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Complexity analysis of resting-state blood oxygen level-dependent (BOLD) signals using
entropy methods has attracted considerable attention. However, investigation on the
bias of entropy estimates in resting-state functional magnetic resonance imaging (fMRI)
signals and a general strategy for selecting entropy parameters is lacking. In this paper,
we present a minimizing error approach to reduce the bias of sample entropy (SampEn)
and multiscale entropy (MSE) in resting-state fMRI data. The strategy explored a range of
parameters that minimized the relative error of SampEn of BOLD signals in cerebrospinal
fluids where minimal physiologic information was present, and applied these parameters
to calculate SampEn of BOLD signals in gray matter regions. We examined the effect
of various parameters on the results of SampEn and MSE analyses of a large normal
aging adult cohort (354 healthy subjects aged 21–89 years). The results showed that a
tradeoff between pattern length m and tolerance factor r was necessary to maintain the
accuracy of SampEn estimates. Furthermore, an increased relative error of SampEn was
associated with an increased coefficient of variation in voxel-wise statistics. Overall, the
parameters m = 1 and r = 0.20–0.45 provided reliable MSE estimates in short resting-
state fMRI signals. For a single-scale SampEn analysis, a wide range of parameters was
available with data lengths of at least 97 time points. This study provides a minimization
error strategy for future studies on the non-linear analysis of resting-state fMRI signals
to account for the bias of entropy estimates.

Keywords: complexity, sample entropy, multiscale entropy, bias, resting-state fMRI

INTRODUCTION

Since the inception of the resting-state blood oxygen level-dependent (BOLD) technique from
functional magnetic resonance imaging (fMRI) (Biswal et al., 1995), an essential question emerged:
What are the characteristics of the temporal dynamics of these seemingly noisy and spontaneous
BOLD oscillations (Fox and Raichle, 2007)? The first piece of evidence is from the exhibition
of 1/f frequency distribution of BOLD signals (Zarahn et al., 1997; Fox et al., 2007), which is
an ubiquitous feature of the complex system (Schlesinger, 1987; Zang, 1991; Goldberger, 1996;
Goldberger et al., 2002a), and has been observed in other neurophysiologic signals (Linkenkaer-
Hansen et al., 2001; Stam and de Bruin, 2004). In complex systems, the 1/f noise is likely to
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arise from underlying oscillatory components operating at
multiple time scales and is distinct with uncorrelated randomness
(Zang, 1991; Hausdorff and Peng, 1996; Goldberger et al.,
2002a); thus, using the entropy measure to assess the complexity
of seemingly noisy physiologic data may provide hints for
understanding the dynamics of a physiologic system (Pincus,
1991; Richman and Moorman, 2000), and for delineating
the dynamical changes in physiologic systems of healthy and
pathologic states (Costa et al., 2002; Goldberger et al., 2002b;
Lipsitz, 2002; Peng et al., 2009).

To develop a systemic approach for quantifying temporal
dynamics of brain signal data in healthy and pathological states,
we have proposed a loss of brain complexity hypothesis (Figure 1)
to study mental and brain function in normal and pathological
conditions (Yang and Tsai, 2013). The hypothesis is intuitively
based on the observation that behavioral symptoms observed
in patients often follow the pattern of order or randomness,
and can be summarized as follows: (1) the complexity of a
brain reflects its ability to adapt and function in an ever-
changing environment, (2) brain operates across multiple scales
of space (i.e., brain regions) and time (i.e., temporal changes),
hence the complexity of brain oscillations is also multiscale and
hierarchical, and (3) aging and a wide class of mental illness
appear to reduce the adaptive capacity of the brain. Thus, loss of
brain complexity may be a generic, defining feature of pathologic
brain.

FIGURE 1 | Flow chart of analyses. Functional imaging data were
preprocessed and BOLD signal in every gray matter and CSF voxels was
extracted for subsequent SampEn/MSE analysis. The evaluation of SampEn
of BOLD signal is twofold. First, we evaluated the validity of SampEn
calculation using a variety of combinations of parameters m, r, and Scale
Factors. Second, we evaluated the relative error of BOLD signal using a
minimization strategy. Finally, we applied the obtained parameters to study the
effect of age in SampEn of gray matter voxels and evaluated the consistency
of SampEn in a given brain region.

A variety of entropy measures has been applied to study
the brain complexity by measuring temporal dynamics of fMRI
signals. Some of these studies have used Shannon entropy (de
Araujo et al., 2003; Leite and Mandeville, 2006; Goni et al.,
2011; Tobia et al., 2012) and related families (Sturzbecher et al.,
2009) to quantify the activated patterns of BOLD signals in
various fMRI task experiments. For resting-state fMRI signals,
a Wavelet entropy has been applied to study the resting-
state complexity in schizophrenia (Bassett et al., 2012), and
recently, we and others introduced multiscale sample entropy
(MSE) to study the complexity of resting-state fMRI signals
of normal aging (Yang et al., 2013a; Siero et al., 2014), the
effect of genetic polymorphism on resting-state fMRI complexity
(Yang et al., 2014), the characteristics of BOLD signals in
various brain regions (McDonough and Nashiro, 2014), and
psychosis (Yang et al., 2015; Hager et al., 2017). Other studies
have also applied single-scale approximate entropy (ApEn)
(Sokunbi et al., 2011; Liu et al., 2013) or sample entropy
(SampEn) to study the resting-state fMRI signals of normal
aging (Sokunbi, 2014), attention deficit hyperactivity disorder
(Sokunbi et al., 2013), and schizophrenia (Sokunbi et al.,
2014).

Among these entropy methods, SampEn and a related family,
MSE, have attracted considerable attention because of their
simplicity and the advantage of being less dependent on the
time series length than ApEn. However, abundant results of
entropy analyses of resting-state fMRI signals also come with
the inconsistency of parameter selection for entropy calculation.
The calculation of SampEn requires a tolerance factor r (typically
a fraction of the standard deviation, SD, of a given signal) to
determine the number of matches of data points using a pattern
length m. Selections of m in SampEn are sometimes based
on theoretical calculations for ApEn which suggest that 10m

points should be sufficient, although 20m–30m points would be
preferable for an accurate estimate (Pincus and Goldberger, 1994;
Kirchner et al., 2012). However, there was no definite guideline to
choose these parameters (Gow et al., 2015).

Generally, the selection of these parameters in fMRI studies
have been based on maximizing the between-group difference
in entropy estimates (Sokunbi et al., 2013, 2014; Yang et al.,
2013a; Sokunbi, 2014), prior SampEn reports on other signals
(Siero et al., 2014), or the conceptual notion that a sufficient
pattern length was required to capture underlying dynamics
(McDonough and Nashiro, 2014). Consequently, a variety of
parameters have been reported, including m = 1, r = 0.35 (Yang
et al., 2013a, 2014, 2015; Hager et al., 2017), m = 2, r = 0.3 (Siero
et al., 2014; Sokunbi, 2014), m = 2, r = 0.32 (Sokunbi et al.,
2014), m = 2, r = 0.46 (Sokunbi et al., 2013), or m = 2, r = 0.50
(McDonough and Nashiro, 2014).

The selection of SampEn parameters based on the approach
of maximizing the between-group difference likely varies among
studies and is not guaranteed to be more free from error or bias
(McDonough and Nashiro, 2014). A general strategy for selecting
SampEn parameters in resting-state fMRI signals is lacking.
Although Lake et al. (2002) stated that one of the advantages
of SampEn is its consistency, and that if one record showed
lower SampEn than another with one set of m and r values,
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then it would also show lower SampEn with different parameters;
however, the problems in the selection of SampEn parameters are
not trivial because the bias of SampEn has not been explored in
previous fMRI studies, and errors may influence neuroimaging
studies because of the relatively short BOLD signals and large
volume of brain voxels to be analyzed.

In the study of physiologic time series such as heart rate,
we will observe a variance of entropy estimates that results
from different physiologic conditions, age, sex, or the error of
entropy estimate itself. Likewise, the temporal dynamics of BOLD
signal across brain voxels is associated with local post-synaptic
potentials in gray matter and action potentials in white matter
(Gawryluk et al., 2014). However, such neuronal-related variance
of entropy measures from BOLD signal in gray matter may be
also contaminated by non-neuronal hemodynamic responses or
the error of entropy calculation. Therefore, minimizing the error
of entropy estimate could potentially maximize the reliability
and consistency of quantification of neuronal-related entropy in
BOLD signal.

In accordance with Lake et al. (2002) to minimize the bias of
entropy calculation in heart rate, this study developed a generic
strategy to minimize the relative error of SampEn calculation for
resting-state fMRI signals. A range of parameters was examined
to minimize the relative error of SampEn in cerebrospinal fluids
(CSFs) that had minimal physiologic information, and then the
appropriate SampEn parameters with low relative error were
determined for use in gray matter regions. We investigated the
effect of various parameters on the results of SampEn and MSE in
a large normal aging cohort of resting-state fMRI datasets.

MATERIALS AND METHODS

Participants
This study cohort comprised 354 healthy Han Chinese adult
participants recruited from communities in Northern Taiwan
(age range: 21–89 years; male/female: 185/169) (Table 1). The
participants were selected from a larger cohort (502 subjects
at the time of this study) based on a continuing effort of the
Healthy Aging Project (Yang et al., 2013a, 2014) conducted
in accordance with the Declaration of Helsinki. Approval was
received from the institutional review board at Taipei Veterans
General Hospital. Because we previously demonstrated that older
subjects with Apolipoprotein-E (APOE) ε4 genotype had reduced

TABLE 1 | Normal aging cohort characteristics.

Age group
(year)

No. of
subjects

Females (%) Total gray matter
volume (cm3)

20–29 65 32 (49.2) 651 ± 55

30–39 46 23 (50.0) 624 ± 60

40–49 47 27 (57.4) 575 ± 47

50–59 61 35 (57.4) 574 ± 59

60–69 66 40 (60.6) 524 ± 48

70–79 28 9 (32.1) 475 ± 52

80–89 41 3 (7.3) 447 ± 45

BOLD complexity compared with APOE ε4 non-carriers (Yang
et al., 2014), we did not include any APOE ε4 carriers in this
study.

Each participant was evaluated by a trained research assistant
using a mini-international neuropsychiatric interview to exclude
those with Axis I psychiatric disorders (Sheehan et al., 1998).
Older participants (age >59 years) were further assessed using
the Clinical Dementia Rating (CDR) scale (Hughes et al., 1982)
to exclude those with dementia (CDR > 0). The overall exclusion
criteria for all participants consisted of the following: (a) the
presence of dementia; (b) the presence of Axis I psychiatric
disorders, such as schizophrenia, bipolar disorders, or unipolar
depression; and (c) a history of neurological conditions, such as
head injury, stroke, or Parkinson’s disease.

Image Acquisition and Processing
Functional magnetic resonance imaging was performed at
National Yang-Ming University by using a 3.0T Siemens MRI
scanner (Siemens Magnetom Tim Trio, Erlangen, Germany)
equipped with a 12-channel head coil. The scanning protocol
was consistent with our prior reports (Yang et al., 2013a, 2014,
2015). For resting-state image scanning, T2∗-weighted images
with BOLD contrast were measured using a gradient echo-planar
imaging (EPI) sequence (repetition time TR = 2,500 ms, echo
time TE = 27 ms, FOV = 200 mm, flip angle = 77◦, matrix
size = 64 × 64, voxel size = 3.44 mm × 3.44 mm × 3.40 mm).
For each run, 200 EPI volume images were acquired along
the AC–PC plane. Structural T1 images were acquired with
the 3D magnetization-prepared rapid gradient echo sequence
(3D-MPRAGE; TR = 2,530 ms, TE = 3.5 ms, TI = 1,100 ms,
FOV = 256 mm, flip angle = 7◦). T1 images were segmented to
estimate the total gray matter volume for each subject.

Resting-state fMRI data were preprocessed and analyzed
using SPM8 (Wellcome Department of Imaging Neuroscience,
London, United Kingdom) implemented in MATLAB
((MathWorks, Natick, MA, United States). The fMRI images
were slice-time corrected, realigned, and normalized into the
standard stereotaxic space of the Montreal Neurological Institute
(MNI) EPI template, and resampled to a 3-mm cubic voxel.
Covariates of the fMRI time series were regressed out, including
the time courses of six head motion, white matter, and CSF.
To avoid introducing distortions in the time series data, no
global signal regression was performed (Murphy et al., 2009;
Anderson et al., 2011). All participants included in this study
exhibited a maximum displacement of less than 1.5 mm at
each axis and an angular motion of less than 1.5◦ for each axis.
The first five data points (12.5 s) in any fMRI time series were
discarded because of the instability of the initial fMRI scanning,
leaving 195 data points in the final data. Temporal low-pass
filtering (0.01–0.08 Hz) was performed to reduce the influence of
high-frequency noise from physiologic confounders.

Sample Entropy and Multiscale Entropy
Analysis
SampEn (Richman and Moorman, 2000) was developed to reduce
the bias of a related family, ApEn (Pincus, 1991), and has a
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closer agreement with theoretical estimations than ApEn. Briefly,
SampEn is defined by the negative natural logarithm of the
conditional probability that a data set of length N, having
repeated itself within a tolerance of r (similarity factor) for m
points (pattern length), will also repeat itself for m + 1 points
without allowing self-matches (Richman and Moorman, 2000).
In practice, the number of matches of pattern length m within a
tolerance of r was defined as B, and A was defined as the subset
of B that also matched pattern length m + 1. Thus, SampEn was
estimated by the negative natural logarithm of the ratio CP = A/B
that SampEn =−log CP.

SampEn is a measure of regularity based on a single and
shortest time scale (Richman and Moorman, 2000; Lake et al.,
2002). Such a single-scale entropy measure produces higher
values of entropy to uncorrelated noise, which is presumed
to convey less information than 1/f noise (Goldberger et al.,
2002a,b). Consequently, the MSE analysis (Costa et al., 2002)
was introduced to estimate the entropy on multiple time scales
based on the notion that complex dynamics typically arise from
multiple time scales and that a generic approach to measure
global complexity must account for the multiple time scales in
a given physical system (Zang, 1991; Fogedby, 1992). The MSE
calculation can be summarized in three steps: (1) construct a
coarse-grained time series according to a range of scale factors,
(2) quantify the SampEn of each coarse-grained time series, and
(3) examine the MSE profile by using a range of scales. The length
of each coarse-grained time series is equal to the length of the
original time series divided by the scale factor. For Scale 1, the
time series was simply the original time series.

A General Strategy for Selecting
Parameters for the SampEn/MSE
Analysis of fMRI Signals
As mentioned, three parameters were involved in the
SampEn/MSE analysis, including the pattern length m, tolerance
factor r, and the time scale factor. In principle, a sufficient
pattern length m and a small r value is ideal for capturing
underlying dynamics when the irregularity of a given signal is
increased (Pincus, 1991). However, in practice, the confidence
of the SampEn estimation was dependent on the number of
pattern matches for lengths m and m + 1 (i.e., A and B). The
stringent criteria for a large m and small r resulted in fewer
pattern matches, and thus increased the statistical variation in
calculating CP (i.e., A/B) and SampEn. By contrast, a relaxed
criterion for a small m and large r resulted in more pattern
matches in both A and B, thus causing the SampEn value to be
close to 0 and reducing the ability of SampEn to discriminate
dynamical processes (Lake et al., 2002).

Lake et al. (2002) proposed a general strategy to appropriately
select m and r by (a) selecting m by using the autoregressive
(AR) model order for a given signal and (b) minimizing the
relative error of the SampEn calculation. In their study, the
relative error of SampEn was estimated theoretically and applied
to 200 randomly selected cardiac R-R interval time series
(4096 data points). However, such a theoretical estimation is
computationally exhausting and is unlikely to be practical for use

with large amounts of resting-fMRI BOLD signals. Therefore, we
adopted Lake et al.’s (2002) principle but used a straightforward
strategy.

Empirically, the SampEn of BOLD signals can be computed
directly in all brain voxels and the variance of SampEn can
subsequently be estimated. However, the SampEn variance in
gray matter contains not only error but also critical information
related to neuronal signal dynamics. A direct minimization of the
SampEn variance in the gray matter region will likely reduce the
ability of SampEn to discriminate brain processes. By contrast,
BOLD signals in CSFs have been considered as a nuisance
and are routinely regressed out for contaminating gray matter
BOLD signals (Biswal et al., 1995, 1997). Furthermore, recent
reports showed that CSF signals exhibited the characteristics of
uncorrelated noise (Wu et al., 2012; McDonough and Nashiro,
2014), thus opening the possibility of using CSF BOLD signals
as the random control to minimize the bias of SampEn and to
determine appropriate SampEn parameters.

Therefore, a general strategy was developed to explore a
range of parameters that minimized the relative error of SampEn
of BOLD signals in CSFs; the obtained parameters were then
applied to study the SampEn of BOLD signals in gray matter.
This minimization strategy considers the distinct BOLD signal
properties between CSFs and gray matter and is presumed to be
consistent across studies; thus, problems in prior approaches that
maximize the between-group difference of entropy estimates in
gray matter regions are avoided. In addition, a selection of pattern
length m may be beneficial by studying the AR model order of
the underlying structure of BOLD signals in gray matter, which
is the primary brain region with functional relevance. However,
we decided that this approach was less critical because the
ability of SampEn to capture underlying dynamics is dependent
not only on the pattern length m, but also on the tolerance
factor r. Therefore, the selection of m and r in this study
should be primarily based on minimizing the relative error of
SampEn.

Adopting the methods proposed by Lake et al. (2002), we
defined the relative error of SampEn as the 95% confidence
interval (CI) of the SampEn estimate relative to the SampEn
value. A relative error of 0.05 corresponds to a 95% CI that is
10% of the SampEn estimate (Lake et al., 2002). This relative
error can be empirically estimated by calculating the mean and
SD of SampEn of BOLD signals in all CSF voxels in a subject (i.e.,
1.96× σSampEn

SampEn /2). This relative error metric is approximately
the same as the coefficient of variation (CV), which is a measure
of the dispersion of SampEn distribution. Because of short BOLD
data (195 data points compared to 4096 RR intervals in Lake et al.,
2002), we aimed for a relative error no higher than 0.1, which was
approximately 10% of the CV value in SampEn estimates.

Statistical Analysis
A flow chart of analysis involved in this paper was shown in
Figure 1. Briefly, functional imaging data were preprocessed
and BOLD signal in every gray matter and CSF voxels was
extracted for subsequent SampEn/MSE analysis. The evaluation
of SampEn of BOLD signal is twofold. First, we evaluated the

Frontiers in Neuroscience | www.frontiersin.org 4 June 2018 | Volume 12 | Article 398

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00398 June 11, 2018 Time: 17:15 # 5

Yang et al. Entropy Parameters in fMRI Signals

validity of SampEn calculation using a variety of combinations
of parameters m, r, and Scale Factors. The validity of
SampEn indicated if a SampEn value can be derived from
short BOLD signal using a given set of parameters. Second,
we evaluated the relative error of BOLD signal using the
aforementioned minimization strategy. Finally, we applied the
obtained parameters to study the effect of age in SampEn/MSE
of gray matter voxels and evaluated the consistency of SampEn in
a given brain region.

The relative error was obtained from the CSF region of
each subject, and a median value of the relative error of all
subjects was reported for a given m and r. A CSF mask
provided by a REST toolbox that contained 121 CSF voxels
(3 mm × 3 mm × 3 mm) (Song et al., 2011) was used in this
study. To maintain the consistency of fMRI signal characteristics
across all brain voxels, we used postprocessed BOLD image
data and normalized each BOLD time series for a zero mean
and unit SD before conducting the SampEn/MSE analysis.
We assess the relative error of SampEn for a wide range of
combinations of m and r, and to examine the effect of BOLD
data length (coarse-grained BOLD time series by various scale
factors) on the relative error of SampEn. We also examined the
AR model order for all gray matter voxels in the entire study
cohort.

After determining a range of appropriate parameters for
SampEn/MSE analyses, we applied these parameters to the
SampEn calculation of BOLD signals in all gray matter voxels
in each subject. A general linear model (GLM) controlling the
effect of sex and total gray matter volume on SampEn was used
to examine the primary effect of age on BOLD SampEn data. We
used the GLM separately for the BOLD SampEn data of each scale
factor, as well as for the overall average SampEn across all scale
factors. We also compared the results of the GLM using various
sets of SampEn parameters and evaluated the CV of t-statistics
across gray matter voxels in a given brain region as a proxy of the
consistency of SampEn calculation. Significant brain clusters with
peak coordinates in the MNI space were reported if the p-value
corrected for the family-wise error rate was less than 0.05 at the
cluster level.

RESULTS

Characteristics of the SampEn/MSE
Analysis
Figure 2A illustrates the coarse-graining of the BOLD time series
in the MSE analysis. The coarse-graining averaged the data points
within non-overlapping windows of increasing lengths of Scale
Factors 1–5. SampEn for each scale factor was estimated from
the coarse-grained time series. Figures 2B,C show the profile
of SampEn from Scale Factors 1 to 5 averaged across all gray
matter and CSF voxels in the entire study cohort, from using
SampEn parameters reported in prior studies (m = 1, r = 0.35
and m = 2, r = 0.50). The mean SampEn across various scales
revealed a consistent pattern with distinct parameters of m and
r, but the 95% CI of SampEn increased with increasing scale
factors.

The Valid Parameters for the
SampEn/MSE Analysis in BOLD Signal
First, we examined how data length and selection of parameters
m and r could result in invalid SampEn estimates due to the
absence of pattern matches in BOLD signals. The absence of
pattern matches could be due to short data length (i.e., lack of
sufficient data sample for finding a match), large pattern length
m (i.e., lack of the recurrence of complex pattern), or small r (i.e.,
unable to find a match within a narrow similarity criterion). We
performed the experiment by calculating SampEn in CSF BOLD
signals using a variety of combinations of m, r and Scale Factors.

Figure 3 shows the percentage of SampEn estimation failures
that were caused by the absence of pattern matches in CSF
BOLD signals. The percentage was calculated based on the CSF
voxels with invalid SampEn estimates relative to all CSF voxels in
the entire study cohort. The results showed that more stringent
combinations of m and r (i.e., higher m and lower r) and
shorter BOLD signals resulted in a higher percentage of invalid
SampEn estimates. Ideally, a combination of m and r should be
selected only when the BOLD signals of all voxels have valid
SampEn estimates. Therefore, a range of combinations of m and
r, including m = 1 and r ≥ 0.20, m = 2 and r ≥ 0.35, m = 3 and
r ≥ 0.60, and m = 4 and r ≥ 0.75, was free for invalid SampEn
calculation.

Estimation of the Relative Error of the
SampEn/MSE Analysis
As aforementioned, the minimization of the relative error
of SampEn was performed in CSF BOLD signals that
contained minimal physiologic information and exhibited
the characteristics of uncorrelated noise. The relative error of
SampEn was empirically estimated by calculating the mean
and SD of SampEn of BOLD signals in all CSF voxels in every
subject. The relative error measured the dispersion of SampEn
distribution in CSF regions, thereby provide a metric to evaluate
the bias of SampEn estimates because the variance of entropy in
CSF BOLD signal is presumably consistent across CSF voxels.

Figure 4 shows the color map of the relative error of SampEn
calculation in CSF BOLD signals. The lower SampEn relative
error indicates a higher consistency (i.e., lower variation) of
SampEn among the CSF voxels. We set the criteria for the
selection of m and r to have a relative error lower than 0.1. For
Scale 1 (BOLD length = 195 time points), the acceptable range
of m and r was m = 1, 0.05 ≤ r ≤ 0.70, m = 2, 0.25 ≤ r ≤ 0.80,
m = 3, 0.35 ≤ r ≤ 0.80, and m = 4, 0.55 ≤ r ≤ 0.80. For Scale 2
(BOLD length = 97 time points), the acceptable range of m and
r was m = 1, 0.10 ≤ r ≤ 0.80, and m = 2, 0.40 ≤ r ≤ 0.80. For
Scale 3 (BOLD length = 65 time points), the acceptable range
of m and r was m = 1, 0.15 ≤ r ≤ 0.80. For Scale 4 (BOLD
length = 48 time points), the acceptable range of m and r was
m = 1, 0.30 ≤ r ≤ 0.35. For Scale 5 (BOLD length = 39 time
points), there was no error rate of SampEn below 0.1 for any m
and r.

For the average relative error of Scales 1–5, the only range
with an acceptable SampEn error was m = 1, 0.20 ≤ r ≤ 0.45.
The optimal m and r in this range was m = 1, r = 0.30 (relative
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FIGURE 2 | Illustration of a multiscale sample entropy (SampEn; MSE) analysis. (A) Coarse-graining of a BOLD time series from a gray matter voxel of an individual
was performed by averaging the data points within non-overlapping windows of increasing lengths of Scale Factors 1–5. Sample entropy for each scale factor was
estimated from the coarse-grained time series. (B) Mean and 95% CI of MSE profiles across Scale Factors 1–5 from (left) all gray matter voxels and (right) all CSF
voxels of the entire study cohort (354 subjects). The parameters for SampEn calculation were pattern length m = 1 and tolerance factor r = 0.35. (C) The same
analysis as (B) but with distinct SampEn parameters (m = 2, r = 0.50). The strategy was to explore a range of parameters that minimized the relative error of SampEn
of BOLD signals in CSFs where minimal physiologic information was present, and to apply these parameters to calculate the SampEn of BOLD signals in gray matter
regions.

error = 0.087). When m≥ 2, the minimum error rate was beyond
0.1 for m = 2, r = 0.55 (relative error = 0.128) and m = 3, r = 0.70
(relative error = 0.162). When m ≥ 4, the minimum error rate
was beyond 0.2.

For comparison, we chose three sets of parameters with
increasing levels of relative error: m = 1, r = 0.35 (relative
error = 0.089), m = 2, r = 0.50 (relative error = 0.129), and
m = 3, r = 0.70 (relative error = 0.162). The first two chosen
sets of parameters were consistent with prior reports (Sokunbi
et al., 2013; Yang et al., 2013a; McDonough and Nashiro, 2014)
and were close to the minimum of relative error for a given m.
Although the AR model order suggested a choice of m ≥ 3, the
error rate for m ≥ 3 was beyond the acceptable error rate.

Effect of Entropy Parameters on the
SampEn/MSE Analysis of BOLD Signals
in Normal Aging Data
Figure 5 shows the voxel-wise correlation between age and
MSE using the GLM to control the effect of sex and total gray
matter volume on MSE values. The GLM was used separately
for SampEn parameters of m = 1, r = 0.35; m = 2, r = 0.50;
and m = 3, r = 0.70. For all three parameters, visual inspection
of MSE brain topography suggested a similar pattern of brain
regions with negative correlations between age and MSE. The
results from parameters m = 2, r = 0.50, and m = 3, r = 0.70
showed larger brain clusters with negative correlations between
age and MSE than parameter m = 1, r = 0.35.

Table 2 summarizes the statistical results by using the
average MSE value of Scales 1–5. The results from the three
parameters showed the same brain regions with significant
negative correlations between age and MSE values, including
the right and left parahippocampus and right and left superior
temporal pole. Although the largest brain clusters and the
strongest peak t value were found in the results of using m = 2,
r = 0.50, there was no significant difference in the mean t
value when comparing the t statistics of the same brain regions
examined by using various parameters. Furthermore, the CV of
t statistics within a given brain region was lower in the results
of using m = 1, r = 0.35 than those in the results of using the
other parameters, suggesting a higher consistency of brain voxels
identified by SampEn using m = 1, r = 0.35. We averaged the
MSE value within identified brain clusters; Figure 6 shows the
scattered plots with a consistent pattern of correlation between
age and the average MSE using various parameters.

DISCUSSION

We systemically evaluated the relative error of SampEn in a wide
range of pattern length m, tolerance factor r, and various time
scales. The strategy was to minimize the relative error of SampEn
in CSFs where minimal physiologic information was present, and
determine appropriate SampEn parameters to be used in gray
matter regions. Our estimations provided an array of parameters
m and r in various scales of BOLD signals with relative errors
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FIGURE 3 | Percentage of estimation failure for sample entropy (SampEn) because of the absence of pattern matches in CSF BOLD signals. The percentage was
calculated based on the CSF voxels with invalid SampEn relative to all CSF voxels in the entire study cohort. The percentage was compared with those of various
combinations of m and r across all scale factors with different BOLD signal lengths. The more stringent combinations of m and r (i.e., higher m and lower r) and
shorter BOLD signals resulted in a higher percentage of invalid SampEn estimations. Ideally, the choice of m and r should have valid SampEn estimations in all voxels.

below 0.1. In general, a tradeoff between m and r was necessary
to maintain the accuracy of SampEn calculation. In other words,
an increased m value had to accompany an increased r value to
maintain an acceptable error level in short fMRI time series.

For comparison, we chose m = 1, r = 0.35; m = 2, r = 0.50;
and m = 3, r = 0.70 with increasing levels of error to evaluate
the effect of SampEn parameters on the resting-state fMRI
entropy analysis of a normal aging cohort. Qualitatively, the
results from these three parameters consistently showed that the
same brain regions had a significant negative correlation between
age and SampEn at various time scales. These brain regions
included the parahippocampus and superior temporal pole at
both hemispheres. Quantitatively, m = 1, r = 0.35 resulted in
smaller but more consistent brain clusters in terms of the CV
value of t statistics. Larger brain clusters but also a reduced
consistency of t statistics were shown in the results of using
m = 2, r = 0.50, and m = 3, r = 0.70. These results suggested
that an increased error of SampEn had a negative impact on the
quantitative results of voxel-wise statistics, despite the qualitative
results being the same in a large cohort. We expect that the
adverse impact of such error on qualitative results will become
apparent in a smaller dataset.

Overall, the parameters m = 1, r = 0.20–0.45 provided reliable
MSE estimates for most scale factors, and the minimum error
was found at m = 1, r = 0.30 for MSE analysis. For a single-scale
SampEn analysis, a wide range of parameters is available with data
lengths of at least 97 time points. We suggest that future studies

on the complexity analysis of resting-state fMRI signals account
for the relative error of SampEn. Our minimization strategy
can also be generalized to other time domains and non-linear
measures for fMRI data.

Strategies for Selecting SampEn and
MSE Parameters
Few strategies exist for assessing the parameters of ApEn,
SampEn, and even MSE analyses, and most of these strategies
were developed for ApEn. In general, statistical estimates of
conditional probabilities become less reliable as m increases,
and the loss of system dynamics information also increases as
r increases (Pincus and Goldberger, 1994). The early study of
ApEn in cardiac R-R intervals established a guideline for selecting
parameters of data length ≥100, m ≤ 3, and r = 0.1–0.25 of SD
of input data (Pincus and Goldberger, 1994). Many studies have
arbitrarily adopted the parameter m = 2, r = 0.1–0.2 to ApEn,
SampEn, and MSE analyses (Costa et al., 2002; Alcaraz et al.,
2010; Yentes et al., 2013).

These commonly used parameters were typically applied to
signals with slower dynamics such as heart rate; hence, some
studies have suggested that these parameters are inappropriate
for signals with faster dynamics, and proposed to use r values
that maximize the ApEn value (Chen et al., 2005; Chon et al.,
2009). However, this maximum entropy approach was shown to
be invalid for SampEn estimates (Castiglioni et al., 2013).
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FIGURE 4 | Color map of the relative error of sample entropy (SampEn) of CSF BOLD data for appropriate selection of m and r. The SampEn relative error was
defined in accordance with Lake et al. (2002) based on the 95% CI relative to the average SampEn in all CSF voxels; thus, the metric indicated the consistency of
the SampEn calculation. A lower SampEn relative error indicated a higher consistency of SampEn. For example, a SampEn relative error value of 0.05 corresponds
to a 95% CI, which is 10% of the average SampEn estimate. In this study, the goal was to minimize the relative error of SampEn in CSF BOLD signals because they
exhibit characteristics of uncorrelated randomness and contain minimal physiologic information. The median value of the SampEn relative error for the entire study
cohort is shown in color with various combinations of m, r, and scale factors.

FIGURE 5 | Voxel-wise correlation between age and multiscale entropy using a general linear model (GLM) to control the effect of sex and total gray matter volume.
The GLM was used separately for sample entropy parameters of m = 1, r = 0.35; m = 2, r = 0.50; and m = 3, r = 0.70.
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TABLE 2 | Regions showing significant correlation of age with multiscale entropy in the normal aging cohort.

Brain regiona BA MNI coordinates (mm) Volume (mm3)b Peak t Mean t CV

x y z

m = 1, r = 0.35

Parahippocampus R 12 −30 0 1,404 −3.65 −3.27 0.039

Parahippocampus L −21 −30 −12 1,404 −3.81 −3.35 0.052

Superior temporal pole R 38 42 −3 −15 2,781 −3.99 −3.46 0.057

Superior temporal pole L 38 −42 18 −21 2,943 −3.99 −3.40 0.054

m = 2, r = 0.50

Parahippocampus R 21 −30 −21 4,725 −3.84 −3.39 0.057

Parahippocampus L −21 −30 −15 5,994 −4.62 −3.63 0.098

Superior temporal pole R 38 42 12 −18 6,588 −4.58 −3.62 0.102

Superior temporal pole L 38 −36 9 −21 5,157 −4.40 −3.52 0.084

m = 3, r = 0.70

Parahippocampus R 18 −36 −6 2,268 −3.71 −3.33 0.045

Parahippocampus L −9 −27 6 4,239 −4.00 −3.40 0.068

Superior temporal pole R 38 42 0 −15 4,374 −4.60 −3.58 0.100

Superior temporal pole L 38 −36 9 −21 2,565 −4.01 −3.37 0.091

aL, left; R, right; BA, Brodmann area; CV, coefficient of variation. bVolume was computed from cluster size (3 mm × 3 mm × 3 mm voxel). All results had p-value less
than 0.05 corrected for multiple comparisons using familywise error.

Lake et al. (2002) proposed a minimizing error approach for
SampEn and found that m = 3, r = 0.2 was optimal for the cardiac
R-R intervals at 4,096 time points. Lake et al.’s (2002) study also
demonstrated a wide range of parameters with SampEn estimates
that were within the acceptable error range, such as r = 0.1–0.8 for
m = 1, and r = 0.2–0.5 for m = 2. These findings emphasized the
advantage of SampEn for maintaining low error and consistency
in a wide range of parameters.

Another approach is to maximize the differential ability of the
entropy estimates for a certain dataset, such as finding optimal
SampEn parameters to predict the termination and outcome
of atrial fibrillation (Alcaraz et al., 2010). We and others also
used similar approaches to maximize the ability of SampEn to
differentiate the BOLD MSE between the older subjects with low
and high cognitive scores (Yang et al., 2013a), and to differentiate
healthy and ill subjects in various populations (Sokunbi et al.,
2013, 2014; Yang et al., 2013b).

An obvious shortcoming of this approach is that the
choices of parameters will be dependent on study populations.
Furthermore, maximizing the between-group difference does not
guarantee that those parameters are more free from error or
bias (McDonough and Nashiro, 2014). The minimizing error
approach we adopted from Lake et al. (2002) can eliminate the
problems of the maximizing between-group difference approach.

Is a Larger Pattern Length m Superior to
a Smaller m to Capturing Signal
Dynamics?
Our results showed that there was no substantial difference in
brain regions detected by SampEn or MSE analyses using m = 1,
2, or 3. This observation contradicted the results of the AR model
and the long-standing idea that a choice of a larger m is superior
to smaller m because it provides a more detailed reconstruction

of system dynamics (Pincus and Goldberger, 1994; Groome
et al., 1999; Lake et al., 2002). This notion formed when the
development of entropy measures was influenced by the theories
of phase space and embedding dimensions (Takens, 1981), and
the empirical evidence for the notion was based on a relatively
long time series (such as 4,096 data points in Lake et al., 2002),
which allowed sufficient statistics of complex dynamics. Our
findings suggested that this notion was compromised in short
time series because a small m (i.e., m = 1) was as sufficient to
capture the dynamics of short BOLD signals as m = 2 or 3.
These results are similar to a prior report that a small m = 1 was
sufficient to detect atrial fibrillation in short heartbeat time series
(Lake and Moorman, 2011). Furthermore, we found that the
effect of chosen parameters primarily reflected the SampEn error
and quantitative results of brain clusters, suggesting that the effect
of error in entropy estimates may outweigh the importance of
selecting m and r for the reconstruction of underlying dynamics
in short time series.

The choice of m = 1 and r = 0.35 in our data did not prevent the
use of different parameters from other resting data with higher
scanning volumes. For long resting-state fMRI time series (e.g.,
1,200 time points) such as those from the Human Connectome
Project (Van Essen et al., 2013), we suggested that the parameter
m = 2, r = 0.50 may be too relaxed (McDonough and Nashiro,
2014), and we anticipate that m = 2 or 3 (according to the AR
model) and r < 0.5 may help to uncover subtle dynamics in long-
term resting data that are not otherwise apparent.

Time Series Length Constraints on
Selecting Pattern Length m in SampEn
A critical but often overlooked parameter in entropy estimates
is the time series length constraints. The accuracy of entropy
estimates is dependent on the data length to accrue sufficient
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FIGURE 6 | Scattered plots of correlation between age and multiscale entropy (MSE) based on the average sample entropy (SampEn) with various parameters
calculated in the four brain regions identified in Table 2.

statistics. Such data length constraints limit the selection of
pattern length m because a large m will increase the chance of
bias in entropy calculation. The theoretical work of time series
length constraints on selecting m has been documented in ApEn
that A time series with a length of at least 10m to 20m is necessary
to obtain reliable ApEn estimates (Pincus and Goldberger, 1994).
SampEn was developed to improve the consistency of entropy
estimates in various data lengths (Richman and Moorman, 2000),
and is therefore less vulnerable to time series length constraints
than ApEn. However, Richman and Moorman (2000) also found
that SampEn was unreliable for data lengths below 100 time
points when using m = 2 (i.e., but the time series length effect with
m = 1 was not tested). One recent study suggested that both ApEn
and SampEn are extremely sensitive to parameter choices for
short data sets ≤200 time points (Yentes et al., 2013). Because of
the similarity between SampEn and ApEn, we adopted the same
theoretical criteria of ApEn to estimate the time series length and
pattern length m in the MSE analysis of short BOLD signals (Yang
et al., 2013a).

While such a strategy may be questionable (Sokunbi, 2014),
our results of relative error of SampEn in various scale factors
may validate its reliability. The maximum pattern length m with

a relative error below 0.1 for each scale factor was: m = 4 for
Scale 1 (195 time points), m = 2 for Scale 2 (97 time points),
m = 1 for Scales 3 and 4 (65 and 48 time points, respectively),
and no pattern length m was able to maintain a relative error
below 0.1 for Scale 5 (39 time points). The pattern of these
results clearly suggested that SampEn was not subject to the
theoretical constraints of ApEn (10m–20m) for data with at least
195 time points (i.e., m can be up to 4 in Scale Factor 1 with
195 time points). However, in a much shorter time series below
97 time points, the choices of pattern length m of SampEn may
resemble that of ApEn and may be vulnerable to time series
constraints.

Our results suggested that at a data length of approximately 97
time points, an r value larger than 0.4 was required for m = 2
to maintain a relative error below 0.1; this result was similar
to the experimental data collected by Richman and Moorman
(2000), using a data length 100 time points. Hence, although a
resting-state fMRI study using single-scale SampEn may have
a wide range of m and r available in short time series of at
least 97 data points (Figure 3), the MSE analysis with a coarse-
graining procedure has to consider these time series length
constraints.
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Effect of Normal Aging on Resting-State
Brain Complexity
The normal aging data presented in this study were used as
an attempt to improve our previous study (Yang et al., 2013a),
which did not consider the between-age-group difference in the
MSE analysis of the effect of gray matter volume loss in older
people. Although we briefly studied this issue when examining
the effect of APOE ε4 on MSE complexity (Yang et al., 2014),
that study was based on younger and older groups and cannot
be generalized to the adult lifespan. After regressing out the effect
of age-related linear decline in total gray matter volume on MSE,
the parahippocampus and superior temporal pole still showed a
significant decline in MSE with increasing age, suggesting that
a volume-independent functional change occurred in these two
brain areas. Because both areas had neuropathologic changes
caused by normal aging and Alzheimer’s disease (Arnold et al.,
1994; Mitchell et al., 2002), whether a reduced MSE in these areas
can be explained by the accumulation of neurofibrillary tangles
warrants further.

Limitations
This study was subject to certain limitations. First, the
minimization strategy focused exclusively on the CSF region.
Some studies have suggested that white matter also exerts some
influences through noise (Liu et al., 2013; Siero et al., 2014).
Second, neuronal activity is not always associated with changes
in cerebral blood flows (Huo et al., 2014); thus, additional
studies are required to examine the extent of neuronal activity
that contributes to the complexity of BOLD fMRI data. Third,
the removal of physiologic noise may be improved by a more
advanced approach, such as component-based noise correction
method (Behzadi et al., 2007). Future study is also warranted to
explore the relationship between the bias of entropy calculation
and mitigation of physiologic noise. Fourth, the relative error
used in Lake et al. (2002) was consistent with the CV. We used
a similar metric, but because our study showed that a CV with a
threshold of 10% was approximately the same as a relative error
of 0.1, using a CV to judge the bias of SampEn in future studies
directly might be easier for interpretation. Finally, MSE is not
merely a calculation of SampEn on multiple time scales (Peng
et al., 2009). The substantial difference between MSE and single-
scale SampEn in distinguishing complexity and irregularity
was beyond the scope of this study and warrants a systemic
investigation, using normal aging and disease population data.

CONCLUSION

We developed a general strategy to study the bias of
the SampEn/MSE analysis of resting-state fMRI data and

comprehensively examined the effect of various parameters on
the relative error of SampEn estimates. Our results addressed the
problems in the maximizing between-group difference approach
and revealed a range of appropriate parameters that can be used
in future resting-state fMRI studies with various data constraints.
Finally, we expect that the bias minimization strategy can be
generalized to other method of quantifying temporal dynamics
of BOLD signal and improve the consistency of these methods to
study abnormal brain activity in various brain diseases.
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