticity alterations in amygdala and its
interrelation with neuropsychiatric diseases. It was showed that
the GluR1 expression and GluR1 phosphorylation of calcium-
permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (CP-AMPARs) in BLA synaptosome were
increased in a protein kinase A (PKA)-dependent manner
after chronic stress exposure (Yi et al., 2017). Chronic
stress-induced hypertrophy of BLA neuronal dendritic
might contribute to an increment of AMPAR assemblies. It
was well known that long-term AMPAR recruitment and
removal are critical in the role of NMDAR-mediated long-
term potentiation (LTP) (Cain, 1997; Paré, 2004). The LTP in
GABA interneurons contributes to a feed-forward inhibition
of principal neurons in BLA (Sharp, 2017). Although the
behavioral evidence is still absent, the glutamate-mediated
synaptic neurotransmission alterations appear to be involved
in the potential mechanism of stress-induced hyperactivity of
amygdala.

The endogenous cannabinoid (eCB) signaling can modulate
both GABAergic and glutamatergic neurotransmission in BLA.
Chronic restraint stress can reduce cannabinoid receptor type 1
(CB1)-mediated decrement of GABAergic synaptic transmission
in BLA, in contrast with that, exposure to adverse acute
stressors can cause a transient enhancement in short-term
eCB signaling in the CeA (Ramikie and Patel, 2012). In our
research, we demonstrated that exposure to single environmental
stressor disrupted CB1-dependent long-term depression (LTD)
within the BLA to CeA, while the NMDAR-dependent LTP
and LTD of BLA to CeA synaptic transmission were not
affected (Li et al., 2017). Pharmacology experiments showed
that intra-CeA administration of CB1-selective antagonists
prevented the acute stress-induced behavior impairment (Li
et al., 2017). Thus, eCB-CB1 signaling-mediated synaptic
alterations in BLA-CeA microcircuits of amygdala might play

a critical role in the emotional processing following external
stressors.

STRESS-INDUCED AMYGDALA
MORPHOLOGICAL CHANGES

The neuronal and synaptic alterations induced by stress appear
to manifest as long-lasting morphological changes and structural
adaption in amygdala, which might underlie the development of
anxiety or other mood disorders (Kim et al., 2006; Roozendaal
et al., 2009; Christoffel et al., 2011). It was found that after
21 days of stress-free recovery, chronic immobilization stress
can even exhibit dendritic growth on spiny neurons of BLA,
accompanying with enhanced long-lasting anxiety behaviors
(Vyas et al., 2004). Vyas et al. had also reported the similar
chronic immobilization stress-induced increment of dendritic
arborization in pyramidal and stellate neurons of the BLA
(Vyas et al., 2002). It was found that a single immobilization
stress led to a gradual increment of spine density on principal
neurons of the BLA accompanying with enhanced anxiety-
like behavior. Such morphological and behavioral alterations
showed up 10 days after the acute stress exposure (Mitra et al.,
2005). Consist with that, it was found that exposure to 21 days
restraint stress exhibited a reduced expression of neural cell
adhesion molecule (PSA-NCAM) in CeA nuclei of rats (Cordero
et al., 2005; Gilabert-Juan et al., 2011). Given that less dendritic
arborization and spine density were detected in interneurons
expressing PSA-NCAM than interneurons lacking PSA-NCAM,
the chronic stress-triggered reduction of PSA-NCAM altered
the functional connectivity of GABAergic interneurons and
the dendritic reorganization of principal neurons in specific
nucleus of amygdala (Gilabert-Juan et al., 2011). These results
indicate that the generation of acute stress-induced synaptic
alterations needs more time. However, chronic or repeated stress
can instantly lead to a robust and persistent enhancement of
spinogenesis and anxiety-like behaviors.

Stress causes reduction of brain derived neurotrophic factor
(BDNF) expression and the mechanistic target of rapamycin
(mTOR) in synapse, consequently contributing to the loss and
atrophy of specific synapse in the brain regions implicated in
depression, particularly the PFC and the hippocampus (Marsden,
2013; Abelaira et al., 2014; Vose and Stanton, 2017). Strikingly,
the stress-induced BDNF expression in amygdala is inconsistent
with that of PFC and hippocampus. Mounts of evidence have
showed that the expression of BDNF in amygdala was increased
after exposure to stress (Bennett and Lagopoulos, 2014). Opposite
results exist that chronic unpredictable mild stress (CUMS)-
treated rats showed a decrement of the expression of BDNF,
postsynaptic density protein 95 (PSD-95) and synaptophysin in
amygdala (Luo et al., 2013; Zhang et al., 2014). The PSD-95 and
synaptophysin are well known as synapse-related proteins which
can act as markers of synaptogenesis or synaptic potentiation.
Furthermore, Yi et al. found that chronic restraint stress
enhanced the expression of synaptophysin and PSD-95 at BLA
synapses (Yi et al., 2017). Thus, the expression of BDNF in
amygdala exhibited a tendency to increase followed restraint
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stress and this detected increment is in accordance with the
promotion of spinogenesis in BLA induced by chronic stress

Together, chronic stress might induce synaptogenesis and
synaptic incorporation in BLA synapses, while the precise
relationship between the structural and functional synaptic
changes of other nucleus of amygdala and the development
of stress-related neuropsychiatric disease is still obscure. Thus,
further evidence is needed to elucidate the deeper mechanisms.

DISCUSSION

Above all, three remarkable issues arise up and need further
investigation. The first is the distinct regulatory role of different
subregions within the amygdala. As mentioned above, the CeA
and MeA nucleis both have GABAergic projections and can
result in a disinhibition to PVN. While the link between BLA
and HPA axis appears to be delicate, indicating that the BLA
is insensitive to acute stress response. Furthermore, majority
of electrophysiology studies illuminated that the neurons of
BLA prefer to be evoked comparing with the neurons of
CeA and other subregions of amygdala. The distinct role of
these different subregions within the amygdala needs to be
further investigated. The second issue is that whether the
individual difference of GABAA-Rs adaption and morphological
alterations induced by long lasting stress is affected by inherited
genetic factors, which ultimately contribute to the individual
susceptibility to the stress-induced neuropsychiatric diseases.
The last one is the different pathological mechanisms of amygdala
adapted to acute and chronic stress. Electrophysiology results
indicated that acute stress could impair the phasic inhibition
which occurred instantly following exposure to stressor and
then recovered in the stress-free phase. In contrast to the
acute stress, chronic stress was reported to impair the tonic
inhibition in amygdala and consequently affect the ability of
GABA to suppress neuronal firing. Themorphological alterations
of amygdala to acute stress can be accumulated. The effect of
long lasting synaptic alterations induced by stress is manifested as
synaptic morphological adaption. Significantly, the restructuring
of dendrite and spines in amygdala is companied by stress-
related behavior abnormalities. However, whether regulating the
synaptic plasticity is involved in the underlying mechanisms of
available antidepressant and anxiolytic therapy is still unclarified.

In conclusion, at the cellular and molecular level there are
still inconsistent neurological alterations of the amygdala in

various stress models. It’s still argued that the hyperactivity and

hyperresponsiveness of amygdala induced by stress is the primary
predisposing factor of neuropsychiatric diseases. Although intra-
amygdala administration of antidepressants or anxiolytic agents
has been reported to inhibit the hyperactivity of amygdala and
reverse the impairment of anxiety and depressive behaviors, the
potential therapeutic property of amygdala needs to be deeply
investigated. Future studies should take the severity and duration
of stressor stimuli into consideration.

CONCLUSIONS

Mounts of animal studies have shown that stress-related
disorders, especially anxiety, depression and PTSD, are
characterized by hyperactivity or hyperreactivity of the
amygdala. It is well known that the amygdala plays a critical
role in integrating sensory information. Amygdala can integrate
the sensory information and subsequently transform them into
behavioral output as a response to external stimuli through
specific neural circuit. Besides, an important physiologic
response to stress is the hyperactivity of the HPA axis, which
is paralleled with the amygdala’s response. The stress-induced
HPA axis hyperactivity strengthens the amygdala through
regulating the neuroendocrine system. In turn, the activated
amygdala can reciprocally stimulate the neuronal projection
to PVN.

The crucial alterations of stress-induced neurotransmission
and synaptic plasticity in amygdala are intricate. The
hyperactivity and hyperresponsiveness of amygdala followed
stress attributes to the impaired GABAergic inhibition. Several
critical neurotransmitters are involved, such as NE, cannabinoids
and the CRF. The molecular mechanisms and potential role of
stress-induced synaptic remodeling and increment of BDNF
in specific amygdala nucleus are still obscure and need further
investigations.
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