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3D reconstruction from multiple viewpoints is an important problem in machine vision

that allows recovering tridimensional structures from multiple two-dimensional views

of a given scene. Reconstructions from multiple views are conventionally achieved

through a process of pixel luminance-based matching between different views. Unlike

conventional machine vision methods that solve matching ambiguities by operating

only on spatial constraints and luminance, this paper introduces a fully time-based

solution to stereovision using the high temporal resolution of neuromorphic asynchronous

event-based cameras. These cameras output dynamic visual information in the form

of what is known as “change events” that encode the time, the location and the sign

of the luminance changes. A more advanced event-based camera, the Asynchronous

Time-based Image Sensor (ATIS), in addition of change events, encodes absolute

luminance as time differences. The stereovision problem can then be formulated solely

in the time domain as a problem of events coincidences detection problem. This work is

improving existing event-based stereovision techniques by adding luminance information

that increases thematching reliability. It also introduces a formulation that does not require

to build local frames (though it is still possible) from the luminances which can be costly to

implement. Finally, this work also introduces a methodology for time based stereovision

in the context of binocular and trinocular configurations using time based event matching

criterion combining for the first time all together: space, time, luminance, and motion.

Keywords: asynchronous acquisition, time-pulse encoding, event-based stereovision, frameless vision,

asynchronous vision

1. INTRODUCTION

Since the seminal work of Marr and Poggio (1977) and Julesz (1963) and other pioneers,
stereovision has increasingly been studied. 3D perception has become one of the key technologies
for several tasks, such as autonomous driving, grasping, gaming, drone navigation,etc. However,
there are still very few vision-based applications in uncontrolled light conditions and unstructured
environements. There are currently several available sensors providing 3D perception such as laser
range finders or laser scanners, time-of- flight (TOF) cameras, ultrasonic detectors, radar, light-
section, and structured light as well as passive technologies, including structure from motion,
optical flow, and stereo vision. Current state-of-the-art methods for autonomous driving (Levinson
and Thrun, 2010; Markoff, 2010) use reflectivity measurements from 3D LIDAR scanners to create
an orthographic map of ground-plane reflectivities. LIDAR are becoming the gold standard for
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outdoor navigation. They are however slow, computationaly
more demanding and far more power hungry than cameras. The
cost of 3D LIDAR scanners is also prohibitive for consumer
market automobiles. Cameras provide a low-cost means to
generate extremely rich, dense data that is suitable for generating
dense 3D maps, however the low dynamic range and current low
frame-rates of conventional cameras are still a major bottleneck
for their use. Conventional camera-based stereovision is also
considered unreliable specially when dealing with uncontrolled
light conditions. This is mainly due to the mode of operation
of state-of-the-art image sensors that is useful and efficient for
exactly one thing: photography, i.e., for taking an image of
a still scene. There is a widespread and ingrained belief that
acquiring series of images at some rate is a good way to capture
visual motion. This conviction is seemingly supported by the
way movies are made for human observers. The observation that
visual motion appears smooth and continuous if viewed above
a certain frame-rate is, however, more related to characteristics
of the human eye and visual system than to the quality of
the acquisition and encoding of the visual information as a
serie of images (Akolkar et al., 2015). As soon as changes
or motions are involved, which is the case for most machine
vision applications, the universally accepted paradigm of visual
frame acquisition becomes fundamentally flawed. If a camera
observes a dynamic scene, no matter where the frame-rate is
set to, it will always be wrong. Because there is no relation
whatsoever between dynamics present in a scene and the chosen
frame-rate, over-sampling and/or under-sampling occur, and
moreover both usually happen at the same time. When acquiring
a natural scene with a fast moving object, e.g., a ball thrown
in front of a static background with a standard video camera,
motion blur and displacement of the moving object between
adjacent frames will result from under-sampling the object, while
repeatedly sampling and acquiring static background over and
over again will lead to large amounts of redundant, previously
known data. As a result, the scene is under- and over-sampled
at the same time! Interestingly, this far-from-optimal strategy of
acquiring dynamic visual information has been accepted by the
machine vision community for decades, likely due to the lack of
convincing alternatives.

Recently, research in the field of Neuromorphic Engineering
has resulted in a new type of vision sensors that acquire visual
information in a very different way. These sensors are based
on pixels that can optimize their own sampling depending
on the visual information they individually receive. If scenes
change quickly, the pixel samples at a high rate; if nothing
changes, the pixel stops acquiring redundant data and goes
idle until the scene changes significantly again in the sensors’
field of view. These sensors introduce another paradigm of
visual information acquisition: the pixels, instead of being driven
by a fixed frequency that makes them work synchronously as
in a classic frame-based sensor, are independent both in the
samples acquisition times and the exposure durations. The data
acquired that way is globally a time-continuous stream of visual
information. In order to do so, each pixel defines the timing of its
own sampling points in response to its visual input by reacting
to changes of the amount of incident light. As a consequence,

the sampling process is no longer governed by a fixed external
signal defined in the time domain but by the signal to be sampled
itself, or more precisely by the variations of the signal in the
amplitude domain. Mahowald (1992) introduced the early form
of the neuromorphic vision sensor that lead to several variations
of what are presently known as the event-based vision sensors:
(Lichtsteiner et al., 2006; Serrano-Gotarredona and Linares-
Barranco, 2013) are encoding temporal contrasts asynchronously
in the form of pulses called events. Newer generations of
event-based sensors have either integrated a synchronous frame
mode (Berner et al., 2013) or have implemented a level crossing
sampling mechanism to captur and encode luminance in an
asynchronous way (Posch et al., 2011).

The Asynchronous Time-based Image Sensor (Posch et al.,
2011) used in this paper is an asynchronous camera that
contains an array of independently operating pixels that
combine an asynchronous level-crossing detector and a separate
exposure measurement circuit. Each exposure measurement
by an individual pixel is triggered by a level-crossing event.
Hence each pixel independently samples its illuminance upon
detection of a change of a certain magnitude in this same
luminance, thus establishing its instantaneous gray level after
it has changed. The result of the exposure measurement (i.e.,
the new gray level) is asynchronously output off the sensor
together with the pixel‘s coordinates in the sensor array. As
a result, image information is not acquired frame-wise but
continuously, and conditionally, only from parts of the scene
where there is new visual information. Or in other words,
only information that is relevant–because it has changed–
is acquired, transmitted, stored and eventually processed by
machine vision algorithms. Pixel acquisition and readout times of
microseconds to milliseconds are achieved, resulting in temporal
resolutions equivalent to conventional sensors running at tens
to hundreds of thousands frames per second. The implications
of this approach for machine vision can hardly be overstated.
Now, for the first time, the strict temporal resolution vs. data
rate tradeoff that limits all frame-based vision acquisition can
be overcome. Visual data acquisition simultaneously becomes
fast and sparse. Obviously the advantages of acquiring dynamic
vision data this way, i.e., ultra-high-speed operation combined
with reduced power consumption, transmission bandwidth and
memory requirements, do not end at the acquisition stage. All
subsequent processing strongly benefits from the fact that the
sensors encode visual dynamics into highly resolved spatio-
temporal patterns of “events,” representing the relevant features
of motion such as moving object contours and trajectories
virtually in continuous time.

The event-based formulation of stereovision has already
produced striking results in stereovision. The use of time allowed
the reformulation of the epipolar constraint as a time coincidence
phenomenon as shown in Benosman et al. (2011). Epipolar lines
defining the relation established by two vision sensors appear
as stuctures of co- occurent events. This methodology can be
naturally extended to solve the problem of 3D matching and
reconstructions from events as introduced in Rogister et al.
(2011) and Carneiro et al. (2013). Event-based stereovision
techniques based on changes events assume no luminance in the
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encoding of the visual information since the camera used in these
works only provides the time and the sign of detected changes.
This last consideration is the main motivation splitting this work
from many others that can be found in literature in event-based
stereo vision as Schraml et al. (2007), Kogler et al. (2009), Schraml
et al. (2010), Dominguez-Morales et al. (2011), and Belbachir
et al. (2012). These works apply matching methodes based on
events accumulation to build frames so standard binocular vision
techniques can be applied. We are intentionally getting away
from these approaches, as building frames induces usually a
lost in temporal precision and is not allowing us to exploit the
event-based representation at its fullest potential. In Kogler et al.
(2011), the authors also claimed the benefit of using accurate
time information provided by the sensor instead of simply
accumulating events to build local/global frames. They developed
an event matching algorithm that is pretty similar to the one
in Rogister et al. (2011). At the time, the community started to
focus more on how to infer depth from the temporal information
rather than just the spatial information obtained via events
accumulation. Piatkowska et al. (2013) implemented an event-
based form of a “cooperative” computation of depth coupled with
a winner-take-all mechanism to match events temporaly close
and spatially constrained by the epipolar geometry satisfied by the
event-based vision sensors. This cooperative technique has been
actually initiated by the early work of Marr and Poggio (1976) on
frame-based cameras.

This paper completes and generalizes previous work on event-
based stereovision by introducing a new approach to solve pure
event driven stereo matcting. It combines for the first time:
precise timing (Rogister et al., 2011), local motion consistency
(Benosman et al., 2012) and light consistency in the temporal
domain (Posch et al., 2011). As we will show, the extremly high
temporal resolution (up to ns) of the acquisition and encoding
process allows the formulation of stereovision as a coincidence
detection problem in the temporal domain, in which time also
encodes for luminance.

2. TIME ENCODED IMAGING

The Asynchronous Time-based Image Sensor (ATIS) used in
this work is a time-domain encoding image sensor with QVGA
resolution (Posch et al., 2008, 2011). The sensor contains an
array of autonomous pixels that combine an illuminance change
detector circuit and a conditional exposure measurement block.
As shown in the functional diagram of an ATIS pixel in Figure 1,
the change detector individually and asynchronously initiates
the measurement of an exposure/gray level value only if—and
immediately after—a brightness change of a certain magnitude
has been detected in the field-of-view of the pixel at time t. ATIS
encodes visual information as a stream of events where each event
eu(p, t) output by camera u is defined by its image coordinates
p = (x, y)T , time of change t, polarity pol and luminance
information encoded between two times that define the begining
and end of the light integration written respectively te− and te+ .
The exposure measurement circuit in each pixel individually
encodes the absolute instantaneous pixel illuminance into the

timing of asynchronous event pulses, more precisely into inter-
event intervals.

An event eu(p, t) can then be defined as quadruple:

eu(p, t) = (t, p, Iu, pol) with





t

p = (x, y)T ∈ Ru

Iu(p, t) =
1

te+ − te−

pol = sign
(

∂Iu(p,t)
∂t

)
, (1)

Iu(p, t) is the luminance that can be computed directly as the
inverse of te+ − te− , where te− and te+ being respectively the
starting and the finishing timestamps of the integration. Finally,
Ru designates the focal plane of camera u. Since the ATIS is
not clocked like conventional cameras, the timing of events
can be conveyed with a temporal resolution at the order of
1 ms. The time-domain encoding of the intensity information
automatically optimizes the exposure time separately for each
pixel instead of imposing a fixed integration time for the entire
array, resulting in an exceptionally high dynamic range of 143 db
and an improved signal to noise ratio of 56 db. The polarity pol
is representing the direction of the induced luminance change
from its previous value. Events can therefore assume a single
value 1 or −1 if they represent respectively an increase or
decrease of the luminance. Figure 2 shows the general principle
of asynchronous imaging spaces. Frames are absent from this
acquisition process. They can however be reconstructed, when
needed, at frequencies limited only by the temporal resolution of
the pixel circuits, up to hundreds of kiloframes per second if the
scene is sufficiently bright. In low light condition, the luminance
integration time is introducing additional latencies which might
reduce frame-rate drastically. Figure 2 (top) shows samples of
such generated gray level frames. Static objects and background
information, if required, can be recorded as a snapshot at the
start of an acquisition henceforward moving objects in the visual
scene describe a spatio-temporal surface at very high temporal
resolution (see Figure 2 bottom).

3. MATERIALS AND METHODS

3.1. Event-Based Stereo Matching
A light intensity variation at a given 3D point X will be projected
onto the image planeRu at the location p according to:

(
p

1

)
= Pu

(
X

1

)
, (2)

where Pu is the perspective projection matrix of camera u.
In what follows we will consider two stereo cases: binocular

and trinocular. Considering a trinocular configuration usually
opens the path for a higher number of cameras as shown in
Carneiro et al. (2013). We have shown that stereo vision can
be computed solely from a purely temporal matching of events
constrained by epipolar geometry both for binocular (Rogister
et al., 2011) and trinocular stereo configurations (Carneiro et al.,
2013). The principle being that pixels sending events at the
same time are potentially observing the same moving stimulus.
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FIGURE 1 | Functional diagram of an ATIS pixel (Posch et al., 2011). Two types of asynchronous events, encoding change and brightness information, are generated

and transmitted individually by each pixel in the imaging array.

FIGURE 2 | (Lower part) The spatio-temporal space of imaging events: Static objects and scene background are acquired first. Then, dynamic objects trigger

pixel-individual, asynchronous gray level events after each change. Frames are absent from this acquisition process. Samples of generated images from the presented

spatio-temporal space are shown in the upper part of the figure.

Results show however that higher amount of correct matches
can be reached if more constraints are added on the matching
(Camuñas-Mesa et al., 2014). Matching raw events is always
prune to errors as raw events only carry temporal information.
We will generalize the initial work by providing a more general

scheme going beyond the combined use of time and epipolar
geometry. We will introduce more criterions such as luminance,
motion all computed from time and more importantly, we will
show how luminance can be used to derive a time coincidence
detection that allows to increase the matching performances
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when combined with motion information derived from teh
events.

3.2. Spatial Criterion
Let us consider Fuv as the fundamental matrix that maps events
between cameras u and v, luv(p) for p ∈ Ru, is the epipolar line
on the image planeRv defined as:

Ru → P
2

p 7→ luv = Fuv

(
p

1

)
, (3)

where P
2 is the projective space of R

2. Equation 3 is the
mathematical form of the epipolar constraint. It means that for a
pair of vision sensors defining the fundamental matrix Fuv, any
pixel in camera u is mapped to a line luv inRv.

The 3-tuple of matching events produced by three sensors
u, v, and w, is defined as m = {eu(p, tu), ev(q, tv), ew(r, tw)} of
events generated at pixels p, q, and r, on the intersection of the
epipolar lines in respectively image planesRu,Rv andRw. If the
intersections of epipolar lines are exact, a formal definition of a
3-tuple is:

m̂ =
{
ei(x̂, ti)|x̂ = lji ∩ lki

}
, (4)

where for an event eu, {i, j, k} is any circular permutation of
{u, v,w} and x̂ is the exact intersection of two epipolar lines. x̂ is,
up to some estimation error, close to the actual pixel x captured by
the camera i (i.e., x ∈ {p, q, r}). The geometrical error for a given
match is defined as the mean distance between the intersection of
epipolar lines and the matched point at each retina and it reflects
how well a match respects the epipolar constraints:

EG(m) =
1

3ǫg

(
|p− p̂| + |q− q̂| + |r− r̂|

)
. (5)

ǫg is a normalizing scalar which represents the maximum
allowed geometric distance. This maximum allowed distance
defines which events are considered as potential candidates and
therefore if |x− x̂| > ǫg , the match is discarded automatically.

For binocular matching, there is no epipolar line intersection,
instead the geometrical error is given by the distance from
candidate points to epipolar lines:

EG(m) =
d(p, luv)+ d(q, lvu)

2ǫg
(6)

d(x, l) is the distance from point x to the epipolar line l.

3.3. Temporal Criterion
On the time domain, the matching is achieved by identifying
events which occur at the same time on all sensors. If a given
stimulus X is changing luminance that is detected at t by sensors
u, v and w, events eu(p, tu), ev(q, tv), and ew(r, tw) are then
generated, where t ≈ tu ≈ tv ≈ tw, because of different retina
latencies. However, we can define matching events as the ones

generated at the closest temporal distance by minimizing the
temporal matching error

ET(m) =
|tu − tv| + |tu − tw|

2ǫt
(7)

where ǫt is a normalizing scalar which represents the maximum
temporal distance error. Similarly, in the binocular case we have:

ET(m) =
|tu − tv|

ǫt
(8)

3.4. Generalized Time Criterion
Let events eu(p, tu), ev(q, tv) be events generated from a moving
3D point. A event eu generates, as shown in Figure 1, three
events, tu, the change event and te− ,u, te+ ,u the luminance
integration events. Let Iu = {tu, te− ,u, te+ ,u} be the set of event
trains related to eu, these can be represented mathematically as:

lu(t) =

n∑

i = 1

δ(t − Iu(i)), (9)

where i indexes one of the three events tu, te− ,u or te+ ,u.
We can then define Ĩ as the continuous function obtained by

convolving l with a gaussian g(σ ) of variance σ 2 (see Figure 3).
In practice, σ is set to have the three events represented by three
non overlapping gaussians. Experiments show that for a variety

of scenes σ = min
(te−−t,te+−te− )

20 is a good choice. The similarity
measure between two event trains Ĩu(t) and Ĩv(t) is then given by:

EI(m) =

∫
ω
Ĩu(t)̃Iv(t)dt√∫

ω
Ĩu(t)2dt

√∫
ω
Ĩv(t)2dt

, (10)

where ω is the support of the convolved functions Ĩ over some
neighborhood ν.

As luminance is encoded in time, this criterion merges both
change events and luminance in a single comparison. Luminance
correlation is here expressed in time as two coincidences thus
increasing the number of necessary coincidences between two
incoming events by a factor of 3 compared to direct matching
on change events as introduced in Rogister et al. (2011). This
criterion can be extended and applied to a whole neighborhood
around an incoming event. Considering a n×n neighborhood ρ,
this increases the amount of coincidences by 3n2 thus providing
more robust matchings. In practice, we are computing the sum of
the n2 similarity measures as defined in (10), one for each pixel
within the neighborhood:

S(m) =
∑

mi∈ρ

EI(mi). (11)

Two events are matched together among a list of possible
candidates if the sum is maximal. The unified representation
of time and luminance is also computationally efficient, the
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FIGURE 3 | As intensities are time-coded by sets of three events (a change event, an integration start and an end integration event), finding the best match of a given

intensity is equivalent to identifying coincidences of the three events timestamps. In term of spike train, we are maximizing the similarity measure defined in Schreiber

et al. (2003) by convolving each spike train with a gaussian g(σ ) of variance σ .

conventional convolution to compare luminance neighborhoods
necessitate more computations that just detecting 3 coincidences.
Considering the high dynamic range of the ATIS we are expecting
to spare substantial computation namely because in a purely
time based neural implementation time coincidence can be
directly used to detect both coactivation of events and luminance
correlation without the need of storing large digits. The use of
time is showing here to be in perfect adequation with the precise
time computational architecture and neuromorphic processors.

3.5. Motion Criterion: Time Surface
Matching
Considering an incoming event e(p, t), we can then define two
maps 6e and Se that associate respectively to each p, the time t
and the polarity pol:

6e : R
2 → R

p 7→ t
,
Se : R

2 → {−1, 1}
p 7→ pol

(12)

We can now define the decaying time surface Ŵe at the current
event time t and at any position q:

Ŵe : R
2 × R → R

(q, t) 7→ Se(q) exp
(

6e(q)−t
τ

)
, (13)

where τ is a time constant usually set experimentally between
5 and 20 ms. Time-surfaces provide a dynamic spatiotemporal
context around an event related to motion which principle is
shown in Figure 4. The exponential decay extends continuously
the influence of past events (Figure 4C) andmaintains the history
of the activity in the neighborhood. The resulting surface is
shown in Figure 4E. As one can see from the definition, |Ŵe| is
maximal and equal to 1 if q is actually where the last event occurs
and converges to 0 the older the event that occured at q.

Let us define the spatio-temporal region around the spatio-
temporal location of an event eu(pu, t) of size δs × δs :

ν(eu) = {Ŵe(pi, t)| |pi − pu| ≤ δs}. (14)

If two events eu and ev are matched, their motion consistency can
be computed by correlating their corresponding time surfaces.
An energy cost function can be defined imposing penalties on
motion disparity such that:

EM(m) = 1−
1

2

∑

eu ,ev

(ν(eu)− ν(eu))(ν(ev)− ν(ev))

|(ν(eu)− ν(eu)||(ν(ev)− ν(ev)|
(15)

where ν(eu) is the mean value of Ŵe over a neighborhood ν

around an event eu.

4. RESULTS

We presented four independent matching contraints:

• EG, spatial geometric consistency (Equation 5),
• ET , time consistency (Equation 7),
• EI , luminance consistency (Equation 10),
• EM , motion consistency (Equation 15).

We can define a temporal energy cost function written here as a
summation of all temporal criterion:

Ẽ(m) = EG(m)+ ET(m)+ EM(m)+ EI(m), (16)

such that,

m(eu) = argmin
mi∈M

(Ẽ(mi)), (17)

whereM is the set of 3-tuplemi within a spatiotemporal volume
centered to the most recent events generated by any cameras u, v
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FIGURE 4 | Definition of a time-surface from the spatio-temporal cloud of

events. A time-surface describes the recent time history of events in the spatial

neighborhood of an event. This figure shows how the time-surface is

computed. The event-driven time-based vision sensor (A) is filming a scene

and outputs events shown in (B). Extracting a spatial neighborhood allows to

build the event-context (C) associated with each incoming event. Exponential

decay kernels are initiated at the time of arrival of events, their values at t

constitute the time-surface itself. We consider the times of most recent events

in the spatial neighborhood (D). Extracting a spatial neighborhood allows to

build the event-context introduced in (C) associated with that event.

Exponential decay kernels are then applied to the obtained values, (E) shows

these values as a surface.

or w. Its size is defined by the maximum pixel error and the
maximum temporal error tolerated.

The combination EG(mi) + ET(mi) is the initial method for
event based matching introduced in Rogister et al. (2011). In
order to study the effect of each additional criterion, we consider
four Ẽmatching criterions:

• basic:

Ẽ(mi) = EG(mi)+ ET(mi), (18)

• basic and motion:

Ẽ(mi) = EG(mi)+ ET(mi)+ EM(mi), (19)

• basic and luminance:

Ẽ(mi) = EG(mi)+ ET(mi)+ EI(mi), (20)

• basic, motion, and luminance

Ẽ(mi) = EG(mi)+ ET(mi)+ EM(mi)+ EI(mi). (21)

In what follows we will ommit writing the basic form EG(mi) +
ET(mi) in the notations except when it concerns directly the
basic form itself, so that the reader can more easily focus on the
contribution of every new criterion.

The experimental setup shown in Figure 5A consists of a
multi-camera rig of ATIS cameras and a Microsoft Kinect
sensor.We consider binocular and trinocular configurations. The
fourth camera is used as a backup and for future multi-camera
studies. Cameras are synchronized. They are also calibrated
using the toolbox introduced in Bouguet (2008). The Microsoft
Kinect sensor is also calibrated with the multi-camera system,
it provides the 3D ground-truth. We test the influence of these
criterions independently and present 3D reconstruction results
for temporal matching windows between 1 and 7 ms and
matching pixel errors of 1–4 pixel. The matching time window
interval compensates for the non idealities of the sensor, while
the spatial pixel error reflects the distance to the epipolar line.
In principle the calibration provides a subpixel spatial error,
however in mobile applications, vibrations and collisions usually
affect the calibration. The 3D reconstructions are computed and
evaluated for each of the four criterion. In order to evaluate the
accuracy of the results, each 3D point cloud reconstructed from
the events is compared to the 3D point clouds produced by the
Kinect within the same time slot (see Figure 5B). A point from
the event-based point cloud is paired to the closest point from the
Kinect. From this hypothesis, we define two measures to quantify
the accuracy of the computed reconstructions:

• The reconstruction error is computed as the mean distance
between reconstructed and closest ground truth points. Then
the error is normalized by the maximum width of the object.
This value tells how close the computed reconstruction is from
the Kinect’s point cloud.

• The number of wrong matches is given by the total number of
points which distance to its corresponding closest point in the
Kinect’s point cloud is larger than 10%. This measure evaluates
the amount of noise surrounding the recovered shape.

The dataset is made of a sequence showing a person in a standard
but non blinking lighting condition, in a room providing uniform
background. The event-based sensors are set to capture the head
on their fields of view (fov) and the person is asked to move
without specific constraint, within the fov of the sensors. The
recording is 10 s long and is generating an average of 450 k
events/s. One has to keep in mind that this events rate is not only
dependent on the sensors setting but mainly scene dependent.
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FIGURE 5 | (A) Multicamera setup composed of 4 ATIS sensors and a Microsoft Kinect sensor for ground-truth. (B) Point cloud built from the events and point cloud

from the Kinect super-imposed: a point from the event is paired to a point from the Kinect if their relative distance is the smallest.

4.1. Binocular Matching
3D reconstruction is obtained from operating the asynchronous
event-based binocular stereo matching algorithm over the
sequence encoding a moving human face. The maximum
matching geometrical distance is fixed such that ǫg = 1 pixel
while the matching time-window parameter is tested for values
ranging from 1 ms ≤ ǫt ≤ 7 ms at fixed intervals of 2 ms.
3D reconstructions are obtained with minimization of each of
the four proposed energy cost functions. Results are presented in
Figure 6, they show the influence of the matching time window
width in the binocular configuration.

Figure 6A shows that the reconstruction accuracy remains
almost constant regardless to the time window width for all
criterion. The basic criterion EG + ET (shown by the red curve)
achieves very poor results with reconstruction accuracy of 50%.
Furthermore Figure 6B shows that 75% of recovered 3D points
are wrong matches meaning that this method produces very
noisy and inaccurate point clouds. The use of any of the other
proposed cost functions shows far better results. The addition of
EM or EI provides equivalent improvements in terms of accuracy
with average reconstruction errors of around 25%. However, EM
seems to produce slightly more wrong matches than EI with
respectively 57% average amount of wrong matches against 53%
given by the second function. The addition of both motion and
flow EM + EL provides the best results with an average of 20%
reconstruction error and <50% of wrong matches. The increase
of the time-window does not seem to have an influence on the

accuracy or the percentage of wrong matches as both remain
constant. However, the number of reconstructed points improves
when the time window is increased.

Similar results are obtained when studying the distance
to epipolar lines value. In this case, the maximum matching
temporal distance is fixed such that ǫt = 1 ms while the matching
pixel error parameter is tested for values ranging 1 pixel ≤
ǫg ≤ 4 pixel. Results are shown in Figure 7. The reconstruction
accuracy and the amount of wrongmatches remain constant. The
amount of reconstructed points increases when the distance to
the epipolar line is increased. The same conclusions on the effects
of noise also apply to this case. Spatial and temporal matching
distances do not seem to have an effect on the accuracy of the
reconstruction. However, when these criterions are loosened the
number of reconstructed points and amount of produced noise
increases.

4.2. Trinocular Matching
The same evaluation is performed for the four criterions.
Figure 8 shows the reconstruction of a face with matching time-
windows ǫt ranging as follows 1 ms≤ ǫt ≤ 7 ms at fixed intervals
of 2 ms and fixed a ǫg = 1 pixel. Quantitative evaluation is
summarized in Figure 9.

Comparing to the results obtained from the binocular
configuration, we can see that the accuracy of 3D reconstructions
almost doubles with the trinocular method, with reconstruction
errors decreasing from 50% to 25–30% for EG + ET and
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FIGURE 6 | Comparison of reconstruction accuracy and errors with each matching cost function and variable matching time window applied to the asynchronous

event-based binocular stereo matching (Rogister et al., 2011). Red line (triangle) represents geometrical and temporal minimization (EG + ET ), green line (square)

represents the addition of motion (EG + ET + EM ), blue line (circle) represents the addition of luminance (EG + ET + EI ) and black (diamond) represents the addition of

motion and luminance (EG + ET + EM + EI ). (A) Accuracy of 3D reconstruction (B) Amount of incorrect points (C) Total amount of reconstructed points with different

matching time windows.

FIGURE 7 | Comparison of reconstruction accuracy with each constraint and a range of distances to epipolar lines using the binocular configuration. Red line

(triangle) represents EG + ET , green line (square) represents the addition of motion (EM ), blue line (circle) represents the addition of luminance (EI) and black (diamond)

representsthe addition of motion and luminance (EM + EI ). (A) Accuracy of the 3D reconstruction (B) Amount of incorrect points (C) Total amount of reconstructed

points.

decreasing from 20–25% to 10% for the remaining cost functions.
The amount of noise also decreases in the trinocular case with
65% of wrongmatches for the basic criterion EG+ET and around
35–40%when additional constraints are added. An improvement
obtained with the trinocular formulation is an expected result as
using three cameras introduces more constraints. Due to the non
idealities of the sensors, the appearance of events is stochastic,
the amount of reconstructed points is then lower as the method
requires three corresponding events to be output inside the
matching time window.

Finally, Figure 10 presents reconstructions using the
asynchronous event-based trinocular stereo matching algorithm
for several geometrical distance 1 pixel ≤ ǫg ≤ 4 pixel and for
a fixed time window ǫt = 1 ms. A large value of ǫg produces
noisier reconstructions particularly noticeable in EG + ET .
Figure 11 shows the comparison between the computed 3D
clouds and the ground truth generated by the Kinect. There
is an increase of the accuracy of the reconstructions similarly
to what has been shown when studying the possibility of the
matching time window. However it is interesting to notice that
the reconstruction error and noise seem to increase when the
acceptable distance to the epipolar lines is increased suggesting
that the trinocular algorithm is more sensitive to spatial
constraints. Finally, it must be highlighted that results from
binocular and trinocular experiments show that the use of any of
the proposed additional criterion at least doubles the accuracy of

reconstructions when compared to the basic criterion used alone.
Furthermore the noise of reconstructions introduced by wrong
matches is also reduced by 20 to 50% implying more accurate
reconstructions.

4.3. Computing Times
To evaluate the computing times to mach events, we have to
define first the resources used to implement the algorithms.
All the codes have been implemented in C++, on an 8GB
computer powered by an I7-2630QM CPU. Then, from the data
perspective, the computation time is mainly influenced by the
temporal windows of search since the increase of its size is
introducing more candidate to test in the minimization process.
We measured for the time windows length increasing from 1 to
6 ms, the average time to match a pair of event for a binocular
system and for a trinocular system. The mean computing time
is calculated by averaging over the four matching criterions.
Going beyond a time windows of 6 ms is not interesting as the
reconstruction error is becoming to high. As shown by Figure 12
(left), for that range of temporal windows the computation time
is rather stable: around 20 µs for the binocular system and 21
µs for the trinocular one. This is equivalent to be able to match
47–49 k pairs or 3-tuples per second. This is to be compared to
the Kinect we used to provide the ground truth: this depth sensor
when working at the resolution of 320 × 240 pixels, is providing
dense depth maps at a frequency of 30 Hz, hence it is able to
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FIGURE 8 | Influence of the width of the matching time window on the reconstruction accuracy using the trinocular configuration. Figures show 50ms of 3D matched

events.

FIGURE 9 | Comparison of reconstruction accuracy and errors for each constraint and variable matching time window size for a trinocular configuration. Red line

(triangle) represents (EG + ET ), green line (square) the addition of motion (EM ), blue line (circle) addition of (EI ) and black (diamond) the addition of motion and

luminance (EM + EI). (A) Accuracy of 3D reconstruction (B) Amount of incorrect points (C) Total amount of reconstructed points.

process up to 320 × 240 × 30 ≈ 2.3M pixel/sec. In that respect,
the Kinect is performing better than the event-based alternative.

The event-based sensor does not impose a global exposure
time to the pixels, however each individual pixel has an
luminance integration time which is mainly scene dependent.
This is adding to the processing chain a latency. We have
established the integration time distribution as shown in
Figure 12 (right): the peak is reached for 1,200 µs , for
a mean integration time of 4,000 µs. In the log scale

representation, one can see that the significative intgeration
time varies from 100 to 10,000 µs. All these integration times
have been measured in a standard office lighting condition
(around 1,000 lux). This data acquisition latency is significantly
small compared to a 100 fps camera that acquired a new
frame every 10ms. For the event-based vision sensors, the
latency of 10ms is reached only marginaly by some pixels
at some given time in the tested sequence. As the latency
due to the acquisition is larger than the computing time,
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FIGURE 10 | Influence of matching pixel error on reconstruction results using the trinocular event-based method. The reconstruction is achieved with a time window

of 1ms. Figures are created from 50ms of 3D events.

FIGURE 11 | Comparison of reconstruction accuracy with each constraint and variable geometrical distances with asynchronous event-based trinocular stereo

matching. Red line (triangle) represents geometrical and temporal minimization (EG + ET ), green line (square) represents motion minimization (EM ), blue line (circle)

represents luminance minimization (EL) and black (diamond) represents motion and luminance minimization (EM + EL). (A) Accuracy of 3D reconstruction (B) Amount

of incorrect points (C) Total amount of reconstructed points.

the presented algorithm is processing the stream of events in
realtime.

5. DISCUSSION

The introduction of neuromorphic silicon retinas, bio-
inspired vision sensors which encode visual information as

a stream of events provides a new way to address the stereo
correspondence problem. Early solutions such as Rogister
et al. (2011) and Carneiro et al. (2013) used classical epipolar
geometry and the precise timing of these sensors to match
events and recover depth in an asynchronous event-based
fashion. However, these methods were prone to errors as
ambiguities could not be solved from co-activation and geometry
alone.
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FIGURE 12 | (Left) Average time to compute a pair (red) or a 3-tuple (blue) w.r.t. the time windows length. (Right) Distribution of the pixels’ integration time for the

tested sequence.

We studied temporal-based constraints with luminance
and motion information expressed in terms of time. We
proposed independent energy cost functions for each of the
four constraints: geometry, time, motion and luminance. We
introduced a modular formulation of an energy cost function
composed by any combination of the available matching cost
functions. This modular approach has the advantage of allowing
to chose energy cost functions according to available information
or performance concerns. Furthermore proposed constraints
(luminance and motion) were defined as functions of time
allowing the asynchronous event-based stereo correspondence
problem to be described as the minimization of an energy cost
function solely dependent on the variable time. It is interesting
to notice that the motion criterion is somehow embedding
the temporal information, and as we can see, the use of the
time surface improve significantly the matching performances.
If the motion is used, it might be possible to save memory and
computation ressources by skipping the ET quantity and just
focuse on the other constraints.

We show that the added luminance constancy and
motion consistency cost functions greatly increase accuracy
of reconstructions while reducing the amount of wrong
matches and noise in both binocular and trinocular versions.
Results prove that complex shapes can be reconstructed with
high accuracy when luminance or motion minimization are
used.

The presented event-based matching algorithm requires
constant balance between accuracy and the time one can
allocated to the computation to reach the best accuracy possible:
relaxing error tolerances increases the number of reconstructed
points and obviously the errors. Temporal windows length is
hard to set as it is scene dependent, it can be infered from the
motion information that first need to be extracted from the data.
This is unavoidably requiring processing power, however some
acceptable length can be chosen based on statistical observation
of similar scenes. The spatial resolution is also an important
limitation, the DVS and the ATIS have poor spatial resolutions

compared to modern vision sensors. Typical tolerated erorrs are
from 1 to 2 pixels in practice, increasing this just slow down the
processing time and increase reconstruction error. The relaxation
of these errors should be acceptable only when there is not
enough events for point reconstruction.

The experiments have been performed with the ATIS because
of its ability to deliver time encoded gray levels asynchronously,
however the presented method is not restricted to the ATIS as
long as the constrast change events are available. This is the case
for all the existing event-based vision sensors as the ones listed
summarized in Delbruck (2016) since they are derived to some
extend from the DVS. This list includes sensors that combine
the event-based sampling with a traditional synchronous frame
acquisition mechanism (Berner et al., 2013; Brandli et al.,
2014) to acquire also gray levels. The generalized time-based
technique does apply to the events output by these sensors
but as it is, it cannot yet integrate the synchronous luminance
information.
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