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“Asymptomatic” carotid artery stenosis (aCAS) patients usually have cognitive
impairment in the domains of executive, psychomotor speed, and memory function.
However, the pathophysiology of this impairment in aCAS patients is still unclear. In
this study, amplitude of low-frequency fluctuation (ALFF) method was used based
on resting-state blood oxygenation level dependent (BOLD) signals, to investigate
local brain activity in 19 aCAS patients and 24 healthy controls, aimed to explore
this pathophysiology mechanism. We analyzed this intrinsic activity in four individual
frequency bands: Slow-2 (0.198–0.25 Hz), Slow-3 (0.073–0.198 Hz), Slow-4 (0.027–
0.073 Hz), and Slow-5 (0.01–0.027 Hz). The aCAS-related ALFF changes were mainly
distributed in (1) cortical midline structure, including bilateral dorsomedial prefrontal
(dmPFC), cingulate cortex (CC) and precuneus (PCu); (2) hippocampus and its adjacent
structures, including bilateral hippocampus, thalamus and medial temporal regions. We
found these spatial patterns were frequency-dependent. Significant interaction between
frequency and group was found distributed in left putamen, triangle part of inferior
temporal and bilateral precentral/postcentral gyrus when Slow-4 and Slow-5 were
considered. The delay recall ability of aCAS patient was significantly positive correlated
to the mean ALFF in dmPFC within Slow-4 band and the mean ALFF in the bilateral
hippocampus within Slow-3 band, respectively. We also found the Montreal Cognitive
Assessme score of aCAS patient was significantly positive correlated to the mean ALFF
in right fusiform and parahippocampus within Slow-3 band. Furthermore, we built the
automatic diagnosis and prediction models based on support vector machine (SVM)
and back propagation neural network (BPNN), respectively. Both two types of models
could achieve relatively competent performance, which meant the frequency-dependent
changes in ALFF could not only reveal the pathophysiology mechanism of cognitive
impairment of aCAS, but also could be used as neuroimaging marker in the analysis of
cognition impairment for aCAS patients.

Keywords: asymptomatic carotid artery stenosis, cognitive, frequency, resting BOLD, diagnosis model, prediction
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INTRODUCTION

Carotid artery stenosis with no symptoms of transient ischemic
attack or stroke is so called “asymptomatic”(Inzitari et al., 2000).
However, “asymptomatic” carotid artery stenosis (aCAS) patients
usually show cognitive impairment in the executive function,
psychomotor speed and memory (Romero et al., 2009; Sztriha
et al., 2009; Popovic et al., 2011), which implies aCAS is not
asymptomatic in practice. aCAS may be a underlying risk factor
for cognitive impairment (Chang et al., 2013; Everts et al., 2014).

Generally, CAS is a chronic process, and the impairment
of neuron is long-lasting. During this persistent process, there
is also enough time for neuron being compensated and
repaired by different patterns, such as collateral circulation and
vascular self-regulation (Deweese et al., 1970), which make the
process of cognitive impairment complicated. Until now, the
pathophysiological mechanism of cognitive impairment is poorly
understood.

Blood oxygenation level dependent (BOLD) is related
to the neural activity in brain through the detection of
the combination between oxygen and hemoglobin in blood.
Low frequency BOLD signal can reflect the spontaneous
neural activity in brain, which can be used to reveal the
relationship between the cognitive impairment and their
associated structurally/functionally impaired brain regions.

In recent years, resting-state functional magnetic resonance
imaging (RfMRI) method based on BOLD signals has been
extensively used in neuropsychiatric researches. Among the
RfMRI analysis methods, amplitude of low-frequency fluctuation
(ALFF) (Zang et al., 2007) is effective and powerful for examining
disease-related neural activity in local brain region and has been
successfully used in the study of cognition impairment disease,
e.g., schizophrenia (Guo et al., 2015), subcortical ischemic
vascular disease (Li et al., 2014), major depressive disorder (Liu
et al., 2013), Alzheimer’s disease (He et al., 2007), attention deficit
hyperactivity disorder (Zang et al., 2007) and in our previous
work (Wang et al., 2016), we reported some initial results by using
ALFF method.

Different oscillatory bands usually have different generation
mechanism and different physiological functions (Buzsaki and
Draguhn, 2004). Therefore, it is meaningful to segment and
separate the different frequency bands in low frequency
oscillation (LFO) analysis of this work.

In this paper, (1) we use whole-brain, full bandwidth, ALFF-
based method to explore the difference of local brain activities
between aCAS patients and healthy control, aimed to reveal the
pathophysiological mechanism of cognitive impairment in aCAS.
To find the temporal and spatial characteristics of the oscillation
of neural activities in the brain of aCAS patients, the whole
frequency band (0.01–0.25 Hz) of BOLD signals was separated
into four individual frequency bands (Penttonen and Buzsáki,
2003; Buzsaki and Draguhn, 2004): Slow-5 (0.01–0.027 Hz),
Slow-4 (0.027–0.073 Hz), Slow-3 (0.073–0.198 Hz) and Slow-2
(0.198–0.25 Hz). Then, the spatial distributions of between-group
differences were analyzed within each sub-band, respectively.
With the comparison of ALFF spatial distribution between
aCAS group and control group, we found the ALFF values in

specific brain regions correlated to the cognition impairment
of aCAS within each sub-frequency band and their correlation
to different cognition impairment. (2) we built the automatic
diagnosis model and cognition impairment prediction model
for the aCAS patients by using support vector machine (SVM)
(Cristianini, 2000) and backpropagation neural network (BPNN)
(Hagan, 1996), respectively. The mean ALFF values of the brain
regions with significant between-group difference were used as
neuroimaging markers to classify and predict the cognition level
of subjects.

MATERIALS AND METHODS

Participants
All the participants were collected between January 2015 and
June 2016. aCAS patients were recruited from Department
of Neurology, Zhongnan hospital of Wuhan university. The
inclusion criteria include the following: (1) age from 55 to
80 years; (2) ICA stenosis degree ≥ 70%; (3) right hand
dominance; (4) being free of stroke, TIA, dementia, or
depression; (5) Modified Rankin Scale: score 0 or 1; and
(6) no major psychiatric disease or other medical conditions.
The exclusion criteria were (1) contralateral internal carotid
artery stenosis ≥ 50%; (2) posterior circulation diseases;
(3) MMSE < 26; (4) functional disability (Modified Rankin
Scale ≥ 2); (5) severe systemic diseases and neuropsychiatric
diseases (such as congestive heart failure and history of stroke);
(6) any contraindications for MR scan (e.g., metal implants);
and (7) low education level (<6 years). Angiography technique
was used to determine the presence of stenosis in our subjects,
while North American Symptomatic Carotid Endarterectomy
(NASCET) was used to evaluate the degree of stenosis in the
patients. Demographics-matched healthy controls were enrolled
from the nearby residents by the advertisement surrounding
Wuhan University.

Before data acquisition, Routine morphological MRI
examination was used on all subjects. For the patients group,
we exclude the subjects with new cerebral infarction and/or old
infarct lesion diameter > 1.5 cm; while for the control group,
we exclude the subjects with ischemic or hemorrhagic stroke,
lacunar infarcts, and white matter lesions. Finally, 19 aCAS
patients and 24 controls were included in the two group of our
data set. The detailed demographics of the two groups were
shown in Table 1.

This study was approved by the local Medical Ethics
Committee in Zhongnan Hospital of Wuhan University, and
informed written consent was signed by all participants.

Cognition Assessment
Cognition assessments were performed using neuropsychological
scales within 7 days after MRI scan. Seven neuropsychological
scales were used in this study.
(1) MMSE (Pangman et al., 2000) and MoCA Beijing Version
(Yu et al., 2012) were utilized to assess the global cognition.
(2) Digit Span Test (DST) (Firat, 2010) is used to measure
working memory’s number storage capacity.

Frontiers in Neuroscience | www.frontiersin.org 2 June 2018 | Volume 12 | Article 416

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00416 June 19, 2018 Time: 17:10 # 3

Xiao et al. Frequency-Dependent Characteristics in aCAS

TABLE 1 | Demographics and cognitive test scores for the subjects in this study.

Characteristics Patients (n = 19) Control (n = 24) P-value

Age (years) 68 ± 5.6 64.5 ± 7.3 0.08

Male: female 15:4 19:5 >0.99

Education (years) 9.9 ± 3.3 10.9 ± 3.4 0.21

Hypertension 19 18 0.70

Diabetes mellitus 4 4 >0.99

Hypercholesterolemia 13 12 0.64

Stenotic side

Left 7 N/A

Right 12 N/A

MMSE 26.8 ± 0.7 27.4 ± 0.7 0.02

MoCA 23.3 ± 1.2 24.2 ± 1.6 0.02

Digit span test (DST)

Forward digit span (FDS) 5.8 ± 1.0 6.5 ± 0.9 0.04

Backward digit span (BDS) 3.8 ± 0.8 4.5 ± 0.8 0.02

Rey auditory verbal learning test (RAVLT)

Immediate recall (IR) 31.0 ± 4.5 35.8 ± 5.6 <0.01

Delayed recall (DR) 4.6 ± 1.6 6.5 ± 1.1 <0.01

digital symbol substitution
test (DSST)

28.0 ± 4.7 31.5 ± 5.5 0.03

In this test, all the subjects were asked to recall a series of
oral numbers with different digits. In forward digit span (FDS),
subjects were required to retell the numbers in forward order. In
the backward digit span (BDS), subjects were required to retell
the numbers in backward order.
(3) Rey Auditory Verbal Learning Test (RAVLT) (Vakil et al.,
2004) was applied to evaluate the ability of verbal learning and
memory.

In this test, the subjects should try to repeat the words as much
as he/she can remember. This procedure was repeated five times
and then followed a delayed recall after 30 min. The sum number
of the correct words Immediately Recall (IR) and Delayed Recall
(DR) during the first five repeats were recorded, respectively.
(4) Digital Symbol Substitution Test (DSST) (Lezak, 2004) was
utilized to test feel/movement speed, sustained attention and
short-term memory.

In this test, subjects were required to convert numbers into
symbols in a given time and the correct conversions completed in
90 s were recorded.

The detailed values of neuropsychological scales in the two
groups were shown in Table 1.

Data Acquisition
RfMRI data were collected using Siemens 3.0-T MR scanner
(MAG-NETOM Trio Tim System) in Department of Radiology,
Zhongnan Hospital of Wuhan University. The resting-state
functional images were acquired using a EPI-BOLD sequence
(repetition time: 2000 ms; echo time: 30 ms; slice thickness:
3.8 mm; gap: 1 mm; number of slices: 33; field of view:
240 mm × 240 mm; data matrix: 64 × 64; flip angle: 90◦). All
participants were asked to lie relaxed in the scanner, close their
eyes but stay awake, try not to think of anything. During the
scanning, we found nobody fall asleep or being uncomfortable.

Data Preprocessing
RfMRI data preprocessing was completed using Data
Processing Assistant for resting-state fMRI (DPABI 2.31).
In this study, the preprocessing procedure included eight
steps: (1) the removal of first ten volumes; (2) slice timing;
(3) head-motion correction; (4) spatial normalization to the
Montreal Neurological Institute (MNI) space; (5) re-sampling
to 3 mm × 3 mm × 3 mm; (6) spatial smoothing with a 6 mm
Gaussian kernel; (7) linear detrending; (8) nuisance regression.
Each of the step is one of the functional modules in DPABI
software.

Subjects with a maximum angular rotation of more than 1◦ or
a maximum displacement of more than 1 mm in x, y, or z axis for
any of the remain 230 slices were excluded from this study. No
subject was excluded according to this criterion.

ALFF Calculation
REST 1.8 (Yan et al., 2016) was used to calculate the ALFF
value. To explore the frequency dependent characteristics of the
RfMRI signals, in this study we divided the whole frequency
range (0.01–0.25 Hz) into four individual frequency band (Wei
et al., 2014): Slow-5 (0.01–0.027 Hz), Slow-4 (0.027–0.073 Hz),
Slow-3 (0.073–0.198 Hz), and Slow-2 (0.198–0.25 Hz). For
each voxel in each slice of each subject, the ALFF value in
the whole frequency range and four sub-bands was calculated
separately.

Statistical Analysis
IBM SPSS 20.0 and SPM8 were used to perform Demographically
statistical analyses. Continuous variables were assessed with
Mann–Whitney test or two-sample t-test. Categorical variables
were assessed with Chi-squared or Fisher exact test if the
expected number was ≤5. Significance was defined as P < 0.05.
Education and age were defined as covariates in all tests involving
cognition.

For ALFF, one-sample t-test was performed using SPM8 in
the whole frequency band in two groups to find the regions with
higher-than-mean ALFF.

To investigate the main/interaction effects of/between group
and frequency band in ALFF, 2 × 4 within-subject repeated-
measures analysis of variance (ANOVA) was used to minimize
the chance of type I error. Group (the healthy controls vs. the
aCAS patients) was set as a within-subject factor and frequency
band (Slow-2 vs. Slow-3 vs. Slow-4 vs. Slow-5) was served as
a repeated-measures factor. 2 × 2 ANOVA was performed to
deeply explore the interaction between group and frequency with
the consideration of two frequency bands (Slow-5 vs. Slow- 4).

Then Two-sample t-test was performed to determine
between-group differences in each frequency band, respectively.
Significant different regions were shown on MNI templates.

Finally, brain regions with significant between-group
differences were defined as regions of interest (ROIs); Spearman
analysis was performed to detect the correlations between the
mean ALFF value in the ROIs and cognition scores.

1http://rfmri.org/dpabi
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Neural Network Modeling
Two types of cognition impairment analysis models were
designed in this study: cognition impairment classifier and
cognition scores predictor.

(1) Cognition impairment classifiers were designed using
SVM model (Cristianini, 2000) in two schemes.

In SVM classifier scheme I (Supplementary Figure S1A), eight
ROIs were found in the whole frequency bands. The mean ALFF
value of the eight ROIs were set as the model inputs. In contrast
in scheme II (Supplementary Figure S1B), 13 ROIs were found in
the sub frequency bands in sum (0 in Slow-2, 6 in Slow-3, 4 in
Slow-4, and 3 in Slow-5). The mean ALFF value of the 13 ROIs
were set as the model inputs. In both two schemes, the group
index was set as the only output of the classifier. The group with
cognition impairment was marked as number −1 whereas the
healthy control group was marked as number 1. LIBSVM (Chang
and Lin, 2011) was used in the SVM modeling. Classification
accuracy (1) and area under curve (AUC) were used to access the
performance of the classifier:

Classification accuracy =
Ncorrected

Nsample
× 100% (1)

where Ncorrected is the number of sample classified correctly and
Nsample the total number of the training set and the test set. AUC
is the area under the ROC of the SVM classifier.

(2) Cognition scores predictors were designed using BPNN
model (Hagan, 1996) in three schemes.

Scheme I (Supplementary Figure S2A) was designed based on
the significant correlation found between the cognition scores
and the mean ALFF value in the ROI. The mean ALFF in the
three ROIs which were significantly correlated to DR score were
set as the input of the predictor; In scheme II (Supplementary
Figure S2B), the mean ALFF value in the eight ROIs found in the
whole frequency bands were set as the model inputs, which is the
same as the inputs in the scheme I of the SVM classifier model.
In scheme III (Supplementary Figure S2C), the mean ALFF value
in the thirteen ROIs found in the all sub frequency bands were
set as the model inputs, which is the same as the inputs in the
scheme II of the SVM classifier model. The only one output in
the predictor is DR score of the subject. Neural Network toolbox
in Matlab (Mathworks Co., United States) was used in the BPNN
modeling. Mean absolute error (MAE) was used to represent the
performance of the predictor, and was calculated as follow,

MAE =
∑

abs
(
yi − ti

)
Nsample

(2)

where yi is the predicted results using trained BPNN model, ti
the actual (target) DR score of the subject, and Nsample the total
number of the training set and/or the test set.

In this study, there were 43 subjects, in which, the front 23
subjects in order were used as the training set and the remain 20
subjects were used as test set. The order of the data arranged as
training set and test set was disrupted randomly 1000 times to test
the average performance of the designed models (mean± std).

RESULTS

Subjects Characteristics and
Neuropsychological Evaluation
In this study, we enrolled 19 aCAS patients and 24 healthy
controls. No significant difference was found in educational
years, gender, age and vascular risk-related factors (Hypertension,
Diabetes mellitus, and Hypercholesterolemia). Compared with
healthy controls (Table 1), aCAS patients showed significantly
poorer performances on global cognition (represented by MMSE
and MoCA), memory (represented by DST and RAVLT), and
executive function (represented by DSST).

AlFF Patterns in Whole Frequency Band
(0.01–0.25 Hz)
Firstly, we found in the whole frequency band (0.01–0.25 Hz),
both two groups showed a significant higher ALFF value than
that of global average in the brain including (Figures 1A,B):
bilateral dorsomedial prefrontal (dmPFC), cingulate cortex (CC),
precuneus (PCu), supplementary motor area (SMA), thalamus,
parahippocampus, superior temporal gyrus and inferior parietal
lobule (p < 0.05, FDR corrected).

Compared with healthy control (Figure 1C and Table 2),
aCAS group showed significant ALFF decrease in bilateral
dmPFC, CC, PCu, and SMA. At the same time, ALFF
increase was observed mainly in bilateral fusiform, hippocampus,
parahippocampus, right thalamus, and left orbital frontal gyrus
(p < 0.05, FDR corrected).

Main Effect of the Group and Frequency
Factors
The main effect of the group factor was shown in Figure 2A
and Table 3. Brain regions with a main effect of group factor
on ALFF mainly includes: bilateral dmPFC, CC, PCu, SMA,
fusiform, hippocampus, parahippocampus, thalamus, left orbital
frontal gyrus and gyrus rectus (p < 0.05, FWE corrected).

A significant frequency (involving four sub-bands) main effect
on the ALFF was observed (Figure 2B and Table 4) widely
distributed in the cortical and subcortical structure, including the
prefrontal gyrus, temporal gyrus, occipital gyrus, parietal gyrus,
bilateral CC, PCu, hippocampus, parahippocampus, thalamus,
and the basal ganglia area (p < 0.05, FWE corrected).

Taken Slow-4 and Slow-5 as an example (Supplementary
Figure S3 and Supplementary Table S1), we observed that greater
ALFF in Slow-4 than Slow-5 mainly included bilateral thalamus,
hippocampus, parahippocampus, caudate nucleus and insula. In
contrast lower ALFF in Slow-4 than Slow-5 was found in orbital
frontal cortex, dmPFC, occipital gyrus and inferior temporal
gyrus.

Interaction Between the Group and
Frequency Factors
There was no significant interaction between frequency bands
and two groups when four sub frequency bands were considered
(P < 0.05, Alphasim corrected).
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FIGURE 1 | Spatial distributions of significant ALFF in the whole frequency band (0.01–0.25 Hz). The regions showing the spatial distribution of the ALFF patterns in
(A) control group, (B) aCAS group (one sample t-test, voxel size > 100, p < 0.05, FDR corrected) and (C) their between-group difference (two sample t-test, voxel
size > 10, p < 0.05, FDR corrected). In one sample t-test, hotter color indicated the higher ALFF than the mean ALFF of the whole brain while cooler color meant the
lower ALFF. In two sample t-test, hot color indicates the increased ALFF in the aCAS group than that in the control group, whereas cool color means the opposite.

TABLE 2 | In whole frequency band, details of the clusters showing significant between-group differences on ALFF at the given threshold (p < 0.05, FDR corrected).

Brain regions MNI coordinates BA L/R Voxels T-value

X Y Z

FFG/LING/PHG/HIP −33 −60 0 19/36 L 158 5.7694

FFG/PHG 33 −48 −3 19 R 29 5.4096

HIP/THA 18 −33 3 – R 56 5.5470

ORBmid −24 48 −18 11 L 12 4.8573

SFGmed/ACC/DCC −3 27 39 6/9/32 L&R 56 −5.7360

PCC/DCC 0 −36 27 23/31 L&R 49 −5.4628

SMA 3 21 54 8 L&R 15 −5.2828

PCu 0 −63 54 7 L&R 32 −4.7468

FFG, fusiform gyrus; LING, lingual gyrus; PHG: parahippocampal gyrus; HIP, hippocampus; THA, thalamus; ORBmid, middle frontal gyrus, orbital part; ORBmed, superior
frontal gyrus, medial part; ACC, anterior cingulate cortex; DCC, median cingulate and paracingulate gyri; PCC, posterior cingulate cortex; SMA, supplementary motor
area; PCu, precuneus.

However, the ANOVA test in ALFF when only Slow-4 and
Slow-5 bands were considered showed significant interactions
between group and frequency in three clusters (Figure 3 left part
and Table 5): left putamen/triangle part of inferior frontal gyri,
left precentral/postcentral gyrus, and right precentral/postcentral
gyrus (P < 0.05, Alphasim corrected).

Furthermore, in left precentral/postcentral gyrus, we found
greater ALFF in the control group than that in aCAS group within
Slow-4 band while no significant difference within Slow-5 band;
In right precentral/postcentral gyrus and left putamen/triangle
part of inferior frontal gyri, we found greater ALFF in the control

group than that in aCAS group within Slow-4 band but lower
ALFF in the control group than that in aCAS group within Slow-5
band (Figure 3 right part and Table 5).

ALFF Changes in Sub Frequency Bands
No significant difference between the aCAS patient and healthy
control was found in Slow-2 band (P < 0.05, FDR corrected).

In Slow-3 band, compared with the healthy control (Figure 4A
and Supplementary Table S2), aCAS group showed significant
ALFF decreases in bilateral CC, PCu and left dmPFC; meanwhile,
significant ALFF increases were also observed in bilateral lingual,
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FIGURE 2 | Main effect of the group and frequency factors on ALFF. The regions showing the spatial distribution of the significant (A) group main effect and (B)
frequency main effect (F-test, voxel size > 20, p < 0.05, FWE corrected). The hot color represents the greater main effect of the factors on the ALFF.

TABLE 3 | Details of the clusters showing significant main effect of the group factor on ALFF at the given threshold (p < 0.05, FWE corrected).

Brain regions MNI coordinates BA L/R Voxels F-value

X Y Z

FFG/HIP/PHG/THA/ITG −33 −60 0 19 L 479 76.6334

ORBmid/ORBsup/REC −24 51 −15 11 L 89 63.3996

FFG/HIP/PHG/THA 36 −48 −6 19 R 176 83.9097

SFGmed/ACC 3 54 3 9/10 L&R 35 42.8731

DCC/PCC 0 −36 27 23/31 L&R 81 70.1513

SFGmed/SMA/ACC/DCC 0 36 36 6/8/9/32 L&R 147 65.2123

PCu 0 −63 57 7/31 L&R 67 47.3899

ITG, inferior temporal gyrus; ORBsup, superior frontal gyrus, orbital part; REC, rectus.

TABLE 4 | Details of the clusters showing significant main effect of the frequency factor on ALFF at the given threshold (p < 0.05, FWE corrected).

Brain regions MNI BA L/R Voxel s F-valu e

X Y Z

HIP/ITG/SFG/THA/PHG 39 −48 9 6/13/20/32/36 L&R 5370 39.1918

SFGmed/ORBsupmed/ACC/REC −6 51 0 9/10/11/32 L&R 431 29.1149

PCu/DCC/PCC/CAL/SPG 3 −57 39 5/7/23/31 L&R 1392 52.6756

MFG/IFGtri/ORBinf/ORBmid −39 48 15 10/11/46 L 245 32.4143

MFG/ORBinf/ORBsup/ORBmid/SFG 42 48 15 8/10/11/46 R 265 29.0655

IPL/ANG/MOG/MTG/SMG/SPG −57 −48 42 7/19/39/40 L 762 44.3019

ANG/IPL/SMG/MOG/MTG/STG 51 −57 39 7/19/39/40 R 690 53.0286

SFG, superior frontal gyrus; CAL, calcarine fissure and surrounding cortex; SPG, superior parietal gyrus; MFG, middle frontal gyrus; IFGtri, inferior frontal gyrus, triangular
part; ORBinf, inferior frontal gyrus, orbital part; IPG, inferior parietal lobe; ANG, angular gyrus; MOG, middle occipital gyrus; MTG, middle temporal gyrus; SMG,
supramarginal gyrus; STG, superior temporal gyrus.

fusiform, hippocampus, parahippocampus and right thalamus
(p < 0.05, FDR corrected).

In Slow-4 band, compared with the healthy controls
(Figure 4B and Supplementary Table S3), aCAS group showed
significant ALFF decreases in bilateral dmPFC; meanwhile,
significant ALFF increases were observed in left middle
frontal gyrus, orbital part and right hippocampus, thalamus,
parahippocampus and fusiform (p < 0.05, FDR corrected).

In Slow-5 band, compared with the healthy control (Figure 4C
and Supplementary Table S4), aCAS group showed significant

ALFF decreases in bilateral dmPFC, SMA and left middle frontal
gyrus (p < 0.05, FDR corrected).

Correlations Between Cognitive Scores
and ALFF Changes in aCAS Patients
In Slow-3 band (Figure 5 and Supplementary Table S5),
we found: (1) positive correlations between the MoCA and
mean ALFF changes in the right LING/FFG/PHG cluster; (2)
positive correlations between DR and mean ALFF change in
the left LING/FFG/PHG/HIP cluster; (3) positive correlations
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FIGURE 3 | Interactions between group and frequency bands (slow-4 and slow-5). The regions showing significant interactions on ALFF (hot colors) includes: (A) the
left precentral and postcentral cortex, (B) the right precentral and postcentral cortex, and (C) left putaman and Inferior frontal gyrus triangular part. The bar maps
show the mean ALFF values in these regions.

between DR and mean ALFF change in the right HIP/THA
cluster.

In Slow-4 band (Figure 6 and Supplementary Table S6), we
found positive correlations between mean ALFF change in the
bilateral SFGmed cluster and FDS, IR, DR, respectively.

In Slow-5 band (Supplementary Table S7), no significant
correlation was found between mean ALFF change in the clusters
and cognitive scores.

Neural Network Modeling
As seen in Table 6, in the two schemes of SVM classifier model,
we got an accuracy of above 90% and the AUC value of above

0.99 on both training set and test set. The performance of Scheme
I was significantly better than that of Scheme II for both the
training and the test set, p = 0.023/p = 0.041 in training set and
p < 0.001/p < 0.001 in test set for classification accuracy/AUC
value. In Figures 7A1,A2, we showed a typical example of
SVM classifier models. In the example, we also found better
performance in scheme I than that in scheme II, whether on the
training set or the test set.

As seen in Table 7, in the three schemes of BPNN predictor
model, we got an average MAE of about 1.0–1.2 on training set
and about 1.7–2.0 on test set. We found the average MAE of
schemes I and III was close and scheme II was the worst. In

TABLE 5 | Brain regions showing significant interaction effects between group and frequency (slow-4 and slow-5) on ALFF.

Brain region x, y, z BA Cluster size F-value Slow-4, t, p Slow-5, t, p

Pre/PoCG. L −45,−15,45 3/4/6 270 20.1441 −0.2159,<0.001 0.0327,0.5706

Pre/PoCG. R 30,18,30 3/4 362 17.5821 −0.0881,0.0143 0.0695,0.0055

PUT/IFGtri. L −27,33,3 – 151 20.3535 −0.1069,0.0082 0.0684,0.0453

PreCG, precentral gyrus; PoCG, postcentral gyrus; PUT, lenticular nucleus, putamen.
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FIGURE 4 | Spatial distributions of significant between group difference on ALFF of BOLD oscillations in different frequency bands. The regions showing the
between-group difference in (A) Slow-3 band, (B) Slow-4 band, and (C) Slow-5 band, respectively, (two sample t-test, voxel size > 10, p < 0.05, FDR corrected). In
two sample t-test, hotter color indicated the increased ALFF in the aCAS group than that in the control group, while cooler color meant the decreased ALFF.

Figures 7B1,B2, we showed a typical example of BPNN predictor
models and found the similar results as shown in Table 7.

DISCUSSION

As we know, this is the first work to explore the frequency-
dependent ALFF changes from resting-state BOLD signals in
aCAS patients. In this study, we analyzed ALFF changes in the
aCAS patients within four sub frequency bands (Slow-5, Slow-
4, Slow-3, and Slow-2 bands). A set of brain regions exhibited
significant differences in ALFF were found between two groups
and among the sub frequency bands.

Unfortunately, we found no significant interaction between
the group and frequency bands when four sub frequency
bands were considered. But we found that several brain
regions (left putamen, triangular part of inferior frontal
gyrus and bilateral precentral/postcentral gyrus) showed
significant interaction when only Slow-4 and Slow-5 bands
were considered. In these brain regions, significantly greater
ALFF in healthy control than that in aCAS patients was
found within Slow-4 band but significantly lower ALFF in
healthy control than that in aCAS patients was presented
within Slow-5 band, implied that aCAS patients had abnormal
ALFF in local brain neural activity and these abnormalities
were frequency-dependent, especially across Slow-4 and
Slow-5.

Differences in ALFF Between Frequency
Bands
From the frequency main effects, we found that the significant
ALFF changes varied in different frequency bands in many
cortex regions (frontal gyrus, occipital gyrus, temporal gyrus,
and parietal gyrus), hippocampus structures and the subcortical
structures, including thalamus and basal ganglia.

Neural oscillation in lower frequency mainly occur on the
large cortex structure and exhibits higher power while higher
frequency neural activities are mainly found in subcortical
structures and has lower power (Baria et al., 2011; Zhang et al.,
2013). Taken Slow-4 and Slow-5 as an example, we observed that
greater ALFF in higher frequency band (Slow-4) than that in
lower frequency band (Slow-5) mainly presented in subcortical
regions, including thalamus and caudate nucleus. In contrast
greater ALFF in lower frequency band (Slow-5) than higher
frequency band (Slow-4) was found in cortical regions, including
orbital frontal, dorsomedial prefrontal, occipital and temporal
cortex. These were consistent with the previous frequency-
dependent RfMRI studies (Zuo et al., 2010; Han et al., 2011;
Yu et al., 2014) and an animal experiments (Pan et al., 2013).
Neural connections are mainly localized and neural oscillation
period is limited to the size of neural pool involved in a
given period (Csicsvari et al., 2003; Buzsaki and Draguhn,
2004). Lower frequency neural activities were related to the
integration of large-scale neural networks and long-distance
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FIGURE 5 | Correlations between cognitive variables and ALFF changes in the regions with significant between group difference in the Slow-3 band. (A) From left to
the right, the bar maps show FDS, IR and DR scores between two groups. (B) The scatters maps and its regressions show the distribution and their significant
correlation between mean ALFF in (C) brain regions and cognitive test score (FDS, IR, and DR), respectively.

neural connection (Csicsvari et al., 2003). It may be mediated by
cortex areas, especially the key nodes of the network (Salvador
et al., 2005; Tomasi and Volkow, 2010). In contrast, signals
from higher frequency band have been associated with local
neural activities and short-distance connectivity (Buzsaki and
Draguhn, 2004; Salvador et al., 2005), which may be found in
the more primitive subcortical regions (Buzsaki and Draguhn,
2004). However, we found higher ALFF in hippocampus and
medial temporal lobe (parahippocampal and fusiform gyrus)
in Slow-4 than that in Slow-5, which was inconsistent with
previous statements. Consider hippocampus, parahippocampal
gyrus, fusiform gyrus and thalamus are adjacent in anatomical
structures, the higher frequency local oscillation can easily
implement the synchronization and integration of information
in this local structure (Buzsaki and Draguhn, 2004).

Differences in ALFF Between aCAS
Patient and Healthy conBrain
In this study, Brain regions with significant between-group
difference can be assign into two part: (1) cortical midline

structure, including dmPFC, CC, and PCu; and (2) hippocampus
and its adjacent structures, including hippocampus, thalamus,
and medial temporal lobe (parahippocampal and fusiform
gyrus). The significant decrease of cortical midline structure’s
ALFF value illustrated its neural activities significantly declined,
which indicated the possible generation mechanism of cognitive
dysfunction, while the significant increase of hippocampus and
its adjacent structures’ ALFF value illustrated its neural activities
significantly raised, which implied the possible compensation
mechanism of cognitive dysfunction.

Previous study (Rogers et al., 1977) found that compared
with other-related processing, self-related processing can lead
to memory enhancement and consolidation that contributes
to the formation of long-term memory. The phenomenon is
called “self-reference effect” and its process is called “self-
reference process.” Cortical midline structure refers to the brain
region located in the midline of the human cerebral cortex,
including the medial prefrontal cortex, CC, and PCu. It plays
an important role in self-related processing and is the basis for
abstract, evaluative, and integrated self and other information
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FIGURE 6 | Correlations between cognitive test scores and ALFF changes in the regions with significant between group difference in Slow-4 band. (A) The bar maps
show DR and MoCA scores between two groups. (B) The scatters maps and its regressions show the distribution and their significant correlation between mean
ALFF in (C) brain regions and cognitive test score (MoCA and DR), respectively.

processing (Uddin et al., 2007). various types of self-reference
processing is closely related to the activation of the cortical
midline structure. Apart from memory, it also involves important
cognitive functions such as language, space, emotion, face,
movement, and society (Northoff et al., 2006).

In hippocampus and its adjacent structures, hippocampus is
the center of processing and integration of episodic memory
in the brain (Scoville and Milner, 2000); thalamus is not
only a relay hub for most afferent impulses to the cerebral
cortex (including the hippocampus), but also the important
information integration and coordination center (Gazzaniga,
2014); medial temporal lobe is associated with the short-
term memory. In medial temporal lobe, parahippocampal
gyrus is a gray matter layer around the hippocampus, which
plays an important role in the encoding and extraction
of memory (Megevand et al., 2014). Additionally, olfactory

region in parahippocampal gyrus is the gate linking to the
hippocampus with rich incoming connections; fusiform gyrus is
linked to the function including color information processing
and the recognition of face, body, and word (Uono et al.,
2017).

Based on the analysis above, we speculate that cognitive
dysfunction in aCAS patients may be related to the decline of
neural activity in the cortical midline structure, especially for
long-term memory. At the same time, possible compensatory
mechanisms are formed: in hippocampus and its adjacent
structures, short-term memory (medial temporal lobe) and
memory processing (hippocampus) related neural activity
significantly enhanced and was used to compensate for the
decline of long-term memory-related cognitive functions.

Based on the “binding-by-gamma” hypothesis (Engel et al.,
2001), as long as the frequency of the coupled neural oscillator
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TABLE 6 | The averaged performance of the SVM classifiers.

Classifier accuracy/AUC Training set Test set

SVM classifier I 96.20% ± 2.72%/0.9984 ± 0.0036 94.27% ± 4.93%/0.9920 ± 0.0118

SVM classifier II 97.87% ± 2.17%/0.9999 ± 0.0006 97.51% ± 2.76%/0.9973 ± 0.0066

FIGURE 7 | Comparison of different Neural network modeling results. (A1,A2) The ROC curve of training set and test set in two SVM classifier models, including
8-inputs (A1) and 13-inputs (A2) schemes, described in Section “Materials and Methods” in detail. The classification accuracy and AUC value for each scheme was
shown in the corresponding figure. (B1,B2) The prediction results of three BPNN predictor model schemes in training set (B1) and test set (B2). The prediction MAE
for each scheme was shown in the corresponding figure.

remain similar, oscillation synchrony can be sustained even
with very weak synaptic links. This synchrony allows activated
neural oscillators link with each other temporally and form
the corresponding function. Among them, low-frequency neural
activity is associated with the integration of large-scale neural

TABLE 7 | The averaged performance of the BPNN predictors.

Predictor MSE Training set Test set

BPNN predictor I 1.0334 ± 0.2246 1.4992 ± 0.3675

BPNN predictor II 1.2824 ± 0.6600 2.0027 ± 0.5235

BPNN predictor III 1.1806 ± 0.2133 1.9240 ± 0.7480

networks and long-distance neural connections, whereas high-
frequency neural activity is associated with local neural networks
and short-range neural connections.

In cortical midline structure, dmPFC, CC, and PCu are
not adjacent with each other in anatomy. Low-frequency
neural oscillators between them allow them to form long-
distance temporary network connections and the corresponding
functions. The decline of their low-frequency neural activity may
affect these temporary connections and functions. Such as in
Figure 6, the ALFF value of dmPFC in lower frequency band
is significant positive Related to FDS, IR, and DR, which are
linked to the cognition function of language learning, attention
and memory. Similarly, the possible local compensatory behavior
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can also be enhanced by increasing the neural activity in
hippocampus and its adjacent structures in higher frequency
band. As shown in Figure 5, the ALFF value of the hippocampus
and its adjacent structure in higher frequency band is significantly
positively correlated with DR and MoCA which are linked to the
cognition function of global cognition, memory and attention.

Oscillations with different frequency might carry different
dimensions of brain integrations. Low frequency oscillation
synchronized the large-scale network space and could bind
together specific assembles by the proper higher frequency
local oscillations (Engel et al., 2001; Varela et al., 2001;
Sirota et al., 2003; Steriade and Timofeev, 2003). However,
the underlying mechanism of neural activities with different
frequency oscillations and their advanced brain functions remain
unclear and need to be explored in the future.

Classification Model and Prediction
Model
Both two SVM classifier schemes and three BPNN predictor
schemes achieved good diagnosis results. It meant BOLD signal
in significantly altered brain regions in aCAS patients are valuable
in the analysis of aCAS. The segmentation of physiological
sub-bands and exaction of information within these sub-bands
provides more information, for example, the neural oscillation
difference in large scale neural network process and local
neural process, separately. These are useful and helpful in the
recognition of the cognition impairment of aCAS patients.

In sum through the modeling, we found the mean ALFF in
the regions with significant between-group difference on ALFF in
different frequency bands could be used as neuroimaging markers
for the cognition impairment assessment of aCAS patients. The
modeling results in classification and prediction can effectively
verify it. The built models could be a useful tool in the clinical
diagnosis and the pathophysiology mechanism exploration of
cognitive impairment for aCAS patients.

Limitation
It should be noted there are several limitations in this study.
First, the sample size was relatively small, larger sample size
can make the built model more reliable and robust. aCAS
patients with different handedness and different side of stenosis
could exhibit different cognition impairment. More patients with
different handedness and different side of stenosis should be
recruited in the future work. Secondly, the effects of respiratory
and heart rhythm could not be eliminate completely with a
relatively low sampling rate (TR = 2 s), especially in the
analysis within relatively high frequency band (e.g., Slow-2
band). Thirdly, to explore the mechanism of CAS leading to
cognitive dysfunction, the relationship between local neural
activities characteristics and corresponding cerebral perfusion
should be discussed in the future, ASL method may be a
good candidate. Finally, the extent of Carotid artery stenosis
and different treatments (carotid artery stenting and carotid
endarterectomy) (Takaiwa et al., 2009; Feliziani et al., 2010;
Wasser et al., 2012; Germano et al., 2014) should be considered

to confirm their effects to the cognition impairment in the
future.

Additionally, ALFF method can be used more in-depth in
many clinical situations, for example, to construct the brain
structural and functional network, the analysis of the network
connectivity changes may provide an in-depth insight into the
physiological and pathological mechanism of interested brain
issues. These will be considered in our future work.

CONCLUSION

In this study we explored the frequency-dependent characteristics
of the abnormalities of brain function in aCAS patients.
First, we examine the spatial patterns of the ALFF change in
aCAS patients within four different frequency bands; then we
analyze the correlation between these abnormal changes and the
cognition level of aCAS patient; finally, the cognition impairment
diagnosis model and prediction model were built using these
frequency-dependent characteristics of LFO abnormalities. In
all, the frequency-dependent abnormalities of LFO in aCAS
not only reveal the pathophysiology of cognitive impairment
of aCAS, but also can be used as neuroimaging marker in the
diagnosis and assessment of cognition impairment for the aCAS
patients.
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