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Animals are molded by natural forces they do not comprehend. To their minds there is no past and no

future. . . only the everlasting present of a single generation, its trails in the forest, its hidden pathways in

the air and in the sea. . . There is nothing in the Universe more alone than Man. He has entered into the

strange world of history. . .

– Loren Eiseley (1960)

INTRODUCTION

Historians like to order long-gone events in time. When events correlate with
years—numbers—events seem to follow a clear time line, but when their order is unclear,
historians order events using extra information from folklore, writings, artifacts, and cultural
habits. Here we ask the following question: How does the brain, at a neuromechanistic level, order
events on a mental time line? This question is relevant to many neuroscience paradigms such as
rate calculation, planning, and decision making, processes that crucially depend on the order of
events. For example, episodic memory incorporates order and duration of the events in the episode
(Tulving and Donaldson, 1972; Eichenbaum, 2017). Events and their features (order, duration,
content etc.) are stored in memory and recalled when needed. But how is the order of events
assessed when events are recalled from memory to be placed on the timeline? To address this
question, we discuss several classes of models of timing and time perception, and their capability of
ordering events in time. Because the mental time includes all durations, our discussion will freely
mix time scales: milliseconds, seconds, hours, days. Moreover, here we do not discuss in depth the
scalar property—the increase in timing errors with the criterion time—because almost all models
of timing can reproduce the scalar property, making it a weak criterion for selecting among these
models.

COGNITIVE FRAMEWORKS

Cognitive models of time perception readily implement the “mental timeline” paradigm even when
they use an internal representation of time which is very much not timeline-like.

Pacemaker-Accumulator Models
The Internal Clock Model (Treisman, 1963) and Scalar Expectancy Theory (Gibbon, 1977) assume
that time is represented subjectively by the number of accumulated pacemaker pulses (black line
in Figure 1A). An alternative monotonic function proposed to link the objective and subjective
representations of time is the logarithmic function (red curve in Figure 1A) (for a discussion see
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Staddon and Higa, 1999). Because the subjective time is a
monotonically increasing function of the objective time, and
because events are stored in memory as numbers which carry
intrinsic ordinal information, in these models the order of
events is naturally preserved in memory. Moreover, in the Scalar
Expectancy Theory subjects can also manipulate these numbers,
such that the duration of the interval between two events is
readily available as t2 – t1 (Church, 1984; Gibbon and Church,
1990). Therefore these models readily embody the “mental
timeline” paradigm (Church, 1978).

Pacemaker-Free Models
To tell time, historians use radiocarbon-dating, a method
in which the age of an object is estimated based on
C14 radioactive decay. Interestingly, the brain’s circadian
system uses a similar system to tell the time of day
based on protein degradation (Golombek and Rosenstein,
2010). Such timing mechanisms motivated a distinct set
of cognitive models which rely on monotonically decaying
functions, such as the Adaptive Decay Model (Dragoi et al.,
2003) (the blue curve in Figure 1A) and the Multiple Time
Scales Model (Staddon and Higa, 1999) (Figure 1B). Because
time is coded by (one or many) monotonically decaying
functions, these models can order events in time simply

FIGURE 1 | Temporal order within the framework of cognitive (A–C) and biological (D–F) models of timing and time perception. Panels indicate how models assess

temporal order of two events at times t1 and t2 (see text for details) (A) Subjective time is a monotonic function of objective time (linear—black, logarithmic—red, or

exponentially decaying—blue), such that the objective order of events can be inferred from the subjective representation of time, t1 < t2. (B) Multiple monotonic

(exponentially-decaying) memory traces can convey temporal order. (C) Multiple non-monotonic traces that evolve at different speeds can also convey temporal order.

(D) An internal representation of time based on patterns of firing neurons cannot in itself convey temporal order, as patterns have no intrinsic order. (E) Rather than

being a coordinate, time could be considered a parameter of a system that follows a trajectory in a state-based coordinate system {s1, s2, …, sn}. Such systems can

equally follow the same state trajectory toward the future or toward the past, thus, they have difficulty ordering events in time. (F) The pattern of activity of a population

of neurons varies in time as the model accumulates evidence; evidence / activity / patterns correlate with time but are not solely representing time. Biological models

(D–F) need extra assumptions / transformations / information to map activity / states / evidence / patterns to order of events; such information may be provided by

chemical, electrical, and circuit level constraints rather than time itself.

by comparing the numbers/patterns corresponding to the
events.

Distributed Models
While Pacemaker-Accumulator Models represent time by storing

only one piece of information (the number of pulses), real

physical systems, e.g., mechanical wristwatches, keep track of

time using multiple mechanisms working at different time scales,
e.g., an hour-hand, a minute-hand, and a seconds-hand. This

motivated the development of cognitive models of timing using

multiple non-monotonic distributed processes which evolve at
different speeds (scales), such as the Spectral Timing Model

(Grossberg and Schmajuk, 1989; Buhusi and Schmajuk, 1999;
Figure 1C). In this model events are represented by distinct non-

monotonic patterns of memory traces. Because traces evolve at
different speeds, they can be correctly ordered on a time line,

t1 < t2, in amanner similar to comparing the pattern of the hands

on the wristwatch with a desired time, despite using an internal

representation of time which is very much not timeline-like.

BIOLOGICAL FRAMEWORKS

While cognitive models readily order events on a time line,
biologically-inspired models have difficulties ordering events
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because they process and store events in memory as neural
patterns, which lack intrinsic ordinal value.

Coincidence Detection Models
A class of biologically-inspired timing models assume that
time is represented by the coincidental activation of multiple
neuronal inputs. For example, in theCoincidence DetectionModel
(Miall, 1989) and in the Striatal Beat Frequency Model (Matell
and Meck, 2004; Buhusi and Meck, 2005), timing is coded
by the pattern of multiple neuronal oscillators (Figure 1D).
Supplemental assumptions are used to map the models onto the
brain: For example, the Striatal Beat Frequency Model ascribes
a role for detecting event durations to medium spiny neurons
within the dorsal striatum which become entrained to fire in
response to oscillating, coincident cortical inputs. Interestingly,
no extra assumptions are needed to describe the scalar property,
which emerges in the Striatal Beat Frequency Model due to
neural noise (Buhusi and Oprisan, 2013; Oprisan and Buhusi,
2013a,b, 2014). However, when events are recalled, these models
have difficulty assessing the order of events, as there is no
predetermined order of neural patterns. These models need extra
information to order of events in time, which may be provided
by circuit level constraints, such as the unidirectionality of action
potentials.

State Dependent Models
Another way real physical systems code for time is in their
(distributed) state. For example, winter is different from summer
in all the changes in foliage, temperature, precipitation etc.
Similarly, in the State Dependent Timing Model (Buonomano
and Maass, 2009) the system follows a trajectory along which
states (events) are coded in time (Figure 1E). When events
(states) are recalled from memory, the model has difficulty
ordering events, pretty much like one has difficulty saying
whether summer follows winter or rather winter follows summer.
In fact, state dependent models can follow the same trajectory
“forward” in time, as well as “backward” in time, since time is a
parameter rather than a coordinate in these models. Thus, state
dependent models are physically- and biologically-inspired, but
need extra information to implement a unidirectional timeline.
Extra information to order events in time may be provided
by chemical reactions, as not all chemical reactions are bi-
directional; this type of information may limit the trajectory of
the system, and provide a sense of order.

Evidence Accumulation Models
Another set of biologically-inspired timing models take
advantage of the observation that during an interval the
activity of specific populations of neurons largely increases
as shown in Figure 1F (Leon and Shadlen, 2003; Mita et al.,
2009; Xu et al., 2014). This (non-linear) increase in activity
was suggested to reflect neuronal integration (Simen et al.,
2011), drift-diffusion processes (Luzardo et al., 2013), or
accumulation of evidence (Leon and Shadlen, 2003). Notably, the
similarity between Evidence Accumulation Models (Figure 1E)
and Pacemaker-Accumulator Models (Figure 1A) is misleading.
The latter assume that time is stored in memory as (ordered)

numbers, while the former store in memory the patterns of
neural activation/evidence, supposedly devoid of order. Not only
Evidence AccumulationModelswork with patterns, but the nature
of the information manipulated/stored (activation or evidence)
is different than in Pacemaker-Accumulator Models (pulses or
numbers). Evidence Accumulation Models can compare events
in terms of evidence/patterns of activation, but not necessarily
in time. It would require an extra assumption (transformation)
to map activation or evidence into order of events. For example
one could assume that more activity/evidence represents a later
event, but whether the brain follows this assumption or not it is
not known at this time.

The brain seems to need extra sources of information—at
the chemical, electrical, circuit level—than time itself to order
memory patterns in a time line. This idea is consistent with recent
experimental evidence suggesting that time and order of events
are coded by different processes in the brain (D’argembeau et al.,
2015).

CONCLUSIONS

While cognitive models of timing and time perception seem
readily equipped to represent order of events on a mental
time line, they do not do so in a realistic manner. Meantime,
biologically-plausible models face specific challenges when
ordering events into “past,” “present” and “future.” However,
as an electro-chemical network, the brain may impose its own
chemical, electrical, and circuit level constraints that could
provide a sense of order other than time itself. Either way,
it seems that more work needs to be done at both ends of
the spectrum of theories, toward an explanation of the mental
time line that is biologically realistic. One major objective of
a science of the mental time should be to incorporate order—
and not necessarily number—into biologically-inspired theories
of timekeeping to understand how the brain represents time and
order on the mental timeline. We speculate that the apparent
mental time line readily embodied by Scalar Expectancy Theory is

represented in the brain in a distributed manner—much as in the
Spectral Timing Model (Grossberg and Schmajuk, 1989; Buhusi
and Schmajuk, 1999)—at multiple brain regions, including
striatum (Bakhurin et al., 2017), amygdala (Dallérac et al., 2017),
hippocampus (Eichenbaum, 2014), lateral intra-parietal sulcus
(Jazayeri and Shadlen, 2015), insula (Wittmann et al., 2010), and
even visual areas (Shuler, 2016). In turn, these brain regions
may use their own system to code the passage of time, possibly
similar to Coincidence Detection Models (Matell and Meck, 2004;
Buhusi and Meck, 2005), State Dependent Models (Buonomano
and Maass, 2009), or Evidence Accumulation Models (Leon and
Shadlen, 2003; Simen et al., 2011; Luzardo et al., 2013) discussed
above. In this scenario, timing is a process distributed at multiple
levels, molecular, local circuits, and brain-wide circuits (Buhusi
et al., 2016) that generates a linear timeline at the behavioral level
from multiple non-linear local timelines. Future research should
differentiate and integrate a “sense of time passage” with “a sense
of order” of events and their biological substrates that enable the
(re)construction of a mental time line.
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