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Early diagnosis remains a significant challenge for many neurological disorders, especially

for rare disorders where studying large cohorts is not possible. A novel solution that

investigators have undertaken is combining advanced machine learning algorithms

with resting-state functional Magnetic Resonance Imaging to unveil hidden pathological

brain connectome patterns to uncover diagnostic and prognostic biomarkers. Recently,

state-of-the-art deep learning techniques are outperforming traditional machine learning

methods and are hailed as a milestone for artificial intelligence. However, whole brain

classification that combines brain connectome with deep learning has been hindered

by insufficient training samples. Inspired by the transfer learning strategy employed in

computer vision, we exploited previously collected resting-state functional MRI data for

healthy subjects from existing databases and transferred this knowledge for new disease

classification tasks. We developed a deep transfer learning neural network (DTL-NN)

framework for enhancing the classification of whole brain functional connectivity patterns.

Briefly, we trained a stacked sparse autoencoder (SSAE) prototype to learn healthy

functional connectivity patterns in an offline learning environment. Then, the SSAE

prototype was transferred to a DTL-NN model for a new classification task. To test

the validity of our framework, we collected resting-state functional MRI data from

the Autism Brain Imaging Data Exchange (ABIDE) repository. Using autism spectrum

disorder (ASD) classification as a target task, we compared the performance of our

DTL-NN approach with a traditional deep neural network and support vector machine

models across four ABIDE data sites that enrolled at least 60 subjects. As compared

to traditional models, our DTL-NN approach achieved an improved performance in

accuracy, sensitivity, specificity and area under receiver operating characteristic curve.

These findings suggest that DTL-NN approaches could enhance disease classification

for neurological conditions, where accumulating large neuroimaging datasets has been

challenging.

Keywords: deep learning, transfer learning, functional connectomes, resting-state functional MRI, neural

networks, stacked sparse autoencoder, autism spectrum disorder

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00491
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00491&domain=pdf&date_stamp=2018-07-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lili.he@cchmc.org
https://doi.org/10.3389/fnins.2018.00491
https://www.frontiersin.org/articles/10.3389/fnins.2018.00491/full
http://loop.frontiersin.org/people/546475/overview
http://loop.frontiersin.org/people/567403/overview
http://loop.frontiersin.org/people/586755/overview


Li et al. Transfer Learning Brain Functional Connectomes

INTRODUCTION

Early diagnosis and prognosis remains a significant challenge
for many neurological disorders, especially for rare disorders
where studying large cohorts is not possible. Integration of
resting-state functional magnetic resonance imaging (rs-fMRI)
techniques and machine learning algorithms is showing great
promise in unveiling hidden pathological functional connectome
(FC) patterns to assist early diagnosis and prediction of brain
disorders (Cox and Savoy, 2003; Mourão-Miranda et al., 2005;
Fan et al., 2007; Pereira et al., 2009; Anderson et al., 2011; Zhang
et al., 2012; Uddin et al., 2013; Plitt et al., 2015). However, brain
FC patterns analysis remains challenging due to the inherent high
dimensionality of data and insufficient sample sizes (Kim et al.,
2016; Suk et al., 2017).

To reduce the high dimensionality of FC patterns, a number of
methods have been proposed, ranging from graph theory-based
features (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010)
to recent deep learning approaches (Kuang et al., 2014; Kim et al.,

2016; Guo et al., 2017). Several investigators have reported their
attempts in applying state-of-the-art deep learning algorithms,
such as deep neural network (DNN) (Hinton and Salakhutdinov,
2006; Hinton et al., 2006), on rs-fMRI data to extract high-
level FC features for the classification of neuropsychiatric and
neurodevelopmental disorders (Kuang et al., 2014; Kim et al.,
2016; Guo et al., 2017; Heinsfeld et al., 2018). Kim et al. (2016)
developed a DNN model for the classification of schizophrenia
from healthy controls using FC patterns derived from rs-fMRI
data; the DNN model was trained based on FC patterns from 50
schizophrenia and 50 healthy controls. Their proposed approach

achieved an error rate substantially lower than support vector
machine (SVM). In another study (Kuang et al., 2014), a deep
belief network model, a class of DNN, was tested on three
attention deficit hyperactivity disorder datasets, which contained
83, 85, and 222 subjects, respectively. The ADHD discrimination
accuracy was improved compared to previous results from the
ADHD-200 competition (The ADHD-200 Consortium, 2012).
Guo et al. (2017) developed a DNN model with a novel

feature selection method for ASD diagnosis. They applied a
total of 110 sets of FC patterns extracted from the ABIDE
database (Di Martino et al., 2014) to train their deep learning
model. Remarkably, the deep model outperformed classical
models with improvement in accuracy of 9.1%. More recently,
Heinsfeld et al. (2018) reported their state-of-art results (70%
on accuracy) on ASD identification by using a DNN model that
was trained with the∼1,000 ABIDE subjects. Benefiting from the
dimensionality reduction of DNN techniques, these studies have
enhanced the performance of brain classification tasks. However,
in order to take full advantage of deep learning models, a large
number of samples are usually required for training the model.
Unfortunately, most FC studies collect data from small samples.

While increasing a study’s sample is the preferred solution, in
reality it is very challenging to collect large scale neuroimaging
datasets, especially ones with outcome data, because the: (1) cost
of MRI scanning is high; (2) it is challenging to accumulate
a large dataset for rare diseases; (3) acquiring outcome data
typically requires clinical diagnoses which may require long-term

follow-up of subjects. Therefore, despite a few promising reports
(Kuang et al., 2014; Kim et al., 2016; Guo et al., 2017; Heinsfeld
et al., 2018), the use of DNN techniques to learn brain networks
for outcome prediction is still immature and have not been
broadly adopted by the neuroimaging community. At present,
most deep learning approaches in previous studies on FC features
were developed using onlymodest sample sizes (DiMartino et al.,
2014; Kuang et al., 2014; Kim et al., 2016; Guo et al., 2017;
Heinsfeld et al., 2018). The reproducibility and generalizability
of these deep learning approaches are debatable, especially since
the sample size of other neurological studies are small or modest
at best. In order to translate the advantages of deep learning
to explicate neuronal underpinnings, there is a critical need
to develop a machine learning approach with robust training
methodology that is geared toward the needs of studies with
limited sample sizes.

Intriguingly, much of human learning involves only a few
new examples superimposed on extensive prior knowledge (Fei-
Fei et al., 2006). For instance, medical students can rapidly
learn certain abnormalities on brain MRI images with only
a handful of examples because they are already familiar with
healthy brain structures. In contrast, this may be very difficult for
a non-medical student lacking previous neuroscience knowledge.
Motivated by knowledge of how humans learn, several learning
frameworks, such as transfer learning (Pan and Yang, 2010),
one-shot learning (Fei-Fei et al., 2006), and self-taught learning
(Raina et al., 2007), have been proposed. These studies focus
on storing prior knowledge gained from solving previous
problems and applying it to a related or totally new problem.
For example, knowledge gained from learning to recognize
handwritten digits (“0”–“9”) can be transferred to recognize
handwritten English characters (“a”–“z”) (Raina et al., 2007). In
a study from the Alzheimer’s Disease Neuroimaging Initiative
database, knowledge learned from 10,000 regular images was
utilized to learn a sparse representation of structural brain MRI
data to facilitate enhanced classification of Alzheimer’s disease
(AD) and mild cognitive impairment from healthy control
subjects (Gupta et al., 2013). Furthermore, Cheng et al. (2018)
proposed a robust multi-label transfer feature learning for early
diagnosis of AD and effectively improved the performance of AD
diagnosis, compared with several state-of-art methods. Recently,
we successfully applied a transfer learning strategy on a stacked
sparse autoencoder (SSAE) model to perform high-level feature
extraction of FC patterns for early prediction of cognitive deficits
in a small cohort of very preterm infants (He et al., 2018).

We hypothesized that healthy FC patterns learned from an
existing large scale database could be transferred to enhance a
new disease classification task that also replies on FC patterns.
We propose a deep transfer learning neural network (DTL-
NN) model by utilizing relatively easy-to-obtain FC patterns
from a database of healthy subjects. We first employed a large
database of healthy FC patterns to train a SSAE prototype, and
then transferred this SSAE prototype to build a DTL-NN for
other new classification tasks that had limited training samples.
Different from existing deep learning approaches (Di Martino
et al., 2014; Kuang et al., 2014; Kim et al., 2016; Guo et al.,
2017; Heinsfeld et al., 2018), our proposed approach is based
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on transfer learning which exploits readily available data from
existing imaging databases to pre-train a deep learning model
prototype so as to aid the training process of the final model. This
transfer learning strategy is able to enhance DNN classification,
especially when the target dataset has a limited sample size. To
test the validity of our DTL-NN framework, an international
collaborative project, the Autism Brain Imaging Data Exchange
(ABIDE) (Nielsen et al., 2013) was chosen as a testbed. Accurate
classification of autism spectrum disorder (ASD) was our target
task in this work. Specifically, we selected pre-processed rs-fMRI
data from four ABIDE sites with a minimum of 60 sample
sizes. The proposed DTL-NN model was trained and tested
within those sites, individually. Our objective was to investigate
if DTL-NN could significantly enhance ASD classification, when
working with limited data as, as compared with traditional DNN
(Bengio and LeCun, 2007) and support vector machine (SVM).

MATERIALS AND METHODS

Deep Transfer Learning Neural Network
Overview
An overview for the training and classification phases of our
approach is summarized in Figure 1. The training phase of
DTL-NN framework consists of two steps: (1) offline learning,
(2) prior knowledge aided training. In step (1), we train a SSAE
prototype in an unsupervised manner to learn FC patterns from
a group of pre-collected healthy subjects. (Figure 1. top red
panel) In step (2), the SSAE prototype could be transferred to
a new independent task with limited target subjects. The SSAE

prototype and a softmax regression were stacked into a DTL-
NN, which is subsequently trained, aided by prior knowledge
from offline learning. (Figure 1. middle blue panel) After the
training phase, the well-trained DTL-NNmodel could be applied
to classify an unknown subject into a known group (Figure 1.
bottom gray panel).

Offline Learning
In the first step of the training phase of our DTL-NN, we propose
to learn healthy FC patterns through offline learning via SSAE.
More specifically, we seek to train a SSAE prototype (Figure 1)
using a large number of pre-collected healthy FC pattern data
that are independent from the real classification task. In this
way, these healthy FC patterns that are considered as prior
knowledge would be represented by parameters (i.e., weights W
and bias b) of the SSAE prototype. A SSAE model (Figure 2)
is usually constructed by stacking multiple autoencoders (AE),
which consists of one input layer, one hidden layer and one
output layer. AE replicates its input at its output. Nodes between
different layers of an AE are fully-connected. Here, we first
describe the training process of individual AEs, then illustrate the
stacking procedure of AEs into a SSAE model.

Assume an n-dimension FC features from a healthy subject
xh = [xh1 , x

h
2 , . . . , x

h
n] where “h” denotes the healthy FC patterns.

Also, assume the activation vector of κ hidden nodes zh =

[zh1 , z
h
2 , . . . , z

h
k
]. The hidden nodes of an AE are activated using

encoding weights W1 and bias b1 by zh = f (W1x
h + b1). The

output x̂h = [x̂h1 , x̂
h
2 , . . . , x̂

h
n] of an AE (i.e., reconstructed input

vector) is presented by x̂h = f (W2z
h + b2) using the decoding

FIGURE 1 | Overview of the DTL-NN framework. Training Phase: (1) A SSAE is trained in an unsupervised manner to learn healthy data in the offline learning phase

(red box). (2) The learned knowledge within the SSAE is then transferred to initialize the SSAE of the DTL-NN, followed by supervised training and fine-tuning steps in

the prior knowledge aided classification (blue box). Classification phase: the classification of a new subject using well-trained DTL-NN (Gray box).
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FIGURE 2 | Three sparse AEs (encoding parts) are stacked together into a 3-layer SSAE.

weights W2 and bias b2. We further adopted an L2 regularized
sparse AE in this work. The cost function of a sparse AE can be
modeled by:

E (W, b) =
1

p

∑p

j=1

∑n

i=1
( x̂hij − xhij)

2
+ λ

×�weights + β × �sparsity (1)

In Equation (1), the first part is the mean squared error of AE’s
ith output feature x̂hij and ith input feature xhij of sample j, and p

is the sample size of the healthy FC patterns dataset. The second
part of the cost function equation is the L2 regularization term

�weights = 1
2

∑n
j=1

∑k
i=1 ( wij)

2 on encoding weights wij from

node i to node j, and λ is the L2 regularization penalty coefficient.
The third part of the equation is the sparsity regularization term,
where β is the coefficient for the sparsity regularization term
and �sparsity is the Kullback-Leibler (KL) divergence (Shin et al.,
2013), defined by

�sparsity =
∑k

i=1
ρ log

ρ

ρi
′
+ (1− ρ)log

1− ρ

1− ρi
′

(2)

where ρi
′ = 1

p

∑p
i=1 zi(xj) is the average activation of the hidden

node i over the training set. Sparsity parameter ρ is a pre-defined
small fraction constant. Weights and bias of a L2 regularized
sparse AE are initialized using a uniformly distributed random
number between [−1, 1]. Weights and bias are optimized using a
scaled conjugate gradient descent algorithm (Møller, 1993).

After training of individual AEs, we can stack multiple
sparse AEs into an L layers SSAE model. In particular, the
hidden layer of lth sparse AE is connected to the input layer
of (l+1)th sparse AE, as shown in left panel of Figure 2. The
encoding parts of three sparse AEs are stacked to form a
SSAE. After the offline learning, we represented the healthy

FC pattern knowledge by weights and bias of the SSAE
prototype.

Prior Knowledge Aided Training
In the second step of the training phase, we incorporated the
offline-learned prior knowledge (i.e., weights and bias) for a
new subject FC classification task. The offline trained SSAE
prototype was transferred to the new task—ASD classification
in this work—and readied for further training. Conventionally,
a DNN model requires a pre-training method (Hinton and
Salakhutdinov, 2006; Bengio and LeCun, 2007) using the
data from a classification task to initialize weights and bias
of an SSAE. In contrast, our DTL-NN model utilized prior
knowledge embedded in the offline learned SSAE prototype for
the initialization instead of the classic pre-training approach.
We assumed an independent dataset from m labeled subjects
are represented as

(

x1, y1
)

,
(

x2, y2
)

, . . . ,
(

xm, ym
)

. In this work,
this dataset is referred to FC patterns from ASD and healthy
subjects, which are independent from the data in offline learning.
Feature extraction was first performed using the SSAE prototype.
The high-level features zi were extracted by the L-layer SSAE
prototype from the input xi. Then, the extracted high level
features and the labels were used to train a softmax regression
model. Given a high-level feature zi, the softmax regression
model estimates the probabilities p

(

y = j
∣

∣zi
)

, j ∈ [1, . . . ,5]
for a 5 -class problem. The hypothesis of softmax regression is
computed as follows:

h (zi) =
1

∑5
j=1 e

θTj zi

[

eθ
T
1 zi

eθ
T
2 zi

]

(3)

The output of the hypothesis is a vector that contains 5

probabilities, measuring the probability of the input samples for
each class label. In the current work, we have only two categories
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(i.e., 5 = 2). In Equation (3), θ is the coefficient vector of the
model, which can be optimized by minimizing the cross entropy
cost function:

E (θ)=−
1

m

∑m

i=1

∑5

j=1
[h (zi)j ln yij + (1− h(zi)j)ln(1− yij)],

(4)

where yij is the output of node j for sample i from the softmax
regression model.

After the training of softmax regression model, we stacked
this softmax regression model into the SSAE prototype from
offline learning to form a DTL-NN model. Next, the whole
DTL-NN model was optimized using supervised fine tuning
(Hinton and Salakhutdinov, 2006). During this process, weights,
bias from all layers of the SSAE and coefficients of the softmax
regression were tuned simultaneously in each iteration using the
scaled conjugate gradient descent scheme (Møller, 1993). Fine-
tuning was terminated if the cost function goal was achieved
or a maximum number of epochs occurred. Algorithm 1 in
Supplementary Material summarizes the training algorithm of
our DTL-NN.

Rs-fMRI Data From ABIDE Repository
To test our hypothesis with the DTL-NN model, we chose the
publicly available ABIDE repository (Craddock et al., 2013),
which contains pre-processed rs-fMRI data from ASD and
healthy subjects across all independent data sites. The rs-
fMRI data were processed using Connectome Computation
System (Xu et al., 2015) pipeline, which includes slice timing
correction, motion realignment, and intensity normalization.
Nuisance variable regression (Fox et al., 2005; Lund et al., 2005)
was implemented through band-pass filtering and global signal
regression strategies to clean confounding variations introduced
by heartbeats and respirations, head motion, and low frequency
scanner drifts. Furthermore, boundary-based rigid body and
FMRIB’s linear & nonlinear image registration tools (Andersson
et al., 2008; Ratziu et al., 2008) were used to register functional to
anatomical images. Then, both functional and anatomical images
were normalized to a standard template space, the Automated
Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002). The
weights of FC was defined using Pearson’s correlation between
BOLD time series from two regions of interests (ROIs). This
resulted in a 90 × 90 FC adjacency matrix, symmetric along
diagonal, in which each entry represents the brain connectivity
between each pair of ROIs. Site bias was corrected among
different sites similar to an approach described previously by
an ABIDE study (Heinsfeld et al., 2018). Specifically, a multiple
regression analysis was conducted to control for potentially
confounding variables (site, age, gender, and handedness). These
variables were regressed from FC weights across connections
among ROIs. When adjusting for the confounding factors, our
regression model is:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ε

where y is the vector of FC weights, x1 to x4 represent the four
explanatory variables, site, age, gender, and handedness. βi is the

intercept and the corresponding regression coefficients. ε is the
residual vector. Using ordinary least squares (OLS) estimation, βi

was estimated. Then, these cofounding variables were regressed
out from the FC weights. Next, the value of each FC was adjusted
by using the difference between one site’s mean value and mean
values across all sites for the same FC. Example cases of FC maps
before and after bias correction are presented in Supplemental
Figure 1. For each individual subject, this resulted in 4,005 FC
links that were considered as features.

Evaluation of the Classification Model
To design a reproducible study, we performed ASD classification
experiments on four individual data sites with at least 60 subjects,
including University of Michigan (UM), University of California,
Los Angeles (UCLA), University of Utah School of Medicine
(USM), and Katholieke Universiteit Leuven (LEUVEN). As
shown in the Figure 3, when the models were evaluated on one
data site, the independent healthy FC data from the remaining
16 sites from the ABIDE repository were accumulated as pre-
collected data to train an SSAE prototype during offline learning.
Then, we randomly split the data from the target site into training
and testing set. The data from the training set were applied on
an SSAE prototype in the prior knowledge aided training step.
The hold-out testing data were then used to evaluate the trained
DTL-NN model.

To measure the performance of ASD classification, we applied
a k-fold cross-validation (CV) scheme. The whole target cohort
was randomly divided into k equal sized portions. Of the k
portions, one portion of data were held out for the model testing,
and the remaining (k-1) portions were used for model training.
This process was repeated k iterations until each of the k portions
was evaluated once as the testing data. We evaluated the model
based on the concatenated test labels and ground truth labels
across k iterations. The training and testing data were separated
proportionally according to the sample size of ASD and NC
subjects in a stratified way. The performance of the classification
was assessed using four diagnostic metrics: accuracy, sensitivity,
specificity and area under receiver operating characteristic curve
(AUC). Accuracy is measured by the percentage of correctly
classified subjects within all subjects. Sensitivity is defined as the
percentage of correctly classified ASD subjects within all ASD
subjects, while specificity is represented by the percentage of
correctly classified healthy subjects within all healthy subjects.
Sensitivity is the ability of the classifier to correctly identify
those ASD subjects (true positive rate), whereas specificity is the
ability of the classifier to correctly identify healthy subjects (true
negative rate). AUC reflects the diagnostic ability of a binary
classifier system when its discrimination cutoff varies.

To investigate whether the classification performance was
significantly increased by DTL-NN. A paired-sample T-test was
conducted for our four performance metrics from the seven
individual sites comparing the DTL-NN and DNNmodels.

Optimization of ASD Classification Model
To provide a fair comparison between the performance of our
DTL-NN model with conventional DNN (Bengio and LeCun,
2007), we first optimized the DNN model for each data site and
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then utilized the same configuration for both models. Thus, any
difference in performance can be attributed to transfer learning.
In this work, we adopted a 3-layer SSAE architecture from a
previous ASD classification study (Guo et al., 2017). The SSAE
model contained one input layer and three hidden layers. The
number of nodes on the input layer was defined by the input
features (i.e., 4,005 FC patterns). Empirical values (30, 50, 70,
and 100) were tested to optimize the performance. A threshold
of 10−5 was set for the cost function in (Equation 1). Different
number of epochs (400, 500, 600, 700, and 800) were tested as
a maximal training epoch (Kim et al., 2016), and the smallest
number was chosen that achieved the best AUC performance.
Regarding three sparsity hyperparameters of the model, sparsity
regularization term β was selected from (1, 2, 3, and 4), while L2
regularized term coefficient λ was set to be 0.001, and Sparsity
parameter ρ was selected from empirical values (0.001, 0.01,
0.05, and 0.1) based on AUC performance. Learning rate of back
propagation algorithm for fine tuning is 0.01. The configurations
used for DTL-NN and DNN are listed in Table 1.

Identification of Discriminative Functional
Connections
To unveil FCs that were the most discriminative of ASD, we
applied a feature ranking approach (Simonyan et al., 2013)
designed for deep learning algorithms on our DTL-NN. Here, we

calculated the partial derivatives
∂y

∂FCij
, i 6= j, i, j ∈ [1, 2, . . . , 90]

of the labels with respect to the individual FC links from the
brain connectome. The partial derivative for FC links can be
represented by [W(1) × W(2) × . . .W(L)], where W(∗) is the
optimized weights of individual layers of SSAE. A higher absolute
value of the partial derivative indicates a higher level of the
importance for ASD classification. The FC links were ranked
inside every fold of k-fold CV, then the ranking weights of each
FC link were accumulated across all folds of CV.

RESULTS

Classification of ASD From Individual Data
Sites
We compared the performance of our DTL-NNmodel withDNN
(Bengio and LeCun, 2007) and SVM learning approach across
four data sites. The demographic information of the subjects is
shown in Table 2.

The performance of ASD classification based 5-fold CV are
illustrated in Table 3. We listed accuracy, sensitivity, specificity
and AUC for four data sites that are ordered by their sample
sizes. Across four individual data sites, SVM models achieved an
average of 58.4% for accuracy, 59.8% for sensitivity, 57.5% for
specificity and 0.63 for AUC. The poor performancemight be due
to the high dimensionality of FC maps in conjunction with the
limited subjects. Similarly, DNN models classified ASD subjects
with an average of 61.6%, 61.0%, 61.5% and 0.64 for accuracy,
sensitivity, specificity and AUC, respectively. Compared to DNN
and SVM, the DTL-NN model reached an average of 67.1%
on accuracy, 65.7% on sensitivity, 68.3% on specificity and 0.71
on AUC, respectively. Our model significantly improved the
ASD classification over the DNN model for accuracy (p = 0.03)
and sensitivity (p = 0.04). For the UM site, that had the
largest sample size (N = 113), DTL-NN achieved an accuracy
of 67.2%, a 4.9% increase over the DNN model. Compared to

TABLE 1 | Configurations of DTL-NN and DNN.

Site Architecture Regularization β Sparsity ρ Epochs

UM 4005-100-100-100-2 1 0.1 800

UCLA 4005-70-70-70-2 2 0.01 400

USM 4005-30-30-30-2 2 0.01 400

LEUVEN 4005-50-50-50-2 3 0.01 400

FIGURE 3 | Cross validation scheme for DTL-NN model evaluation.
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TABLE 2 | Demographic data of the healthy and autism spectrum disorder (ASD) subjects across seven data sites ordered by decreasing sample size.

Site Class Target task

sample size

Age (years) Gender (male%) Handedness

(right%)*

Mean full-scale IQ* Offline learning

sample size

UM ASD 48 13.8 ± 2 81.30 75 107.6 ± 17.3 411

Healthy 65 15 ± 3.7 75.40 83.10 109 ± 9.5

UCLA ASD 36 13.3 ± 3 94.40 88.90 102.4 ± 12.8 437

Healthy 39 13.2 ± 1.8 84.60 92.30 106.4 ± 10.4

USM ASD 38 24.6 ± 9 100 92.10 99.7 ± 17.3 453

Healthy 23 22.3 ± 7.9 100 95.70 115.5 ± 15.6

LEUVEN ASD 27 18 ± 5 92.60 88.90 109.4 ± 13.1 442

Healthy 34 18.2 ± 5.1 85.30 85.30 114.8 ± 12.9

All± values are mean± SD. *Results were calculated after removingmissing data. Number of IQmissing value: UM, ASD-1, Healthy-3; UCLA, ASD-0, Healthy-0; USM, ASD-0, Healthy-0;

LEUVEN, ASD-13, Healthy-19; Number of handedness missing value: UM, ASD-4, Healthy-3; UCLA, ASD-0, Healthy-0; USM, ASD-0, Healthy-0; LEUVEN, ASD-0, Healthy-0.

TABLE 3 | ASD classification of four cohorts using different models.

Site Model Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC

UM SVM 60.5 63.8 58.2 0.60

DNN 62.3 64.2 62.3 0.63

DTL-NN 67.2 68.9 67.6 0.67

UCLA SVM 53.9 51.7 55.9 0.56

DNN 60.7 55.2 64.6 0.64

DTL-NN 62.3 55.9 68.0 0.69

USM SVM 63.6 66.8 61.3 0.67

DNN 63.6 66.2 52.6 0.66

DTL-NN 70.4 72.5 67.0 0.73

LEUVEN SVM 55.7 57.0 54.7 0.59

DNN 60.0 58.5 66.5 0.662

DTL-NN 68.3 65.4 70.6 0.74

DNN, our DTL-NN approach also produced better sensitivity,
specificity, and AUC of 4.7, 6.3, and 0.05, respectively. The
lowest performance improvement was noted from the UCLA site,
where DTL-NN improved accuracy by only 1.6%, sensitivity by
0.7%, specificity by 3.4% and AUC by 0.05. The highest ASD
classification performance metrics were observed from the USM
site−70.4% accuracy, 72.5% sensitivity, 67.0% specificity and 0.73
AUC.

Consistency Test of DTL-NN With Varying
Percentages of Training Data
We tested whether our proposed DTL-NN model could
consistently improve classification performance with different
subsampling cross-validation schemes. For these analyses, we
only focused on the UM site that contained the largest sample
size among our selected sites to ensure site sample size did not
influence the results. Five commonly-used random percentages
of training data (2-, 3-, 4-, 5-, and 10-fold) were tested. Figure 4
shows the mean accuracy, sensitivity, specificity and AUC of
DNN and DTL-NN models using these five validation schemes.

Overall, regardless of training percentage, DTL-NN showed
consistent performance improvements over DNN.

Discriminative FC Patterns
We further explored the most discriminative FC patterns in
ASD classification from the UM site. Table 4 summarizes the
relevant FC features and abbreviations. Additional FC feature
ranking results at three other data sites are now provided in
the Supplemental Materials. In Figure 5, out of 4,005 FCs, we
highlight the top 10 most discriminative ones identified by
our DTL-NN and DNN approaches using BrainNet Viewer
(Xia et al., 2013). We found that the FC between the left
superior occipital gyrus and right inferior occipital gyrus was
ranked as the top feature by the DTL-NN method based on
data from UM site. This link was also ranked within top 10
discriminative FC links at UCLA, USM and LEUVEN sites
by using DTL-NN model (Supplemental Tables 1–3). These
nodes have been reported by multiple previous ASD studies
(Just et al., 2006; Ha et al., 2015; Heinsfeld et al., 2018). In
contrast, this same link between the left superior occipital
gyrus and right inferior occipital gyrus was only selected as
a high discriminative feature by traditional DNN from one
(UCLA) site (Supplemental Table 1). The top feature revealed
by DNN was the link between right olfactory and right cuneus
regions. These regions were also associated with ASD previously
(May et al., 2011), indicating the strong data mining ability
of DNN. Of note, the fusiform gyrus area discovered by
our DTL-NN model was also highlighted by a recent study
(Heinsfeld et al., 2018), but was not ranked high by the DNN
model.

DISCUSSION

We demonstrated that healthy FC patterns can be learned
by neural networks from an existing large database and this
knowledge can be transferred to enhance an ASD classification
task that also replies on FC patterns. Inspired by successful use
of transfer learning strategy in other fields, we developed a DTL-
NN model that effectively utilizes healthy FC patterns from an
existing database. Unlike prior DNN studies, our DTL-NNmodel
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FIGURE 4 | Classification performance (A) Accuracy, (B) Sensitivity, (C) Specificity, and (D) AUC of DNN and DTL-NN models with various percentages of training

data.

TABLE 4 | Top 10 discriminative FC features for DNN and DTL-NN models.

Top 10 discriminative FC features of UM site

Brain Region A Abbr. Brain Region B Abrr.

DNN

Olfactory right OLF-R Cuneus right CUN-R

Superior frontal gyrus (dorsal) left SFGdor-L Inferior temporal gyrus left ITG-L

Middle cingulate gyrus right MCG-R Pallidum right PAL-R

Orbitofrontal cortex (medial) right ORBmed-R Angular gyrus right ANG-R

Rolandic operculum left ROL-L Putamen left PUT-L

Superior frontal gyrus (medial) right SFGmed-R Superior temporal gyrus right STG-R

Supplementary motor area right SMA-R Lingual gyrus left LING-L

Inferior occipital gyrus left IOG-L Superior parietal gyrus left SPG-L

Orbitofrontal cortex (superior) right ORBsup-R Angular gyrus right ANG-R

Orbitofrontal cortex (medial) left ORBmed-L Posterior cingulate gyrus right PCG-R

DTL-NN

Superior occipital gyrus left SOG-L Inferior occipital gyrus right IOG-R

Inferior parietal lobule right IPL-R Angular gyrus right ANG-R

Supramarginal gyrus left SMG-L Precuneus left PCUN-L

Anterior cingulate gyrus right ACG-R Inferior occipital gyrus right IOG-R

Olfactory right OLF-R Lingual gyrus left LING-L

Cuneus left CUN-L Inferior temporal gyrus left ITG-L

Superior frontal gyrus (medial) right SFGmed-R Precuneus right PCUN-R

Olfactory right OLF-R Fusiform gyrus right FFG-R

Superior frontal gyrus (dorsal) right SFGdor-R Precuneus right PCUN-R

Inferior occipital gyrus left IOG-L Pallidum right PAL-R

is not only trained with the FC samples from a given target task,
but additionally trained using pre-collected healthy FC patterns.
Utilizing the same model configurations, our proposed DTL-NN
model was able to achieve significantly improved classification
performance on varying independent tasks.

To utilize deep learning techniques effectively, we must
first comprehend their limitations. Before recent advances in
deep learning, multi-layer neural network models were often
characterized by a “local minima problem,” which negatively

impacted the performance of the model. A pre-training strategy
(Hinton and Salakhutdinov, 2006) proposed in 2006 mitigated
this “local minima problem.” This was done by initializing the
neural network model to a point in the parameter space that is
appropriate for further supervised training in order to achieve a
lower minimum of the cost function (Bengio and LeCun, 2007).
But, this pre-training strategy relied on sufficient training data.
As discussed earlier, large scale data collection in brain rs-fMRI
studies is challenging. Thus, transfer learning (Pan and Yang,

Frontiers in Neuroscience | www.frontiersin.org 8 July 2018 | Volume 12 | Article 491

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. Transfer Learning Brain Functional Connectomes

FIGURE 5 | Top discriminative FCs identified by (A) DNN and (B) DTL-NN. The width of each segment/FC indicates the predictive strength (i.e., more predictive

regions are wider).

2010) that is designed for tasks with limited data, merits our
attention.

Here, we proposed the DTL-NN model and evaluated it using
the ABIDE data repository. As shown in Table 3, the DTL-NN

model performed well, aided by prior knowledge, on the ASD
classification task using FC patterns. The reproducible results
across multiple data sites supported our hypothesis that a large
scale of healthy FC patterns data could be transferred to enhance

Frontiers in Neuroscience | www.frontiersin.org 9 July 2018 | Volume 12 | Article 491

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. Transfer Learning Brain Functional Connectomes

brain FC patterns classification from an independent study. Our
best ASD classification performance was achieved by DTL-NN
from the USM site with 70.4% accuracy, 72.5% sensitivity, 67.0%
specificity and 0.7 AUC. This is comparable to a recent ASD
study (Heinsfeld et al., 2018) using a deep learning algorithm.
The difference is that our DTL-NN model was able to achieve
similar performance by using only a modest size of samples,
while previous work required a large number of data for model
training.

We tested the consistency of DTL-NN model by varying the
data splitting strategy on the largest UM site. The consistent
improvement achieved by DTL-NN over five training scenarios
indicated the robust efficacy of transfer learning (Figure 4).
Furthermore, we ranked the 10 most discriminative FC patterns
identified by the DTL-NN and DNN models (Figure 5; Table 4).
The FC between left superior occipital gyrus and right inferior
occipital gyrus was consistently ranked as the top discriminative
feature by the DTL-NN method across four study sites, while
this FC link was only selected by DNN from one site (Table 4,
Supplemental Tables 1–3). The consistency of feature selection
by using DTL-NN is better than DNN across different sites. This
might be due to the same offline learning of DTL-NN using
healthy FC patterns. In addition, our DTL-NN also highlighted
a FC feature connected to the fusiform gyrus, an area previously
associated with ASD development (Heinsfeld et al., 2018), which
was not emphasized by the DNN model from the UM and USM
sites. This suggests that the DTL-NN approach discovers more
meaningful brain features by utilizing prior knowledge learned
from healthy subjects compared to the DNN model that solely
relies on the targeted dataset.

We only utilized pre-collected data for offline learning from
healthy subjects because such data were relatively easy to acquire.
For future work, even larger datasets for offline learning are
possible by integrating all healthy subjects from additional large-
scale brain studies such as the Human Connectome Project,
ADHD-200 and ADNI. As a preliminary study to demonstrate
the capability of transfer learning in neuroimaging studies,
we narrowed down our research scope and focused on only
healthy FC patterns in offline learning. In fact, additional FC
patterns from other disease groups could also be included in
offline learning. We have made an initial attempt on apply
both healthy and ASD subjects to aid the classification of other
brain conditions. For example, we utilized FC patterns from
both healthy and ASD subjects in our recent study (He et al.,
2018) on early prediction of cognitive deficits in a cohort of
very preterm infants. By adopting the transfer learning strategy,
a total of 884 independent FC patterns from ABIDE were applied
to train a SSAE model in an unsupervised manner. Then, we
transferred the SSAE model to perform dimension reduction
for the FC patterns of our preterm cohort. With the high-level
features of FC patterns, our SVM model predicted cognitive
deficits at 2 years corrected age for very premature infants with
an accuracy of 70.6% and AUC of 0.76. However, we realize
that several confounding factors may impact performance. For
example, as more samples from disease groups are added into
offline learning, whether the performance change is due to an
increase in sample size or disease condition remains unclear. To
answer such a question, a comprehensive analysis and discussion

will be necessary. Thus, whether data from subjects with relevant
or disparate conditions would enhance classification remains an
interesting topic for future inquiry.

Our study has several limitations. First, when knowledge
is based on one type of feature (e.g., FC patterns), only the
same type of feature can be represented by the knowledge.
The learned knowledge is unlikely to be transferable to other
types of features. Second, transfer learning cannot replace the
necessary data collection in neuroscience studies. As such, the
DTL-NN model may not be able to improve the performance
of a classification model that is trained with sufficient data.
Thus, the real value of our approach lies in its application
to smaller studies, especially rare neurological disorders, where
performing large studies is very challenging. Third, we only
considered FC patterns as a full-weighted graph in the current
study. FC patterns could also be represented by other networks
(e.g., dynamic FC networks, Hutchison et al., 2013 or hypothesis-
driven subnet, He and Parikh, 2016). Whether our approach
can be applied on other FC networks represents an interesting
future inquiry. Last, due to the diverse complexity of classification
problems, it is difficult to estimate how many healthy FC
patterns are sufficient in transfer learning to achieve optimal
performance. The sample sizes of healthy controls for four data
sites in the current work were all approximately 400. It will be
interesting to explore in future studies if a larger set of healthy
FC patterns (e.g., 5,000) could further improve classification
performance.

In summary, we developed a novel DTL-NN framework by
utilizing healthy FC patterns to facilitate the application of
deep learning models for smaller neuroimaging rs-fMRI studies
and demonstrated enhanced ASD classification as compared
to DNN models. The significantly improved performance was
observed irrespective of site sample size and was reproducible
among various subsampling schemes. Our results offer a proof
of concept for the use of DTL-NN models over conventional
DNN models to enhance diagnosis or prediction of rare diseases
and other conditions where studying a large cohort remains
challenging.
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