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Machine learning approaches have been increasingly used in the neuroimaging field

for the design of computer-aided diagnosis systems. In this paper, we focus on the

ability of these methods to provide interpretable information about the brain regions

that are the most informative about the disease or condition of interest. In particular, we

investigate the benefit of group-based, instead of voxel-based, analyses in the context

of Random Forests. Assuming a prior division of the voxels into non overlapping groups

(defined by an atlas), we propose several procedures to derive group importances from

individual voxel importances derived from Random Forests models. We then adapt

several permutation schemes to turn group importance scores into more interpretable

statistical scores that allow to determine the truly relevant groups in the importance

rankings. The good behaviour of these methods is first assessed on artificial datasets.

Then, they are applied on our own dataset of FDG-PET scans to identify the brain regions

involved in the prognosis of Alzheimer’s disease.

Keywords: machine learning, random forests, Alzheimer’s disease, feature selection, group-based method,

prognosis system, FDG-PET

1. INTRODUCTION

Alzheimer’s disease is currently the neurodegenerative disease the most often encountered in aged
population and, as the world’s population ages, the prevalence of the disease is expected to increase
(Brookmeyer et al., 2007). Much research has been undertaken in order to find treatments to delay
the onset of the disease or slow down its progress (Hardy and Selkoe, 2002; Roberson and Mucke,
2006). As current clinical trials testing amyloid-modifying therapies in demented individuals failed
to show any effect, it is believed that interventions must start before the onset of clinical symptoms
(Sperling et al., 2014). Nervertheless, it still remains a challenge to predict if one individual will
develop the disease before brain damages and irreversible symptoms have already appeared. Before
a definitive AD diagnosis has been established clinically with neuropsychological tests, individuals
go through a stage of “mild cognitive impairment” (MCI) during which predicting the outcome,
stabilisation or worsening of the cognitive deficit, is difficult. Many studies have focused on this
prodromal stage of Alzheimer’s disease (Petersen et al., 1999, 2001).
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Machine learning (ML) methods have been increasingly used
over the years in neuroimaging in general and in particular also
for the design of prognosis systems for Alzheimer’s disease (see
Rathore et al., 2017 for a review of classification frameworks
designed for AD and its prodromal stages). While structural
magnetic resonance imaging (sMRI) modality is helpful to
detect brain atrophy from MCI to AD (Jack et al., 1999;
Killiany et al., 2000), functional MRI and fluorodeoxyglucose
positron-emission tomography (FDG-PET) highlight function
and metabolism alterations of the brain (Chételat et al., 2003;
Rombouts et al., 2005). Researchers exploit these information
with machine learning algorithms to achieve the best possible
predictive performance or sometimes to learn more about
the brain areas involved in the studied disease. Due to high
dimensionality issues, it is often necessary to use feature
reduction methods before the learning process in order to
improve performance (Chu et al., 2012; Segovia et al., 2012;
Mwangi et al., 2014). Feature selection presents in general
the benefit of keeping the results interpretable, unlike feature
extraction methods such as partial least squares (Wold et al.,
1984; Geladi and Kowalski, 1986) or principal component
analysis (Jolliffe, 1986).

One of the most commonly used ML methods in
neuroimaging is Support Vector Machines (SVM) (Hearst
et al., 1998). The success of this method in this domain is due to
its competitive performance when the number of features is large
in comparison with the number of samples. In addition, when
exploited with linear kernels, SVM provide weights for each
voxel enabling the visualisation of brain patterns linked to the
diagnosis (Vemuri et al., 2008; Zhang et al., 2011). Nevertheless,
these methods typically use the whole set of voxels to compute
a prediction and, so, it is difficult to threshold the weights
and interpret them in terms of their role importance in the
patient condition. Sparsity-enforcing linear methods, such as
Lasso or Elastic-net (Tibshirani, 1996; Zou and Hastie, 2005),
are alternative techniques that embed a more explicit feature
selection mechanism through a L1-penalization of the weight
vector. These methods have been used with some success to
analyse neuro-imaging data (Carroll et al., 2009; Ryali et al.,
2010; Casanova et al., 2011). Tree-based ensemble methods, such
as Random Forests or Extremely Randomised Trees (Breiman,
2001; Geurts et al., 2006), are also known for their good predictive
performance in high-dimensional/small sample size settings
and furthermore provide interpretable results through feature
importance scores. Their non-parametric nature makes them an
interesting alternative to linear methods. Although they have not
been studied extensively in the neuroimaging community, there
is evidence in the literature of their potential in such applications
(Kuncheva et al., 2010; Langs et al., 2011; Gray et al., 2013; Ganz
et al., 2015; Wehenkel et al., 2017).

When it comes to highlight brain regions involved in the
studied disease, the main benefit of the aforementioned ML
methods is their multivariate and non-parametric (for trees)
nature, which potentially allows them to detect complex patterns
in the data. Unlike statistical tests however, which associate
to each problem feature a (corrected) p-value, scores extracted
from ML methods, such as SVM weights and RF feature

importances, can not be interpreted as easily. This makes very
difficult the determination of a score threshold to distinguish the
truly relevant features from the irrelevant ones in the resulting
multivariate rankings. To circumvent this issue, the predictive
performance of a ML model trained on a subset of features is
therefore often used as a proxy to evaluate the relevance of the
features in this subset and can be used to guide the search for
the truly relevant features. For example, the regularisation level,
and thus the sparsity, of sparse linear models can be tuned using
cross-validation. Recursive feature elimination (Guyon et al.,
2002; Guyon and Elisseeff, 2003) is an efficient procedure to find
an optimal subset of features from SVM. A first SVM model
is used to ranked all features. The lowest ranked features are
then removed, a new model is retrained to rank the remaining
features, and the process is repeated until no features are left.
The feature subset that minimises cross-validation error in the
resulting nested sequence is returned as the final optimal feature
subset. In the context of Random Forests , Ganz et al. (2015) have
proposed instead to remove iteratively the top ranked features
and stop when the performance obtained on the remaining
features is not better than random. While efficient mainly as a
way to improve predictive performance, these methods do not
really provide interpretable scores and, since cross-validation
error is only a proxy for feature relevance, there is still a risk with
these methods to either miss features or to select irrelevant ones
(Huynh-Thu et al., 2012).

An alternative approach, proposed by several authors (Ge
et al., 2003; Mourão-Miranda et al., 2005; Klöppel et al., 2008;
Altmann et al., 2010; Huynh-Thu et al., 2012), is to exploit
permutation tests in order to replace ML based scores by p-
values like scores that are more interpretable and can be more
easily thresholded. The general idea of these methods is to
try to estimate for each score value v either the proportion
of irrelevant features among those that have obtained a score
higher than v (false discovery rate, FDR) or the probability that
an irrelevant feature can reach such a high score (family-wise
error rate, FWER). These values are estimated by exploiting
more or less sophisticated permutation schemes that simulate
feature irrelevance by randomly shuffling the labels. In order
not to overestimate FDR or FWER values, these permutation
schemes have to take into account the dependence that inevitably
exists between importance scores derived from multivariate
ML methods. Huynh-Thu et al. (2012) provide an empirical
comparison of several of these methods, notably applied on RF
importance scores, in the context of microarray classification
problems in bioinformatics.

While very good results can be obtained by applying ML
methods on neuroimaging data, identifying relevant features
among hundreds of thousands of voxels with permutation tests
is expected to be very challenging both computationally and
statistically (as the more features, the higher the estimated FDR
or FWER, because of multiple testing issues). In addition, the
interpretability of a selection or ranking at the level of voxels
is questionable. Because of the high expected spatial correlation
among voxels, it is very likely than neighbouring voxels will be
exchangeable when it comes to predict the output class, which
will lead to unreliable importance scores as derived from ML
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methods. To circumvent this problem, Schrouff et al. (2013)
proposed to average absolute SVMweights in each region defined
in a pre-existing anatomical brain atlas. This procedure improves
interpretability by providing a ranking of brain regions, instead
of individual voxels, according to their contribution to the
prediction. In (Schrouff et al., 2018), the same authors propose to
address the problem directly at the training stage with a Multiple
Kernel Learning (MKL) approach. A kernel is built on each
brain region defined by an atlas. Weights are then attributed
to each region during the learning process, with the weights
penalised using a L1-norm to enforce their sparsity. Several works
have also proposed adaptations of sparse linear methods to take
into account data structure. For example, Michel et al. (2010)
proposed a hierarchical agglomerative clustering procedure
using variance minimisation and connectivity constraints that
is combined in (Jenatton et al., 2012) with a sparse hierarchical
regularisation approach to fit linear models. In this approach,
there are as many groups of features as there are nodes in
the hierarchical tree and each group is composed of all the
descendants of a node. Weights are then attributed to each group
such that if one node is unselected, all its descendants will have a
zero weight too.

Following these latter works with linear methods, we would
like in this paper to investigate the benefit of group-based,
instead of voxel-based, analyses in the context of Random Forests
applied on neuroimaging data. Our first main contribution is
the adaptation of Random Forests variable importance scores
to rank and select groups of variables in the context of
neuroimaging data. Assuming a prior division of the voxels
into non overlapping groups, corresponding to different brain
regions, we first propose several aggregation procedures to derive
group importances from individual voxel importances. We then
adapt the best permutation tests identified in Huynh-Thu et al.
(2012) to turn the resulting group importances into more
statistically interpretable scores. Experiments are carried out on
artificial datasets to analyse the behaviour of these methods
in a setting where relevant groups are perfectly known. Our
second contribution is the application of these methods on our
own dataset of 45 patients for the prognosis of Alzheimer’s
disease. We report on this dataset the main groups identified
with our methods and discuss their relevance with respect to
prior knowledge about the disease. The methods are applied
either on groups derived from existing brain atlases from the
literature or on groups identified in a data-driven manner using
clustering techniques. In addition, we also study on this dataset
the influence of the main Random Forests parameters on both
predictive performance and stability of group importance scores,
from which we derive general guidelines for practitioners.

2. METHODS

In this paper, we are targeting the selection of relevant regions
of interest in the brain for the prognosis of Alzheimer’s disease
with Random Forests . We assume a supervised learning setting,
where we have a learning sample LS = (X,Y) composed of n
brain images of p voxel intensities each collected in a matrix

X ∈ R
n×p and of the n corresponding prognosis collected in a

binary vector Y ∈ {0, 1}n (e.g., with 0 coding for stable MCI and
1 coding for MCI future converter). Following commonmachine
learning terminology, voxel intensities will be also referred to as
the features in what follows. From the learning sample, the goal
is both to train a classification model that would classify as well
as possible future brain images and to highlight the brain regions
that are the most associated with the prognosis.

We first describe the Random Forests algorithm and how
to derive variable importance scores from such models. We
then describe and motivate the three aggregation functions that
will be evaluated later for computing importances of groups of
features and explain how these groups can be obtained. Finally,
we propose adaptations at the group level of the best techniques
highlighted in Huynh-Thu et al. (2012) to turn group importance
scores into more statistically interpretable measures.

2.1. Random Forests and Single Variable
Importances
Random Forests (Breiman, 2001) is a supervised learningmethod
that builds an ensemble of T decision trees (Breiman et al.,
1984). When inputs are numerical, a decision tree is a (typically
binary) tree where each interior node is labelled with a binary
test that compares one of the inputs (i.e., the intensity of a
voxel) with a threshold value and where each leaf node is labelled
with a prediction of the output class (0 or 1 in classification).
A prediction is obtained from an ensemble of decision trees by
propagating the example to test in each tree and then aggregating
the predictions at the leaves reached by the example in all trees
by a majority vote. In standard Random Forests, each decision
tree in the ensemble is built from a bootstrap sample from
the original learning sample using the standard top-down tree
growing algorithm (Breiman et al., 1984) with the only difference
that the best feature to split a node is searched by looking at
only K features randomly selected among all features (with K ∈
{1, 2, . . . , p}).

Several methods have been proposed to derive feature
importance scores from a forest. In this work, we use the
mean decrease of impurity (MDI) importance with the impurity
measured with Gini impurity (Breiman, 2001; Louppe et al.,
2013). More precisely, for a given tree T , the importance score
I(xi, T ) of a feature xi is defined as:

I(xi, T ) =
∑

N∈T |v(N ) = xi

n(N )

n
1I(N ), (1)

where the sum is over all interior nodesN in T , v(N ) denotes the
feature tested at nodeN , n is the size of the learning sample used
to learn T , and n(N ) is the number of examples reaching node
N . 1I(N ) is the impurity reduction at nodeN defined as:

1I(N ) = I(N )−
n(Nl)

n(N )
I(Nl)−

n(Nr)

n(N )
I(Nr), (2)

where I(.) is the impurity function andNl andNr are respectively
the left and right children ofN in T . For a binary output, the Gini
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impurity function I(.) is defined by:

I(N ) =
1
∑

j = 0

pj(1− pj) = 1− p20 − p21, (3)

where pj is the proportion of examples in N that are of class
j (with j ∈ {0, 1}). Finally, the importance score I(xi) of xi in
the forest is the average of its importance over the T trees in the
forests:

I(xi) =
1

T

T
∑

k = 1

I(xi, Tk). (4)

Intuitively, a feature will get a high importance score if it appears

frequently in the forest and at top nodes (leading to large n(N )
n

ratios) and if it strongly reduces impurity at the nodes where it
appears.

Breiman (2001) proposed an alternative measure that
computes for each feature the mean decrease of accuracy (MDA)
of the forest when the values of this feature are randomly
permuted in the out-of-bag samples. Both measures are mostly
equivalent in practice. Experimental studies (Strobl et al., 2007)
have shown that theMDImeasure is biased towards features with
a large number of values but this bias is irrelevant in our setting
where all features are numerical. The MDI measure furthermore
benefits from interesting theoretical properties in asymptotic
conditions (Louppe et al., 2013) and is usually faster to compute
as it does not require to perform random permutations.

2.2. Group Importances
Importance scores as computed in the previous section will
give a ranking of the hundreds of thousands of voxels that
typically compose neuroimaging data. Interpreting such ranking
is not easy and typically requires to map these voxels on brain
maps to visually identify brain regions with a significant number
of high importance voxels. Statistically, one can also expect
importances at the level of voxels to be rather unreliable given the
typically very small size of neuro-imaging datasets. We propose
here to exploit voxel individual importances to associate instead
importances to sets of voxels. To this end, and to remain as
general as possible, we assume the prior knowledge of a partition
of the full set of voxels into several disjoint sets, which we are
interested in relating to the disease status of the patients. Ways
to define such partition will be discussed in the next section.
Following the terminology used in sparse linear models, we will
refer to the sets of voxels in a partition as groups. Given individual
voxel importances as computed by a Random Forests model,
group importances can be derived in several ways. Denoting by
XG = {xi1 , xi2 , . . . , xi#G} the set of features in a given group XG

of #G voxels, we will investigate three aggregation functions to
derive group importances, computing respectively the sum, the
average, and the max of the importances of the features in the

group:

Isum(XG) =
#G
∑

j = 1

I(xij ), Iavg(XG) =
1

#G

#G
∑

j = 1

I(xij ),

Imax(XG) = max
j = 1,...,#G

I(xij ).

Louppe et al. (2013) have shown that the sum of the MDI
importances of all features represents the total amount of class
impurity reduction brought by the forest. Taking the sum of
the importances is thus the most natural choice: the importance
of a group is the total class impurity reduction brought by the
features from the group. The sum has however the drawback
that it is potentially biased towards groups of larger sizes. Indeed,
large groups have more chance to have their features selected
when building the forest. The average avoids any bias due to
differences in group cardinality but has the drawback that a group
can not be important if only a small proportion of its features are
important. Finally, taking the maximum of the importances in
the group assumes that the feature of highest importance alone
is representative of the group importance. In other words, it
considers that a group is important as soon as one of its feature
is important. As it is unclear a priori which aggregation function
would work best in practice, we will compare all of them on both
the artificial and real datasets.

2.3. Group Definition
Computing group importances requires the availability of a
partition of the voxels into groups. In this work, we will only
consider partitions into contiguous sets of voxels, with groups
thus corresponding to non-overlapping brain regions. Such
partition will be referred to as an atlas. Two kinds of atlases can be
investigated: (1) atlases derived manually from prior knowledge
of the brain structure, such as the automated anatomical labelling
(AAL) atlas (Tzourio-Mazoyer et al., 2002), and (2) data-driven
atlases derived automatically from the learning sample using
clustering techniques (e.g., Thirion et al., 2014). We will focus
our analysis in the rest of the paper on the first family of atlases,
which leads to more interpretable results. Some experiments with
data-driven atlases on the real dataset are nevertheless presented
in the Supplementary Materials.

2.4. Group Selection Methods
Typically, most groups will receive a non-zero importance from
the Random Forests model. From an importance ranking, it is
therefore difficult to distinguish the truly relevant groups from
the irrelevant ones. In this section, we propose to adapt at the
group level, several methods that have been proposed in the
literature to transform ML based importance scores into more
statistically interpretable measures similar to p-values. This will
help determining a threshold in the ranking below which all
groups can be considered as irrelevant.

Beyond an improvement of interpretability, applying these
techniques to groups of features instead of individual features
has several additional advantages. First, some of these methods
are very computationally demanding, as they require for each
score computation, and thus for each feature, to retrain Random
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Forests several times with randomly permuted features or labels.
This makes the application of the most demanding methods
impossible at the level of voxels. Working at the group level, on
the other hand, will reduce the number of scores to evaluate to
a few hundreds only (depending on the size of the atlas) and
therefore will strongly reduce computing times. Second, from a
statistical point of view, one can expect aggregated group scores
to be more stable than individual voxel scores. Combined with
the strong reduction of the number of considered features, we
expect that working at the group level will thus also improve the
statistical power of the tests, which will lead to the selection of
more significant brain regions than when dealing directly with
voxels.

Huynh-Thu et al. (2012) have carried out an empirical
comparison of several techniques to turn ML scores into
statistical scores in the context of bioinformatics studies. We will
present below the adaptation for groups of the three best methods
identified in this study. Two of these methods, the conditional
error rate (CER) and the estimated false discovery rate (eFDR),
are based on models retrained on randomly permuted version
of the original features, and one method, mProbes, train models
with additional random features (called probes). mProbes and
CER controls the family wise error rate and are recommended
by Huynh-Thu et al. (2012) when a very low false positive rate
is targeted (i.e., to minimize the number of groups selected that
are not truly relevant), while the eFDR is comparatively less
conservative as it controls the FDR.

In our presentation of these methods, we assume that,
from the learning sample LS, our machine learning algorithm
has provided a score of importance si for each group, with
i = 1, . . . ,G, using any aggregation function. Without loss of
generality, groups are assumed to be ordered according to their
importance score, such that gi is the ith group in this ranking.

2.4.1. Multiple Testing With Random Permutations
The goal of the CER and eFDRmethods is to control the “family-
wise error rate” (FWER) and the “false discovery rate” (FDR)
respectively when choosing a threshold on the group importance
scores. The FWER is the probability of selecting one or more false
positives (irrelevant groups) among the groups that are identified
as relevant, while the FDR is the expected rate of false positives
among them (Storey and Tibshirani, 2003).

The conditional error rate method has been introduced by
Huynh-Thu et al. (2008) to overcome the limitations of the
classic permutation-based FDR estimation techniques used for
univariate statistical tests (Ge et al., 2003). When applied to
multivariate importance scores, these methods indeed usually
overestimate the FDR, which leads to unreliable selections
(Huynh-Thu et al., 2008). The CER wants to estimate the
probability to include an irrelevant group when selecting all
groups until group gi in the ranking. For group gi, the conditional
error rate is defined by:

CERi = P( max
k = i,...,G

s
p

k
≥ si | H1→i−1

R ,Hi→G
I ), (5)

where H1→i−1
R is the hypothesis that groups g1 to gi−1 are

relevant, Hi→G
I is the hypothesis that group gi and all the groups

ranked below gi are irrelevant and s
p

k
is the importance score of

the group k under these assumptions. The CERi score for a given
group gi is estimated by retraining Random Forests on randomly
permuted data (with P repetitions): class labels and features in
groups g1 to gi−1 are kept unchanged to simulate H1→i−1

R , while
features in groups gi to gG are randomly permuted to simulate
Hi→G
I (using the same permutation vector for all features so as to

remain as close as possible to the original data distribution). The
number of relevant groups is then computed as the maximum
rank r for which CERr is lower than a pre-defined risk α (with α

typically set to 0.05).
In our previous work (Wehenkel et al., 2017), we proposed the

following adaptation of the conditional error rate:

CERri = P(rank(gi) ≤ i | H1→i−1
R ,Hi→G

I ), (6)

where the relevance score is replaced by the rank. The idea behind
this score is that a group which is really relevant should not
be as well or better ranked than it is in the original data once
we break the link between the features in this group (and in all
groups that follow in the original order) and the output through
the randomisation procedure. This adaptation is expected to be
less restrictive than the CER in (5) and thus using the same α

threshold, it should lead to a higher true positive rate at the
expense however of the false positive rate.

Ge et al. (2008) propose to estimate the FDR with

eFDRi = E

[

Vi

Vi + i− 1

∣

∣

∣

∣

H1→i−1
R ,Hi→G

I

]

, (7)

where H1→i−1
R and Hi→G

I are the same hypotheses as in (5)
and Vi is the number of false positives. eFDRi is estimated in
the following way. H1→i−1

R and Hi→G
I are simulated using the

same group-based permutation procedure as for the CER. Vi is
computed, for each permutation, as:

Vi = max
k = 1,...,G−i+1

{k : sp(1) ≥ si, s
p

(2) ≥ si+1, ..., s
p

(k) ≥ si+k−1}, (8)

with s
p

(k) the kth largest value in {spi , ..., s
p
G} and s

p

k
the relevance

score of group gk calculated from the randomly permuted data.
Vi is thus the maximal number of randomly permuted groups,
ordered according to their importance, whose importance
exceeds the importance of the matching group ordered according
to the original importance scores.

2.4.2. Utilisation of Random Probes
A third method suggested by Huynh-Thu et al. (2012) is the
mProbes approach, which is a variant of a method proposed in
Tuv et al. (2009). When applied at the feature level, the idea
of this method is to introduce as many random features as
the input matrix contains originally, where each new random
feature is generated by randomly permuting the values of one
original feature. A Random Forests model is trained on the
resulting dataset and is used to rank the features according
to their importance. The experiment is repeated P times with
new permutations and the FWER for a given original feature
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is estimated by the proportion of the P runs where at least one
random feature is better ranked than this feature.

The procedure can be easily adapted to groups. A random
group is obtained from each original group by randomly shuffling
the features within the group. Features within a group are
permuted using the same permutation vector to keep feature
correlations unchanged inside the group. The FWER for a group
gi in the original ranking is then estimated by the proportion of
Random Forests runs (among P) where at least one randomly
permuted group is ranked better than group gi.

This method is more efficient than CER and eFDR since it only
requires to rerun Random Forests (with twice as much features
however) P times, compared to G×P times with CER and eFDR,
to get all group statistics.

3. DATA AND ASSESSMENT PROTOCOL

3.1. Artificial Datasets
In order to validate our methods in a situation where truly
relevant features are already known, we generate artificial
datasets for a linear classification problem. Artificial datasets
construction is inspired from the linear datasets construction
used in (Huynh-Thu et al., 2012).

Each dataset contains p features denoted (x1, . . . , xp) that are
divided a priori into g groups denoted (G1,G2, . . . ,Gg), with the
size of group Gi denoted ♯Gi (We used p = 500 and g = 50
in all our experiments). Without loss of generality, we assume
that features are ordered following the group distribution such
that group Gi is composed of features x(∑i−1

k=1 ♯Gk

)

+1
to x∑i

k=1 ♯Gk
,

∀i = 1, . . . , g. To generate group of random sizes, we proceed
as follows. We draw g − 1 cut-off values at random without
replacement from {1, . . . , p}. Denoting by (c1, . . . , cg−1) these
values in increasing order and defining c0 = 0 and cg = p, the
size of the ith group (i = 1, . . . , g) is then set to ci − ci−1.

Among these groups, R are relevant and I = g − R
are irrelevant by construction. Let us denote by GR and GI

respectively the sets of relevant and irrelevant groups. Values of
the features in the irrelevant groups are drawn independently of
each other from a normal distribution, ie., xi ∼ N (0, 1),∀xi ∈
g and ∀g ∈ GI . For each relevant group Gk ∈ GR, one feature xR

k

is first drawn from a normal distribution such that xR
k
∼ N (0, 1)

for k = 1, . . . ,R. The output y is then computed from the xR
k

features as follows:

y = sgn

(

R
∑

k=1

wkx
R
k

)

, (9)

where the values of the coefficients wk are drawn uniformly in
[0, 1]. Features xR

k
are not put directly in the dataset. Instead,

features within each relevant group are generated each as a noisy
copy of xR

k
, obtained by adding a normal N (0, 1) noise to xR

k
.

The motivation for this procedure is to create a non perfect
correlation between the features within the relevant group, so
that they are jointly more informative about the output than
individually. Finally, 1% of the output values have been randomly
flipped to make the problem harder to solve.

3.2. Real Dataset
Forty-five patients presenting MCI were enrolled in a
longitudinal study achieved by the Cyclotron Research Centre
in University of Liège, Belgium. More precisely, patients were
selected based on Petersen’s criteria (Petersen and Negash, 2008)
for MCI, including memory complaints, objective memory
deficits on neuropsychological testing, no evidence of global
cognitive decline and preserved activities of daily living. At the
beginning of the study, one Fludeoxyglucose (18F-FDG) positron
emission tomography (PET) image was recorded for each
patient. During the next fours years, patients were followed and
evaluated repeatedly with neuropsychological tests. Conversion
was detected as soon as a patient fulfilled the diagnosis criteria for
Alzheimer’s disease at a follow-up assessment, that is, objective
deficit in more than two cognitive domains, general cognitive
decline and significant reduction of autonomy in everyday
life activities. Along the time of the study, several individuals
converted from MCI to Alzheimer’s disease and, at the end
of the study, the total number of converters (MCIc) was 22.
Demographic details about patients at their entrance in the
study are reported in Table S1. It is worth noting that data labels
have been somehow artificially binarised in two classes, MCIc
and stable MCI. Indeed after the four years of follow up, some
MCI patients could potentially still develop the disease. The real
problem consists in distinguishing the patients who will develop
the disease in the next four years and those who will not, as well
as identifying the relevant regions for this prediction.

As required, the protocol of the study was accepted by
University Ethics Committee in Liège. All patients received a
written and oral description of the study and then provided
a written consent. Concerning the acquisition of the images,
they were performed 30 min after injection of the 18F-FDG
radiopharmaceutical, by means of a Siemens ECAT HR+
PET gamma camera (3D mode; 63 image planes; 15.2cm
axial field of view; 5.6 mm transaxial resolution and 2.4
mm slice interval). Images were reconstructed using filtered
backprojection including correction for measured attenuation
and scatter using standard software.

After acquisition, images were pre-processed using SPM8.
Since no structural MRI was available, all PET images were
spatially normalised to the MNI reference space using the
template matching approach implemented in SPM8 (Ashburner
et al., 1999; Penny et al., 2011), assuming that the signal decrease
in the hypometabolic area(s) was not significantly affecting the
spatial transformation. Spatial normalisation was followed by
an intensity scaling by cerebellar uptake as the cerebellum is
assumed to be unaffected by the disease (Dukart et al., 2010).
The cerebellum was delineated according to the automated
anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002).
To finally obtain a feature vector for each patient, a mask was
applied to extract only the voxels included inside the brain
volume. This stage gave rise to a feature vector composed of a
little bit less than 220,000 variables per image.

3.3. Atlas-Based Parcelling
For artificial datasets, the group structure is perfectly known
in advance and it was used to define voxel groups. For real
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datasets, brain atlases are in general available for the sake of
result interpretation. We thus decide to evaluate our methods
with a prior division of the brain according to the brain structure
as it is the simplest choice and the most interpretable one. In
particular, the atlas we use is the AAL atlas (Tzourio-Mazoyer
et al., 2002), composed of 116 distinct anatomical regions. The
AAL atlas provides neuroanatomical labels only for gray matter
areas. Our approach is thus by default limited to the gray matter.
In addition, we provide in the Supplementary Materials results
obtained with several data-driven atlases.

3.4. Group Selection
Group importance scores are generated by Random Forests
of 1,000 trees by default, but larger values are also explored.
Regarding the number of features randomly drawn at each split,
i.e., the parameter K, we mainly explore two settings: K = 1
and K = √

p. K = √
p is a common default setting which

usually leads to good predictive performance on classification
problems (Geurts, 2001). K = 1 is an extreme setting, which
amounts at selecting the feature for splitting a node fully at
random. While this value of K is not expected to lead to optimal
predictive performance, we tested this value for two reasons.
First, it makes the tree construction very fast and independent
of the total number of features. Second, it was shown in the
theoretical analysis of Louppe et al. (2013) to be the only setting
that guarantees a fair treatment of all features by avoiding any
masking effects between them. Indeed, when two features convey
about the same information about the output, using a value of
K > 1 might prevent one of them to be selected at a given node
when it is in competition with the other one. As a consequence,
the importance of one of the two features will be greater than the
importance of the other, while both features are almost equally
important. Note however that using K = 1 is likely to lead to
importance estimates of higher variance than using K = √

p
and therefore to require building more trees for these estimates
to reach convergence.

As in (Huynh-Thu et al., 2012), the permutation scheme for
all statistical measures considers P = 1, 000 repetitions and the α

threshold on all statistical scores is fixed to 0.05.

3.5. Performance Metrics
Each method gives rise to a subset of relevant groups. In the
case of artificial data, we are directly able to verify if this subset
truly contains the relevant groups. Method performance is thus
evaluated in the case of artificial problems with the precision TP

S

and recall TP
P with TP the number of truly relevant groups that

have been selected, S the total number of selected groups and P
the total number of truly relevant groups in the problem.

Independently of the use of a group selection method, it is
interesting also to evaluate the quality of the group importance
ranking. This ranking can be evaluated by computing the
area under the precision-recall curve (AUPR), which plots the
evolution of precision vs. recall when selecting an increasing
number of groups at the top of the ranking. The AUPR is equal
to 1 when all truly relevant groups appear at the top of ranking
and it is close to R/g, with g the number of groups, when
groups are ranked randomly. To provide further comparison,

we also evaluate the highest precision that can be achieved for
a unitary recall and the highest recall that can be achieved for
a unitary precision, respectively denoted rec-1 and prec-1 in
the Results section. rec-1 corresponds to the most conservative
selection method that wants to avoid any false positive and
prec-1 corresponds to a method that does not want to miss
any truly relevant feature. Note that these two methods are
purely theoretical methods that can not be implemented in
practice without a perfect knowledge of the relevant groups.
Their performance is provided as baselines for comparison.

For the real dataset, as the truly relevant features (voxels
or regions) are unknown, we can not evaluate performances
through precision and recall as on the artificial datasets.
As commonly done, we thus evaluate selection methods by
comparing the regions found with the regions identified in the
Alzheimer’s disease literature. In addition, we also evaluate the
different aggregation functions through the classification errors
(estimated by cross-validation) of models trained using the most
relevant groups found by each function. Finally, we further
compare our methods with the MKL approach proposed in
(Schrouff et al., 2018) using the AAL atlas. This method is close
to ours in that it also performs feature selection at the level of
regions. The C hyper-parameters of this method is tuned using
an internal ten-fold cross-validation loop (with C optimised in
10[−3 : 1 : 3]).

4. RESULTS

We analyse in this section results obtained with artificial and real
datasets.

4.1. Artificial Datasets
Our goal in this section is to highlight the main properties of the
group selection methods in a setting where relevant groups are
known and one can thus assess quantitatively the capacity of the
methods at selecting the correct groups.

4.1.1. Comparison of the Aggregation Functions
We first evaluate the quality of the group rankings obtained
with the three aggregation functions: the average, the sum, and
the maximum. AUPRs with the three functions are shown in
Figures 1, 2, respectively with K = 1 and K = √

p, in both cases
for an increasing number R of relevant groups and an increasing
number of samples. All results are averaged over 20 randomly
generated datasets.

The average function is clearly producing the best rankings
in all settings. The max function is competitive in large sample
settings but it is clearly inferior with the smallest sample size.
The sum is inferior to the two other functions in all settings,
but its AUPRs are especially very bad when K = 1. We
attribute the bad performance of the sum in this setting to
its bias towards groups of large size. Indeed, when K = 1,
features used to split are selected uniformly at random among
all features and thus there are more splits based on features
from larger groups in the trees. As a consequence, even if
each feature of a large irrelevant group will receive a low
importance, when summing them, the importances of their
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FIGURE 1 | Artificial datasets. AUPRs of Random Forests (T=1,000 and K = 1) ranking method with different aggregation functions, for different numbers of relevant

groups and different sample sizes. Top is on average function, middle on sum function and bottom on max function. The AUPR values were averaged over 20

datasets in each case.

FIGURE 2 | Artificial datasets. AUPRs of Random Forests (T=1,000 and K = √
p) ranking method with different aggregation functions, for different numbers of

relevant groups and different sample sizes. Top is on average function, middle on sum function and bottom on max function. The AUPR values were averaged over 20

datasets in each case.

group might still be comparable with the importances of small
relevant groups. As a confirmation of this effect, we indeed
observe a strong correlation between group importances and
group sizes when using the sum function. Although still present,
the effect is reduced with K = √

p, as in this case, features
from irrelevant groups are put in competition with features from
relevant groups and have thus less chance to be selected in the
trees.

As expected, the AUPRs increase in all cases when the
number of samples increases. Except for the max function,
the AUPRs slightly decrease with the number of relevant
groups.

4.1.2. Comparison of Statistical Scores
In Figure 3, we show, both for K = 1 and K = √

p, how the
different statistical group measures evolve with the rank for the
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FIGURE 3 | Artificial datasets (500 features, 50 groups, 5 relevant groups, 100 samples). Curves of the importance scores (T =1,000, K = 1 and K = √
p) and the

different selection methods obtained on a linear dataset. The curve labelled as “Score” is the group importance score.

three aggregation functions. In all cases, the group importances
decrease rapidly and then much more slowly, suggesting that
only a few groups contain most of the information. The only
exception is the maximum group importance with K = 1,
which decreases slowly from the beginning. Statistical scores
mostly show the expected behaviours. CER and mProbes, which
both estimate the FWER, have similar evolutions. The statistical
measures they compute remain close to zero for 3 or 4 groups and
then increase very abruptly towards 1. As expected, eFDR, which
estimates the FDR, leads to a slower increase of its statistical
score towards 1 also after 3 or 4 groups. CERr has the slowest
progression in all cases, except with the sum function and K =√
p where it increases more rapidly than the other scores. All

statistical scores are directly close to 1 with the sum function
when K = 1, showing that the ranking provided by this group
importance does not behave well. Note that the point where most
statistical scores start raising is consistent with the position in
the ranking at which irrelevant groups starts appearing: with
the average, the first irrelevant group is at the fifth position
in the ranking, whatever K. With the sum, the fourth group
is the first irrelevant one for both K. With the max, the first
irrelevant group is the first one with K = 1 and the fifth one
with K = √

p.
Table 1 compares methods when they are used for feature

or group selection directly. We report in this table the average
(over 20 datasets) number of groups selected by all four
methods, the average number of features that are contained
in these groups, and the average number of relevant groups
among the selected ones. As a comparison, we also provide in
the same table, the number of features and (relevant) groups
selected when the four statistical scores are computed at the
level of features instead of groups. In this case, a group

is considered as selected as soon as one of its feature is
selected.

Several interesting observations can be made from this table.
When working at the group level, the average aggregation leads
to the highest number of selected groups with CER, mProbes,
and eFDR. With the CERr , more groups are found with the
max aggregation. Except with the CERr , it is interesting to note
that working at the level of features instead of groups actually
leads to the selection of less groups than using the average group
importance. This supports our previous argument that working
at the group level is actually beneficial in terms of statistical
power. The CER and the mProbes methods seem to only find
relevant groups since the average number of selected groups
always exactly matches the number of selected relevant groups.
For the eFDR, a few selected groups are actually irrelevant as
these two numbers do not exactly match. The CERr on the other
hand seems to select much more irrelevant groups. In particular,
its precision is very poor when it is used at the feature level.
These results will be confirmed in the next section. Finally, for
all methods, using K = √

p allows to find more (relevant) groups
that using K = 1.

4.1.3. Precision and Recall
Figure 4 shows the precision and recall of each method with the
different aggregation functions averaged over 20 datasets, with
K = 1. As already noticed from Table 1, the precision is close
to one for all methods except the CERr with max. None of the
proposed methods can reach a recall equal or higher than the one
of prec-1. Except for CERr for which the recall is the highest when
max is used, the other methods obtain the best results with the
average aggregation function. eFDR with averaging obtains the

Frontiers in Neuroscience | www.frontiersin.org 9 June 2018 | Volume 12 | Article 411



Wehenkel et al. RF Group Importance Scores

TABLE 1 | Average number of features selected (α = 0.05) and number of corresponding groups and relevant groups on linear artificial datasets (500 variables, 50

groups, 5 relevant groups, and 100 samples) for each method.

CER CERr eFDR mProbes

feat gps rel. gps feat gps rel. gps feat gps rel. gps feat gps rel. gps

K = 1 RF 7.15 1.55 1.55 47.75 20.35 3.70 11.85 1.85 1.75 1.75 0.2 0.2

avg 18.50 2.20 2.20 14.85 1.40 1.30 21.45 2.70 2.60 16.00 1.75 1.75
∑

5 0.30 0.30 7.75 0.45 0.45 7.5 0.40 0.40 7.40 0.35 0.35

max 14.90 1.60 1.60 28.35 3.10 2.55 17.45 1.75 1.65 11 1.10 1.10

K = √
p RF 7.05 1.45 1.45 61.10 23.80 3.80 11.20 2.05 1.75 11.05 1.65 1.65

avg 19.80 2.75 2.75 25.90 2.65 2.15 22.55 3.15 3.05 20.45 2.70 2.70
∑

16.35 1.40 1.40 23.55 2.20 2.15 17.35 1.55 1.55 22.75 2.00 2.00

max 12.50 1.65 1.65 35.90 4.00 2.90 14.50 1.80 1.75 12.95 1.75 1.75

RF means Random Forests without any aggregation function. Bold text and underlined text are for best number of relevant groups over all aggregation functions and over all selection
methods respectively.

FIGURE 4 | Artificial datasets. Precision and recall of each selection method (T=1,000 and K = 1) for the three different aggregation functions investigated. We used a

selection threshold α = 0.05. The precision and recall values were averaged over 20 datasets in each case.

highest recall among the proposed methods, while the recalls of
mProbes and CER are very close.

Figure 5 shows the impact of the number of relevant groups
on precision and recall, with the average function. Precisions
are mostly unaffected while recalls decrease when the number of
relevant groups increases. Given that the recall is the proportion
of relevant groups found by the methods, this suggests that the
number of selected groups does not grow proportionally with the
number of relevant groups.

Finally, as expected, increasing the number of samples in
datasets helps to improve the performances. This phenomenon
is illustrated in Figure 6. With 500 samples, recall of CER, eFDR
and mProbes are getting closer to recall of prec-1. Unfortunately,
such a ratio is in general not encountered in neuroimaging
problem. Improvement of recall value is really less impressive for

CERr . This latter method also exhibits a lower precision than the
other ones.

4.1.4. Summary
The comparison of the aggregation functions shows that the
average and themax functions work better than the sum function,
due to a bias of this latter aggregation function towards large
groups, in particular when K = 1. The average function provides
better AUPR scores than the max in small sample setting, while
both methods are close with larger sample sizes. Concerning RF
parameters, K = √

p is clearly a better choice than K = 1 as it
enables to detect more relevant groups, at the expense however
of computing times. Among statistical scores, CER and mProbes
select no false positives while eFDR selects a few and CERr a
lot. Finally, our results show that working at the group level is
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FIGURE 5 | Artificial datasets. Precision and recall of each selection method (T=1,000 and K = 1) for different numbers of relevant groups. We used the average
function as ranking method and a selection threshold α = 0.05. The precision and recall values were averaged over 20 datasets in each case.

FIGURE 6 | Artificial datasets. Precision and recall of each selection method (T=1,000 and K = 1) for different numbers of sample sizes. We used the average function

as ranking method and a selection threshold α = 0.05. The precision and recall values were averaged over 20 datasets in each case.

beneficial because it allows to select more relevant groups than
working at the level of individual features.

4.2. Real Dataset
In this section, we present results obtained with the group
selection methods on a dataset related to Alzheimer’s prognosis.
This dataset constitutes a very challenging problem for ML
methods, as it contains a very large number of features (around
200, 000 voxels) and only few dozens of samples (45 patients).

We will first study in section 4.2.1 the predictive performance of
Random Forests on this dataset (in comparison with the MKL
method) and study the impact of its main parameters, T and
K, on both error rates and group ranking. In section 4.2.2, we
will then analyse the behaviour of the group selection methods,
depending on the aggregation function and Random Forests
parameters. Finally, in section 4.2.3, we will analyse the groups
found by these methods in the light of prior knowledge about
Alzheimer’s prognosis.
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4.2.1. Predictive Performance and Group Ranking
Figure 7 shows the evolution of the error rate depending on
parametersK and T. Errors in this figure are obtained as averaged
over ten repeated ten fold cross-validation runs. The error rate for
T=1,000 reaches its minimum value at around K=1,000 (which is
close to K = √

p). Moreover, the error decreases as the number
of trees T composing the forest increases and stabilises at around
T=1,000. With default parameters (T=1,000 and K = √

p),
Random Forests reach an error rate of 28.89%, which is much
better than the error rate of a classifier always predicting the
majority class (49%). This suggests that despite the small size
of the dataset, Random Forests are able to extract meaningful
information from the data.

While default values perform well in terms of error rate, it is
interesting to study the impact of these parameters also on the
stability of the group rankings. Using the AAL atlas, Figure 8
plots the evolution of the rank of ten groups when K is increased
from 1 to p (and T is set to 10, 000), for the three aggregation
functions. The ten groups are selected as the 10 most important
groups when K = p, so that their rank converges towards
{1, 2, . . . , 10} when K grows to p. The top four groups seem
to remain the same whatever the value of K, as soon as K is
not too small. The evolution of the rank of the other groups is
however more chaotic, whatever the aggregation function, and
some groups only reach the top ten when K is very close to p.
Figure 9 shows the effect of T on the ranking of the top ten
groups obtained with K = √

p and T = 10, 000. The number
of trees has clearly a strong impact on rankings. Only the top 2
or 3 groups are already at their final position when T is small.
The sum aggregation converges faster than the other two and it

is the only one to have its top 10 groups fixed for T < 10, 000.
As already shown by Huynh-Thu et al. (2012), this suggests that
more trees are required to stabilise feature importances than to
reach optimal predictive performance.

To compare and analyse further the different aggregation
functions, Figure S3 shows the group importances and the
individual voxel importances within each group for the top five
groups ranked by the three aggregation functions (with K = √

p
and T = 10, 000). The first four groups found by all aggregation
functions are the same, while each function highlights a different
group at the fifth position. The order between the top four groups
however differs between functions but these differences can be
explained. For example, the sum function puts group 85, which is
larger, in front group 66, while they are ordered inversely with the
max and average that are less sensitive to group sizes. While the
maximum importance in group 85 is higher than the maximum
importance in group 62, the average function prefers group 62
over group 85 because group 62 has less voxels of small or zero
importance proportionally to its size.

Without knowledge of the truly relevant groups, we can
not assess group rankings using the AUPR, like we did on
the artificial datasets. One common indirect way to evaluate a
ranking is to build models using the top ranked features and see
how it improves error rates: the better the ranking, the faster
the error decreases when groups are introduced in the model.
Figure 10 shows how the cross-validation error evolves when
we progressively introduce the groups in the model following
the rankings obtained with the three aggregation functions. The
value 0 corresponds to a model always predicting the majority
class without using any features. Errors were estimated as the

FIGURE 7 | Real dataset. Error rates of a Random Forests classifier as a function of K parameter value for T=1,000 (top figure, x-axis in log scale) and as a function of

the number of trees T for K = 1 or K = √
p (bottom figure, x-axis in log scale). Errors are evaluated with a ten repeated ten fold cross validation procedure.
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FIGURE 8 | Real dataset. Evolution of the rank as a function of K parameter value (in log scale) for the first ten regions obtained (T = 10, 000 and K = p). Importance

scores are computed for the AAL atlas and for each aggregation function. Black horizontal dotted line represents the 10th ranking position.

FIGURE 9 | Real dataset. Evolution of the rank as a function of T parameter value (in log scale) for the first ten regions obtained with T = 10, 000 and K = √
p.

Importance scores are computed for the AAL atlas and for each aggregation function. Black horizontal dotted line represents the 10th ranking position.

average over five repeated ten-fold cross-validation runs. To
avoid any selection bias in the evaluation, the groups are reranked
at each iteration of each 10-fold cross-validation run without
using the test fold. For comparison, we also show on the same plot
the error obtained by Random Forests trained using all voxels
(about 28%). One can see from this plot that it is possible to
decrease the error rate from 28% (when using all voxels) to about
20% whatever the aggregation function used, suggesting that all
group rankings contain informative groups at their top. This is
consistent with results in Figure S3 that show that the top of the
rankings are similar. The minimal error is reached in the three
cases with a very small number of groups (respectively 8, 2, and
3 groups for the average, the sum, and the max aggregation),
but the position of this minimum is clearly very unstable and
almost optimal performance is reached with only a couple of
groups. With the max and average aggregations (resp. with
sum aggregation), the improvement over RF with all voxels is
statistically significant (according to a t-test with risk level 0.05)
when from 1 to 4 (resp. 5) groups are selected.

As a baseline for the obtained error rates, we also compare
Random Forests with the MKL method proposed in Schrouff
et al. (2018) using the AAL atlas and setting its parameter with
an internal cross-validation as explained in the Methods section.
We obtain an error rate of 39.56%withMKL, which is worse than

the 28.89% error rate obtained with Random Forests and default
setting.

4.2.2. Group Selection Methods
We analyse here the output of the different group selection
methods. In Figure S1, we illustrate how the statistical scores
change when going down in the ranking, for each method and
aggregation function. Scores of importance aggregated with the
sum show a faster decrease than with the other aggregating
functions. Regarding the selection methods, mProbes and CER
are clearly more conservative methods since their statistical
scores rapidly increase in all cases. The behaviour of CERr is
more dependent on the aggregation function used. With the
sum, it is nearly as restrictive as mProbes and CER. However,
when combined with average or max, score evolution is much
more progressive, even more than eFDR. These observations are
consistent with results on the artificial problems.

Table 2 summarizes the number of groups selected by each
method (with α = 0.05) with every aggregation functions and
different RF parameter settings. Overall, we observe very sparse
results, with only a few, if any, groups selected in most settings.
This is not surprising given the small size of the dataset and
observations in the previous section (that show that an optimal
error rate can be achieved with only a couple of groups). The
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FIGURE 10 | Real dataset. Error rates of a Random Forests classifier as a function of the number of groups included in the model (T =1,000 and K = √
p). Errors are

evaluated with a five repeated ten fold cross validation procedure. Error rate obtained with Random Forests (T=1,000 and K = √
p) is represented by a red horizontal

line, while the minimum error rate is represented by the black horizontal line. Standard deviations for RF and the average function are represented as dotted lines.

TABLE 2 | Number of regions selected (α = 0.05) for the real dataset for each method with the AAL atlas, depending on the aggregation function.

(K;T) CER CERr eFDR mProbes

avg
∑

max avg
∑

max avg
∑

max avg
∑

max

(1;1,000) 0 2 1 9 0 2 0 2 1 0 1 0

(1;10,000) 0 2 3 10 0 8 0 2 3 0 2 0

(
√
p;1,000) 2 3 2 17 1 8 0 3 3 2 3 1

(
√
p;10,000) 0 3 2 >4 1 >4 0 4 4 2 5 3

only exception is the CERr method which selects more groups
with the average and max aggregation. We know however from
experiments on the artificial data that this method has a low
precision. In general, the max and average aggregation functions
lead to the selection of more groups than the sum. Overall,
with K = 1, increasing the number of trees from 1,000 to
10, 000 increases the number of selected groups. With K = √

p,
increasing T does not seem to affect the number of selected
groups however. Comparing K = 1 and T=10,000 with K =√
p and T=1,000, we see that the latter setting leads to more

groups overall, in particular when the mProbes method is used (it
does not select any group with the average and max aggregation
when K = 1). This suggests to set K = √

p and T≥1,000 to
maximize the number of groups selected. Note however that this
advise should be taken with caution since K could also affect the
proportion of false positives among the selected groups.

4.2.3. Interpretability
In this section, we analysemore precisely the groups selected with
our methods and discuss them in the light of existing literature
about MCI prognosis.

Several studies have looked at brain regions that impact AD
prognosis. In univariate studies about AD prodromal stages,
differences between MCI converters and non-converters have
been identified to be localisedmainly in the right temporoparietal
and in themedial frontal area (Chételat et al., 2003, 2005; Drzezga
et al., 2003; Nielsen et al., 2017). More precisely, according
to the regions defined by the AAL atlas, the regions that are

the most often identified as relevant for AD conversion are
the superior temporal, the inferior parietal and the superior
medial frontal. Several publications have also highlighted the
middle temporal gyrus (right and left hemispheres) and the
right angular gyrus (Morbelli et al., 2010). There thus only
exist few regions discriminating converters and non-converters.
Moreover, it remains a difficult task to differentiate these two
classes of MCI as observed differences are generally very subtle.
We believe this is consistent with the fact that most group
selection methods only can find few regions.

It remains to be checked whether the regions found belong
to the ones mentioned in the literature. For this purpose, we list
in Table 3 the first ten top-ranked regions for all aggregation
functions and for all RF parameter settings. With the average
aggregation, brain regions at the first five positions vary a lot
depending on the parameters T and K. Rankings are more stable
with the sum and max aggregation functions. Overall, regions
highlighted as the most important by all of these rankings are
mostly consistent with studies about MCI progression towards
Alzheimer’s disease.

Table 3 can also be analysed along with the lines
corresponding to the AAL atlas in Table 2 that show how
many groups are considered as relevant by each selection
method. To illustrate such analysis, we report in Table 4 for the
top ranked AAL regions with the three aggregation functions
the statistical scores estimated by CER, eFDR, and mProbes
(with K = √

p and T = 10, 000). In each column, we only
report the statistical scores until the first score higher than
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TABLE 3 | Real dataset. First ten regions of rankings provided by Random Forests with different aggregation functions depending on parameters K and T.

(K;T) = (1; 1, 000) (K;T) = (1; 10, 000) (K;T) = (
√
p; 1, 000) (K;T) = (

√
p;10, 000)

avg Cuneus c. (L) Angular g. (R) Angular g. (R) Middle temporal g. (R)

Angular g. (R) Middle temporal g. (R) Middle temporal g. (R) Angular g. (R)

Middle temporal g. (R) Vermic lob. 8 Inf. parietal (R) Inf. parietal (R)

Inf. parietal (R) Vermic lob. 7 Middle temporal g. (L) Middle temporal g. (L)

Cerebelum 7b (R) Middle temporal g. (L) Thalamus (L) Vermic lob. 7

Inf. temporal g. (R) Inf. parietal (R) Cuneus c. (L) Inf. temporal g. (R)

Middle temporal g. (L) Vermic lob. 6 Vermic lob. 8 Cuneus c. (L)

Inf. temporal g. (L) Inf. temporal g. (R) Sup. temporal g. (R) Inf. temporal g. (L)

Sup. occipital g. (L) Cuneus c. (L) Heschl (R) Sup. temporal g. (R)

Olfactory (L) Inf. temporal g. (L) Inf. temporal g. (R) Vermic lob. 8

∑

Middle temporal g. (L) Middle temporal g. (L) Middle temporal g. (R) Middle temporal g. (R)

Middle temporal g. (R) Middle temporal g. (R) Middle temporal g. (L) Middle temporal g. (L)

Inf. temporal g. (R) Middle frontal g. (L) Angular g. (R) Angular g. (R)

Inf. temporal g. (L) Inf. temporal g. (R) Inf. parietal (R) Inf. parietal (R)

Middle frontal g. (L) Inf. temporal g. (L) Inf. temporal g. (R) Inf. temporal g. (R)

Middle occipital g. (L) Middle frontal g. (R) Sup. temporal g. (R) Inf. temporal g. (L)

Precuneus (R) Middle occipital g. (L) Inf. temporal g. (L) Sup. temporal g. (R)

Middle frontal g. (R) Sup. frontal g. (L) Sup. temporal g. (L) Cuneus c. (L)

Cuneus c. (L) PreCuneus c. (L) Cuneus c. (L) Sup. temporal g. (L)

Sup. frontal g. (R) Sup. temporal g. (R) Cerebelum 6 (L) Cerebelum 6 (R)

max Middle temporal g. (R) Middle temporal g. (L) Middle temporal g. (R) Middle temporal g. (R)

Calcarine (R) Sup. temporal g. (R) Middle temporal g. (L) Angular g. (R)

Middle temporal g. (L) Middle temporal g. (R) Angular g. (R) Middle temporal g. (L)

Inf. temporal g. (R) Inf. temporal g. (R) Sup. temporal g. (R) Inf. parietal (R)

Angular g. (R) Inf. temporal g. (L) Inf. parietal (R) Sup. temporal g. (R)

Cuneus c. (L) Angular g. (R) PreCuneus c. (L) Inf. temporal g. (R)

Inf. parietal (L) Hippocampus (R) Calcarine (L) Cerebelum 8 (L)

Inf. frontal g. △ (L) Thalamus (L) Cuneus c. (L) Cerebelum 6 (L)

Inf. temporal g. (L) Calcarine (L) Inf. temporal g. (R) Middle occipital g. (R)

Postcentral g. (R) Inf. occipital g. (L) Temporal pole (Mid. temp. g. L) Thalamus (L)

R and L stand for right and left hemispheres respectively, g., gyrus; c., cortex; sup., superior; inf., inferior, △ denotes triangular part of the inferior frontal gyrus.

α = 0.05 (as next groups will be considered irrelevant anyway).
We also provide a visual representation of this table in the brain
space in Figure 11. Two groups are systematically selected as
relevant (except by CER and eFDR with the average aggregation).
These are the angular gyrus (right) and the middle temporal
gyrus (right). With the sum and the max aggregations, eFDR
and mProbes both select two additional regions: the middle
temporal gyrus (left) and the inferior parietal (right). Finally,
only mProbes selects the inferior temporal gyrus (right) with the
max aggregation. These five regions are very consistent with the
regions highlighted in the literature, as regions related to parietal
and temporal areas are those that came out the most frequently.

In comparison, averaging weights obtained over folds with
MKL highlights the following regions in its top ten (in decreasing
order of the weights): the middle temporal gyrus (right), the
angular gyrus (right), the vermis 6 lobule, the thalamus (left),
the frontal superior medial gyrus (right), the middle temporal
gyrus (left), the vermis 8 lobule, the cerebelum 10 (left), the
superior parietal gyrus (right) and the hippocampus (right).

Regions selected are visually represented in the brain space in
Figure S2. Although there are actually 76 regions over 116 with
a non zero weight, we can however analyse how these weights are
distributed. The first ranked region has a weight of 30 while the
nine others show aweight between 9 and 2. After the tenth region,
weights are slowly decreasing towards zero. The MKL top ten
has three regions (out of five) in common with those highlighted
with group selection methods, with two at the top of its ranking.
Differences between the two lists are not unexpected given the
different natures of the models (linear vs. non-parametric) and
would deserve to be analysed more thoroughly.

5. DISCUSSION

We proposed several methods based on Random Forests to
select relevant groups of features on the basis of interpretable
statistical scores. These methods are helpful in neuroimaging
to improve the interpretability with respect to standard ML
based analysis carried out at the level of voxels. In addition
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TABLE 4 | Real dataset. First top-ranked regions and corresponding statistical scores for different aggregation functions with K = √
p and T = 10, 000.

Regions CER eFDR mProbes

avg Middle temporal g. (R) 0.057 0.057 0.046

Angular g. (R) 0.042

Inf. parietal (R) 0.215

∑

Middle temporal g. (R) 0 0 0.001

Middle temporal g. (L) 0.006 0.003 0.013

Angular g. (R) 0.006 0.003 0.020

Inf. parietal (R) 0.081 0.030 0.042

Inf. temporal g. (R) 0.051 0.046

Inf. temporal g. (L) 0.065

max Middle temporal g. (R) 0.010 0.010 0.003

Angular g. (R) 0.028 0.016 0.019

Middle temporal g. (L) 0.060 0.023 0.049

Inf. parietal (R) 0.026 0.206

Sup. temporal g. (R) 0.136

R and L stand for right and left hemisphere respectively, g., gyrus; sup., superior; inf., inferior.

FIGURE 11 | AAL regions selected with each method and each aggregation function for K = √
p and T = 10, 000. This picture is a visual representation of Table 4.

The blob color provides information about the ranking: the more red the region is the better is its rank.
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to an improvement of interpretability, group selection methods
potentially exhibit a higher statistical power than feature selection
methods. We have confirmed this through experiments on
artificial datasets, where group methods are able to detect more
relevant groups than similar methods working at the level of
features. Moreover, on high dimensional datasets, computing
statistical scores at the level of features can rapidly become very
computational demanding. Working at the level of groups has
thus only advantages when such groups naturally exist in the
data.

We first assessed the behaviour of the different group selection
methods through experiments on artificial problems where a
group structure is imposed. By design, CER and mProbes
are more conservative than eFDR and CERr . In terms of
interpretability, CERr is less reliable because it selects in general
too many groups that can include a significant number of
false positives. The other methods appear to be safe overall
as they do not wrongly declare irrelevant groups as relevant.
The comparison of the different aggregation functions to derive
group importances from feature importances has shown that the
average provides the best results, followed by the max and then
the sum. The sum should be used carefully with K = 1 when
groups of very different sizes are present in the data. Interestingly,
when combined with group selection methods, this problem can
however be diagnosed without knowledge of the truly relevant
groups, as it will lead to no group being selected as relevant by
any group selection method. Concerning the Random Forests
parameters,K = √

p appears to detect more relevant groups than
K = 1, although this latter setting has been shown theoretically
to not suffer from masking effects.

We then applied the methods on a dataset related to
Alzheimer’s Disease prognosis. The conclusions are almost the
same on this dataset, when methods are compared in terms of
the number of groups they select. CER and mProbes are more
conservative than eFDR and CERr . We thus recommend to
use CER and mProbes to have more confidence in the selected
regions. If reducing computing times is important, mProbes is
clearly the best choice among these two as it only requires one
round of permutations. Note however that all methods can be
easily parallelised and in general, we believe that computing
times should not really be an issue, especially when working with
groups. As on the artificial datasets, using K = √

p leads to more
groups than K = 1, as does increasing the number of trees T,
which should be taken larger than for optimising error rate alone.
No strong conclusion can be drawn concerning the aggregation
functions however, as the three functions lead to very similar
results. In particular, taking the sum does not show the same

pathological behaviour as on the artificial data and actually can
lead to more selected groups (e.g., Table 4).

Concerning Alzheimer’s Disease prognosis, results are
encouraging although they deserve to be analysed more

thoroughly. Error rates are acceptable in our opinion, especially
taking into account the small size of the dataset. They can be
furthermore reduced significantly by focusing on a couple of
groups. The group selection methods have highlighted several
regions, e.g., the middle temporal gyrus (right) and the angular
gyrus (right), that are consistent with the literature on MCI
progression towards AD.

As future work, we would like to confirm our results on
additional real datasets. While we focus here on interpretability,
we would like also to explore more the possibility to improve
predictive performance through group selection. Figure 10

shows that selecting a few groups can lead to improved
error rates and in (Wehenkel et al., 2017), we showed that
building Random Forests on the top of groups selected by
CERr could also improve performance. In our work, we use
groups only to post-process Random Forests importance scores,
but did not change anything in the way forests are grown.
It would be interesting to investigate ways to incorporate
groups directly during the Random Forests training stage,
as it is done for example in the MKL framework (Schrouff
et al., 2018) or in sparse linear methods (Jenatton et al.,
2012).
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